ON PROJECTIVE CHARACTERS OF PRIME DEGREE

by R. J. HIGGS

(Received 22 March, 1990)

All groups G considered in this paper are finite and all representations of G are defined over the field of complex numbers. The reader unfamiliar with projective representations is referred to [9] for basic definitions and elementary results.

0. Introduction. Let $\operatorname{Proj}(G, \alpha)$ denote the set of irreducible projective characters of a group G with cocycle α . In a previous paper [3] the author showed that if G is a (p, α) -group, that is the degrees of the elements of $\operatorname{Proj}(G, \alpha)$ are all powers of a prime number p, then G is solvable. However Isaacs and Passman in [8] were able to give structural information about a group G for which $\xi(1)$ divides p^e for all $\xi \in \operatorname{Proj}(G, 1)$, where 1 denotes the trivial cocycle of G, and indeed classified all such groups in the case e = 1. Their results rely on the fact that G has a normal abelian p-complement, which is false in general if G is a (p, α) -group; the alternating group A_4 providing an easy counter-example for p = 2.

The aim of this paper is to at least give a full classification of p-groups G whose irreducible projective characters with cocycle α all have degree p. In Section 1 we shall show that a (p, α) -group G which does not possess a normal abelian p-complement may be considered unusual, and we shall assume thereafter that G does have such a complement. Under this assumption Isaacs and Passman's results for ordinary characters still hold for projective characters, and our interest is focussed on the necessary changes in the corresponding proofs.

In Section 2 we obtain the following theorem which is the exact analogue of Theorem II of [8].

THEOREM 1. Let p be an odd prime number, and G be a group with a normal abelian p-complement. Then every irreducible projective character of G with cocycle α has degree dividing p if and only if

(i) G is abelian and the cohomology class of α is trivial; or

(ii) G has an abelian normal subgroup A with the cohomology class of α_A trivial of minimal index p; or

(iii) G/U is a group of order p^3 and exponent p, where U denotes the set of α -regular elements of G contained in the centre Z(G) of G.

The case p = 2 is exceptional and is dealt with in Section 3. Let C_n and D_n denote the cyclic group of order n and the dihedral group of order 2n respectively. Then with notation as above our results culminate in the following theorem.

THEOREM 2. Let p = 2, and G be a group with a normal abelian 2-complement. Suppose every irreducible projective character of G with cocycle α has degree dividing 2. Then G satisfies (i), (ii), or (iii) of Theorem 1 or

(iv) U = Z(G) and $G/U \cong C_2 \times C_2 \times C_2 \times C_2$, or $D_4 \times C_2$, or

$$R = \langle x, y, z : x^4 = y^2 = z^2 = 1, xy = yx, yz = zy, xz = zx^{-1}y \rangle.$$

Glasgow Math. J. 33 (1991) 311-321.

R. J. HIGGS

1. Prime power degrees. Let $[\alpha]$ denote the cohomology class of the cocycle α in the Schur multiplier M(G) of the group G. We start by noting that the degrees of projective representations are unaffected under projective equivalence, so that if G is a (p, α) -group then it is also a (p, β) -group for $[\beta] = [\alpha]$. Thus in what follows it is no loss to assume that the cocycle α under consideration is a class-preserving cocycle, such that $o([\alpha]) = n$ if and only if α^n is the trivial cocycle of G. We also state and use without further reference the fact that $o([\alpha])$ divides $\xi(1)$ for all $\xi \in \operatorname{Proj}(G, \alpha)$. Finally for the remainder of this paper let p be a fixed prime number.

DEFINITION 1.1. A group G is said to have p.r.x. (e, α) (projective representation exponent e) if there exists a cocycle α of G such that $\xi(1)$ divides p^e for all $\xi \in \operatorname{Proj}(G, \alpha)$.

For convenience we quote, summarize, and generalize 2.4, 2.7 and 2.8 of [8], and 2.2, 2.3, 2.4, and Theorem B of [3], the proofs where needed can easily be derived from those given in the relevant paper.

LEMMA 1.2. Let G have p.r.x. (e, α) , $N \leq G$, $\zeta \in \operatorname{Proj}(N, \alpha_N)$, and $I_G(\zeta)$ denote the inertia group of ζ in G. Then

(i) N has p.r.x. (e, α_N) ;

(ii) if G/N is non-abelian, then N has p.r.x. $(e-1, \alpha_N)$;

(iii) $I_G(\zeta)/N$ has p.r.x. (e, β) for some cocycle β of $I_G(\zeta)/N$, and $[G:I_G(\zeta)]$ divides p^e .

LEMMA 1.3. Let $N \leq G$ with G/N a p-group. Suppose G has p.r.x. (e, α) and N has p.r.x. $(e-1, \alpha_N)$. Then F has p.r.x. $(e-1, \alpha_N)$, where F is the inverse image in G of the Frattini subgroup of G/N.

LEMMA 1.4. Let G have p.r.x. (e, α) , $L \leq G$ such that [G:L] is coprime to p, and $\zeta \in \operatorname{Proj}(L, \alpha_L)$. Then ζ extends to G.

THEOREM 1.5. Let G have p.r.x. (e, α) . Then G is solvable and has abelian Hall p'-subgroups.

LEMMA 1.6. Let G have p.r.x. (e, α) and suppose G has a normal abelian pcomplement. Let $H \trianglelefteq K \le G$ with K/H an abelian group of order coprime to p. Then

(i) K has p.r.x. (e, α_K) ;

(ii) if H has p.r.x. (f, α_H) , then K has p.r.x. (f, α_K) .

Our next aim is to relate the results on projective and ordinary representation exponents, the following proposition providing the crucial link.

PROPOSITION 1.7. Let G have p.r.x. (e, α) , $p^a = \min{\{\xi(1): \xi \in \operatorname{Proj}(G, \alpha)\}}$, and suppose G has a normal abelian p-complement. Then G has p.r.x. $(e + a, \alpha^n)$ for any integer n.

Proof. Let S be a Sylow p-subgroup of G, and $\zeta \in \operatorname{Proj}(S, \alpha_S)$ of minimum degree. Then $\zeta(1) = p^a$ by Proposition 1 of [2]. Now since S is a PM-group there exists a subgroup T of S with $[S:T] = p^a$ and $\lambda \in \operatorname{Proj}(T, \alpha_T)$ with $\lambda^S = \zeta$.

Let N be the normal abelian p-complement of G, then by 1.6(i) TN has p.r.x.(e, α_{TN}), and so by 1.4 λ extends to $\mu \in \operatorname{Proj}(TN, \alpha_{TN})$. Thus $[\alpha_{TN}] = [1]$, so that G

is a (p, α^n) -group for any integer *n* by Theorem 2 of [11], and since $[G:TN] = p^a$ it follows that G has p.r.x. $(e + a, \alpha^n)$.

The above result allows us to generalize Theorem I of [8] as follows.

THEOREM 1.8. Let G have p.r.x. (e, α) and suppose G has a normal abelian p-complement. Then G has a series of subgroups

$$A_0 \trianglelefteq A_1 \trianglelefteq \ldots \trianglelefteq A_e = G,$$

such that A_0 is abelian, $[\alpha_{A_0}] = [1]$, and A_i/A_{i-1} is an elementary abelian p-group with not more than 2(i + a) + 1 generators; where $p^a = \min\{\xi(1): \xi \in \operatorname{Proj}(G, \alpha)\}$. Hence G has an abelian subgroup A_0 with $[\alpha_{A_0}] = [1]$ whose index divides $p^{e(e+2a+2)}$.

Proof. We proceed by induction on e, noting that if A is a subnormal subgroup of G then min $\{\zeta(1): \zeta \in \operatorname{Proj}(A, \alpha_A)\}$ divides p^a . Thus it suffices to prove that there exists a normal subgroup A_{e-1} of G, such that A_{e-1} has p.r.x. $(e-1, \alpha_{A_{e-1}})$ and G/A_{e-1} is an elementary abelian p-group of order $\leq p^{2(e+a)+1}$.

Suppose G is abelian. Then $\operatorname{Proj}(G, \alpha)$ all have the same degree. Let U denote the set of α -regular elements of G and $\xi \in \operatorname{Proj}(G, \alpha)$. Then U has p.r.x. $(0, \alpha_U), \xi_U = \xi(1)\lambda$ for some $\lambda \in \operatorname{Proj}(U, \alpha_U)$, and $\xi(g) = 0$ for $g \in G - U$. Thus $[\alpha_U] = [1]$ and $[G:U] = p^{\alpha^2}$. If U = G there is nothing to prove, whereas if U < G we may let A_{e-1} be a maximal subgroup of G with $U \leq A_{e-1} < G$. Then $[G:A_{e-1}] = p$, and A_{e-1} has p.r.x. $(e-1, \alpha_{A_{e-1}})$ from above.

Suppose G is non-abelian. Let $N \triangleleft G$ be maximal such that G/N is non-abelian and set $\overline{G} = G/N$. Let H be the inverse image in G of the normal abelian p-complement of \overline{G} . Then N has p.r.x. $(e - 1, \alpha_N)$ by 1.2, and H has p.r.x. $(e - 1, \alpha_H)$ by 1.6.

Case 1: $\overline{H} = H/N$ is a non-trivial subgroup of \overline{G} .

In this case \bar{G} is a Frobenius group with an abelian Frobenius complement, \bar{G}' is the Frobenius kernel and is an elementary abelian group. It follows that $\bar{G}' \leq \bar{H}$, and \bar{H} is both a maximal abelian normal subgroup of \bar{G} and a q-group for some prime $q \neq p$. By 2.9 of [8] and 12.3 of [7] we conclude that $\bar{H} = \bar{G}'$. Now it follows from 12.4 of [7] that if $\zeta \in \operatorname{Proj}(H, \alpha_H)$, then $[G:H]\zeta(1)$ is the degree of an element of $\operatorname{Proj}(G, \alpha)$. Thus $[G:H] \leq p^{\epsilon}$.

Finally let A_{e-1} be the inverse image in G of the Frattini subgroup of G/H. Then by 1.3 A_{e-1} has p.r.x. $(e-1, \alpha_{A_{e-1}})$, and G/A_{e-1} is an elementary abelian p-group of order $\leq p^{e}$.

Case 2: \overline{G} is a *p*-group.

In this case let A_{e-1} be the inverse image in G of the Frattini subgroup of \bar{G} . Then by 1.3 A_{e-1} has p.r.x. $(e-1, \alpha_{A_{e-1}})$. Also by Case 2 p. 451 of [8] and 1.7, G/A_{e-1} is an elementary abelian p-group of order $\leq p^{2(e+a)+1}$.

We now state a derivative of the theorem which we shall use in Section 2.

COROLLARY 1.9. Let G have p.r.x. (e, α) , and suppose G has a normal abelian p-complement and an abelian Sylow p-subgroup. Then G has a series of subgroups

$$A_0 \trianglelefteq A_1 \trianglelefteq \ldots \trianglelefteq A_e = G,$$

such that A_0 is abelian, $[\alpha_{A_0}] = [1]$, and A_i/A_{i-1} is an elementary abelian p-group with not more than i generators. Hence G has an abelian subgroup A_0 with $[\alpha_{A_0}] = [1]$ whose index divides $p^{e(e+1)/2}$.

Proof. The result follows from the proof of 1.8 by strengthening the inductive hypothesis and noting that Case 2 of that proof cannot occur.

Let G have p.r.x. (e, α) . Then the previous two results have relied on the assumption that G has a normal abelian p-complement. The last two results in this section deal with the circumstances under which this assumption is tenable.

It is convenient in what follows to call a group H an F_i -group if H is a Frobenius group of order $p^i q$, where q is a prime number such that q divides $p^i - 1$, and the Frobenius kernel of H is an elementary abelian group of order p^i .

LEMMA 1.10. Let G be an F_i -group with Frobenius kernel S, and suppose G is a (p, α) -group. Then $\operatorname{Proj}(G, \alpha)$ consists of q-extensions of the unique element of $\operatorname{Proj}(S, \alpha_S)$.

Proof. Let $\zeta \in \operatorname{Proj}(S, \alpha_S)$. Then it follows from 12.4 of [7] that $\zeta(1)^2 = |S|$. Also ζ extends to G by 1.4.

To illustrate the above lemma we may take p = 2 and then A_4 is the only example of an F_2 -group which also has p.r.x. $(1, \alpha)$, for $[\alpha]$ the non-trivial element of $M(A_4)$. We also note for future reference that if α is a cocycle of a group G such that $|\operatorname{Proj}(G, \alpha)| = 1$, then G is said to be of α -central type.

If N is a normal subgroup of a group G, we shall let inf denote the inflation homomorphism from M(G/N) into M(G).

PROPOSITION 1.11. Let G be a group of minimal order which has p.r.x.(e, α) but does not possess a normal abelian p-complement. Let $K \triangleleft G$ be maximal such that G/K is non-abelian. Then G/K is an F_i -group for $1 \le i \le 2a$, where $p^a = \min{\{\xi(1): \xi \in Proj(G, \alpha)\}}$.

In particular if a = 1, then either G/K is an F_2 -group which has p.r.x. $(1, \beta)$ for some cocycle β of G/K with $\inf([\beta]) = [\alpha]$, or G/K is an F_1 -group.

Proof. Let L/K = (G/K)'. Then by 12.3 and 12.4 of [7] and 1.5, all the non-linear irreducible ordinary characters of G/K have equal degree f, G/K is a Frobenius group with an abelian Frobenius complement of order f and an elementary abelian Frobenius kernel L/K; also if $\zeta \in \operatorname{Proj}(L, \alpha_L)$ then $V(\zeta) \leq K$ and [L:K] divides $\zeta(1)^2$, where $V(\zeta)$ denotes the vanishing-off subgroup of ζ . Thus [L:K] divides p^{2a} and f divides [L:K] - 1. Now let T be a maximal normal subgroup of G containing L. Then by 1.2, T and hence T/K have normal abelian p-complements. Since f is coprime to p, it follows that T = L and f = q for some prime q = [G:L].

It remains to show that if a = 1 and G/K is an F_2 -group, then G/K has p.r.x. $(1, \beta)$ for some cocycle β of G/K with $\inf([\beta]) = [\alpha]$. Let $\xi \in \operatorname{Proj}(G, \alpha)$ with $\xi(1) = p$. Then $\xi_L = \zeta$ for some $\zeta \in \operatorname{Proj}(L, \alpha_L)$, since [G:L] = q. However, the inner product $\langle \zeta_K, \zeta_K \rangle = p^2$ since $V(\zeta) \leq K$, and so $\xi_K = p\lambda$ for some $\lambda \in \operatorname{Proj}(K, \alpha_K)$. Thus $I_G(\lambda) = G$, and the desired result follows from 1.2 and 1.10.

2. Prime degree. Throughout Section 2 we shall assume that G is a group having p.r.x. $(1, \alpha)$ and a normal abelian p-complement.

DEFINITION 2.1. A subgroup A of G is said to be special if

- (i) A is an abelian normal subgroup of G such that $[\alpha_A] = [1]$;
- (ii) G/A is an elementary abelian p-group;
- (iii) if A < B, then either B is non-abelian or B is abelian but $[\alpha_B] \neq [1]$.

It is convenient to call the special subgroup A more-special if A < B implies B is non-abelian, and less-special otherwise. We note that with the assumptions made above 1.8 yields a special subgroup of G of index dividing p^5 .

LEMMA 2.2. Suppose p is odd, and let A be a special subgroup of G. Then each element $a \in A$ has $C_{\alpha}(a) = A$ or G, where $C_{\alpha}(a) = \{x \in C_G(a) : \alpha(a, x) = \alpha(x, a)\}$.

Proof. If $a \in A$, then $A \leq C_{\alpha}(a)$ since $[\alpha_A] = [1]$. Thus the result is trivial if $[G:A] \leq p$.

Now suppose $a \in A$ with $A < C_{\alpha}(a) < G$. Choose $x \in C_{\alpha}(a) - A$ and $y \in G - C_{\alpha}(a)$, and set $K = \langle A, x, y \rangle$. By (ii) of 2.1 it is clear that $[K:A] = p^2$. Since $x \notin A$, $B = \langle A, x \rangle$ is either non-abelian or is abelian with $[\alpha_B] \neq [1]$. In either case there exists $b \in A$ with $x \notin C_{\alpha}(b)$. Let \bar{z} denote the element $z \in G$ viewed as an element of the twisted group algebra $\mathbb{C}G_{\alpha}$. Then $u = (\bar{x})^{-1}(\bar{b})^{-1}\bar{x}\bar{b}$ and $v = (\bar{y})^{-1}(\bar{a})^{-1}\bar{y}\bar{a}$ are non-identity elements of $\mathbb{C}A_{\alpha_A}$. Now by working in $\mathbb{C}A_{\alpha_A}$ the proof of 3.3 of [8] carries over to our situation to give a contradiction, provided that $\bar{1} + uv \neq u + v$. However writing $u = c\bar{w}$ and $v = k\bar{z}$, where w = [x, b], z = [y, a] and c, k are pth roots of unity; we have that $\bar{1} + uv = u + v$ if and only if $z^{-1} = w = z \neq 1$, k = -c, p = 2, and $\alpha(w, w) = 1$.

We note in the context of 2.2 that if A is more-special then replacing $C_{\alpha}(a)$ by $C_G(a)$ in the proof yields that $C_G(a) = A$ or G for each $a \in A$, provided that $\overline{1} + uv \neq u + v$. This observation coupled with the lemma allows us to describe the α -regular elements of a special subgroup of G. Let $U = \{z \in Z(G) : z \text{ is } \alpha\text{-regular}\}$, the reader may refer to [12] for various characterizations of U.

LEMMA 2.3. Let A be a special subgroup of G and suppose $[G:A] \neq p$. Then $A \cap Z(G) = U$. In particular if A is more-special then U = Z(G).

Proof. Clearly U < A by definition of A, and also Z(G) < A if A is more-special. Let $K = A \cap Z(G)$. Then by 2.2 (and its proof in the case p = 2) each $a \in K$ has $C_{\alpha}(a) = A$ or G. Let $\lambda \in \operatorname{Proj}(K, \alpha_K)$, then $\lambda^x = \lambda$ if and only if $\alpha(a, x) = \alpha(x, a)$ for all $a \in K$. Thus $I_G(\lambda) = \bigcap_{a \in K} C_{\alpha}(a) = A$ or G. If $I_G(\lambda) = A$, then λ has [G:A] conjugates. Since G has p.r.x. $(1, \alpha)$ we conclude that K = U.

For the rest of this section we shall assume that if A is a special subgroup of G then $C_{\alpha}(a) = A$ or G for each $a \in A$, we shall also assume that $C_G(a) = A$ or G for each $a \in A$ when A is more-special. Of course these assumptions are certainly valid for $p \neq 2$ by 2.2, and will be discussed in detail for p = 2 in Section 3.

PROPOSITION 2.4. Let A be a special subgroup of G and suppose $[G:A] \neq p$. Then every element of A is α -regular if A is more-special, whereas the elements of U are the α -regular elements of A if A is less-special.

Proof. Suppose $a \in A - U$. Then $C_{\alpha}(a) = A$. However using 2.3 we have that $C_G(a) = A$ if A is more-special, whereas $A < C_G(a)$ if A is less-special.

We next show that U has index p in a special subgroup A with [G:A] > p. This will enable us to classify G/U in subsequent results.

PROPOSITION 2.5. Let A be a special subgroup of G of index p'. (a) If t > 1 or t = 1 and A is less-special, then [A:U] = p. (b) If t = 1 and A is more-special, then p |Z(G)| |G'| = |G|. *Proof.* Suppose first that A is less-special. Let B be an abelian group with [B:A] = p. Then $[\alpha_B] \neq [1]$, so that all elements of $\operatorname{Proj}(B, \alpha_B)$ have degree p and vanish on B - A. Let T denote the set of α_B -regular elements of B. Then since B is abelian it follows as in the proof of 1.8 that [A:T] = p, and all elements of $\operatorname{Proj}(B, \alpha_B)$ are non-zero exactly on T. From 2.4 (or trivially if B = G) we conclude that T = U, since every element of $\operatorname{Proj}(G, \alpha)$ restricts irreducibly to B.

Now suppose A is more-special. Suppose also t > 1. Then by 1.8 of [3], 2.3, 2.4, and the proof of 3.5 of [8] we obtain the equation

$$|U|(p'-1) = |A|(p^{t-1}-1) + k(p^{t}-p^{t-1}),$$
(1)

where k is the number of G-invariant elements of $\operatorname{Proj}(A, \alpha_A)$. Suppose k = 0, then $p^{t-1} - 1$ divides $p^t - 1$, which is impossible. Thus there exists a G-invariant element of $\operatorname{Proj}(A, \alpha_A)$. Let Q be the Sylow p-subgroup of A, then it follows from 1.2 that G/Q has p.r.x. $(1, \beta)$ for some cocycle β of G/Q such that $\operatorname{inf}([\beta]) = [\alpha]$. The proof of 3.4 of [8], and 1.9 now yield that the normal abelian p-complement of G is central. Thus since [A:U] is a power of p, we obtain from (1) that [A:U] = p. Suppose now t = 1. Then G is non-abelian and has p.r.x.(1, 1), so that (b) is just 3.5(b) of [8]. (Note: the proof of 3.5(b) of [8] is independent of the assumption that G is a p-group.)

LEMMA 2.6. Suppose A is a special subgroup of G of minimal index p', where t > 1 or t = 1 and A is less-special. Then

(i) G/U has exponent p;

(ii) G/T is abelian for any T with $U < T \trianglelefteq G$;

(iii) if G/U is non-abelian, then A/U = (G/U)' is the unique minimal normal subgroup of G/U.

Proof. (i) Suppose there exists an element x of order p^2 in G/U. Then $x^p \in A - U$, so that A is a proper subgroup of $\langle x, U \rangle$ since [A:U] = p by 2.5. But $\langle x, U \rangle$ is a special subgroup of G, contrary to the minimality of [G:A].

(ii) Suppose there exists $T \triangleleft G$ with U < T such that G/T is non-abelian. Then T is abelian with $[\alpha_T] = [1]$ by 1.2. Let F be the inverse image in G of the Frattini subgroup of G/T. Then F is abelian with $[\alpha_F] = [1]$ by 1.3, but [G:F] < [G:A] by 2.5, a contradiction.

(iii) If G/U is non-abelian, then by (ii) U is a maximal normal subgroup of G such that G/U is non-abelian. Thus (G/U)' = A/U is the unique minimal normal subgroup of G.

We can now prove Theorem 1, noting that the proof we shall give still holds in the case p = 2, provided that all special subgroups of G of minimal index satisfy the assumptions of this section.

Proof of Theorem 1. Let A be a special subgroup of G of minimal index p', so that $t \le 5$ by 1.8. If t = 0 or 1, then G satisfies (i) or (ii) respectively. Also if $[\alpha] = [1]$, then G satisfies (i), (ii) or (iii) by Theorem II of [8]. So suppose t > 1 and $[\alpha] \ne [1]$. Then by 2.5 and 2.6, G/U has exponent p and order p'^{+1} , and if G/U is non-abelian (so $p \ne 2$) it must be an extra-special p-group of order p^3 or p^5 , since in this case Z(G/U) is cyclic.

Stage 1: If $t \ge 3$, G/U is not elementary abelian.

Let $x \in G - U$. Then $\langle x, U \rangle$ is a special subgroup of G, so that $C_{\alpha}(x) = A$ from 2.2. Thus every α -regular conjugacy class of G contains either 1 or p' elements. Let u = |U| and [r] temporarily denote the integral part of the real number r. Then G has at most $u + [(|G| - u)/p'] = u + [u(p'^{+1} - 1)/p'] \alpha$ -regular conjugacy classes. But we know that G has exactly $|G|/p^2 = up'^{-1} \alpha$ -regular conjugacy classes, since G has p.r.x. $(1, \alpha)$ and $[\alpha] \neq [1]$. So we certainly require that $1 + p^{-t}(p'^{+1} - 1) \leq p'^{-1}$ i.e. $p' - 1 \geq p'^{+1}(p'^{-2} - 1)$, which is clearly impossible for $t \geq 3$.

Stage 2: G/U is not an extra-special group of order p^5 .

Let $\bar{G} = G/U$ and $\bar{Z} = A/U$. Then from the proof of 3.3.6 of [10], $\inf: M(\bar{G}/\bar{Z}) \rightarrow M(\bar{G})$ is a surjection with kernel of order p. Let β be a cocycle of \bar{G}/\bar{Z} such that $\ker(\inf) = \langle [\beta] \rangle$ and $\beta^p = 1$. Then by V.16.14 of [6] only the identity element of \bar{G}/\bar{Z} is β^i -regular for $1 \le i \le p - 1$. Now each $\xi \in \operatorname{Proj}(G, \alpha)$ has $\xi_U = p\lambda$ for some $\lambda \in \operatorname{Proj}(U, \alpha_U)$. It follows from 1.2 both that there exist cocycles $\bar{\alpha}$ of G/U with $[\bar{\alpha}]$ inflated to G equal to $[\alpha]$, and that G/U has p.r.x. $(1, \bar{\alpha})$ for each such $\bar{\alpha}$. Similarly, since every element of \bar{Z} is $\bar{\alpha}$ -regular, there exist cocycles $\beta^i \gamma$ for $0 \le i \le p - 1$ with $\inf([\gamma]) = [\bar{\alpha}]$ for which \bar{G}/\bar{Z} has p.r.x. $(1, \beta^i \gamma)$. We thus require that \bar{G}/\bar{Z} contains exactly $p^2 \beta^i \gamma$ -regular elements for each i with $0 \le i \le p - 1$.

Let $\bar{G}/\bar{Z} = \langle x_1 \rangle \times \ldots \times \langle x_4 \rangle$, and $\beta(x_i, x_j) = \omega^{c_{ij}}$, where ω is a non-trivial *p*th root of unity. Let *C* be the skew-symmetric matrix whose (i, j)th entry is c_{ij} for j > i. Then $x_1^{b_1} \ldots x_4^{b_4}$ is β -regular if and only if $C\vec{b} = \vec{0}$ in \mathbb{Z}_p^4 , where $\vec{b} = [b_1, \ldots, b_4]^T$. Now since no non-trivial element of \bar{G}/\bar{Z} is β -regular we have that *C* has rank 4, and so there exists $M \in GL(4, p)$ with

$$M^{T}CM = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix}.$$

Let D be the matrix constructed from γ in the same way, then we require that $M^T D M + i M^T C M$ has rank 2 for $0 \le i \le p - 1$. So if

$$M^{T}DM = \begin{bmatrix} 0 & a & b & c \\ -a & 0 & d & e \\ -b & -d & 0 & f \\ -c & -e & -f & 0 \end{bmatrix},$$

we must have that (a+i)(f+i) + be - cd = 0 for $0 \le i \le p-1$. Setting i = -a gives be - cd = 0, and we are left with (a+i)(f+i) = 0 for $0 \le i \le p-1$, which is impossible for $p \ge 3$.

Stages 1 and 2 thus yield that G/U is of type (iii).

The converse statement in the theorem is proved in essentially the same way as that of Theorem II of [8].

As an immediate and perhaps surprising corollary of Theorem 1 we obtain the following stronger version of 1.7.

COROLLARY 2.7. Let p be odd and let G have p.r.x. $(1, \alpha)$. Suppose G has a normal abelian p-complement. Then G has p.r.x. $(1, \alpha^n)$ for any integer n.

To conclude this section we note that if we allow p = 2 in the matrix calculations of stage 2 above, then we find that the extra-special 2-groups G of order 32 have p.r.x. $(1, \alpha)$

for 10 cohomology classes out of the 32 in M(G). Since these groups are not classified by Theorem 1 (with p = 2), they provide counter-examples to the results of 2.2 and will be dealt with in the following section.

3. Degree two. In this section we shall deal exclusively with a group G having p.r.x.(1, α) and a normal abelian p-complement which is not classified by Theorem 1. In particular then p = 2, and we can assume that there exists a special subgroup A of G of minimal index $2^t > 2$, with an element $a \in A$ such that either $A < C_{\alpha}(a) < G$ or A is more-special and $A < C_G(a) < G$. With this notation fixed for the duration of this section we can now prove.

PROPOSITION 3.1. A is more-special and G/A is an elementary abelian group of order 4.

Proof. Let C(a) denote $C_{\alpha}(a)$ or if A is more-special $C_G(a)$. Then we may treat the two separate possibilities above simultaneously. Now the proof of 2.2 yields for all $x \in C(a) - A$, all $y \in G - C(a)$, and all $b \in A$ with $x \notin C(b)$, that $z^{-1} = w = z \neq 1$, where w = [x, b] and z = [y, a]. If $C(a) = C_{\alpha}(a)$ this gives that a is α -regular, and then that A must be more-special, otherwise we can obtain that z or w = 1 respectively. Thus A is more-special and $C(a) = C_G(a)$.

Now for any choice of $y_1, y_2 \in G - C_G(a)$ we must have that $[y_1, a] = [y_2, a]$ i.e. $y_1 y_2^{-1} \in C_G(a)$, so that $[G:C_G(a)] = 2$. By 2.5 of [8] there exists a subgroup T of G of index 2 with A < T, such that T has p.r.x. $(1, \alpha_T)$ and $[\alpha_T] = [1]$. Clearly A is a special subgroup of T, so that by 3.3 of [8] or 2.2 $C_{\alpha_T}(a) = C_T(a) = A$ or $C_{\alpha_T}(a) = C_T(a) = T$.

In the former case there exists $g \in G - T$ with $g \in C_G(a)$, and since $g^2 \in T$ we have that $g^2 \in A$. Thus in this case it follows that $C_{\alpha}(a) = C_G(a) = \langle A, g \rangle$ or $C_{\alpha}(a) = A$ and $C_G(a) = \langle A, g \rangle$.

In the latter case we conclude by 2.3 that $C_{\alpha}(a) = C_G(a) = T$. In this case if T is the unique subgroup of G satisfying 2.5 of [8] then T must be abelian, contrary to the fact that A is more-special. So we may let S be another subgroup of G of index 2 with the same properties as T. Then as before $C_S(a) = A$ or S. Since ST = G, we must have that $C_S(a) = A$, and the desired results follows as in the first case.

By 3.1 each element b of A is classified into one of four types according to whether 1. $b \in U = Z(G)$; 2. $C_{\alpha}(b) = A = C_G(b)$; 3. $C_{\alpha}(b) = A$ and $[G:C_G(b)] = 2$; 4. $C_{\alpha}(b) = C_G(b)$ and $[G:C_G(b)] = 2$. Let z, r, s, and t denote respectively the number of elements of each type contained in A. Also let t_1, t_2 , and t_3 be the number of elements of type 4 centralized by $T_1 = \langle A, x \rangle$, $T_2 = \langle A, y \rangle$, and $T_3 = \langle A, xy \rangle$ respectively; where $G/A = \langle Ax, Ay \rangle$ and $C_G(a) = \langle A, x \rangle$. Using this notation we now show.

PROPOSITION 3.2. (i) G/U has order 16 and exponent 2 or 4.

(ii) G/U has p.r.x. $(1, \beta)$ for any cocycle β of G/U with $inf([\beta]) = [\alpha]$.

(iii) G/U is of γ -central type for some cocycle γ of G/U with $\inf([\gamma]) = [1]$.

Proof. We first note by 3.1 that A is a special subgroup of T_i of index 2 with respect to the trivial cocycle of T_i , so that from 3.5 of [8] $|A| = |Z(T_i)| |T'_i|$ for $1 \le i \le 3$.

Case 1: A contains an element of type 3.

We may assume for notational convenience that *a* is of type 3. Now the number of *x*-invariant elements of $Proj(A, \alpha_A)$ is 0, since *a* is not α -regular. Let $\lambda \in Proj(A, \alpha_A)$, then

we may assume without loss of generality that $I_G(\lambda) = T_2$. If this is true for all elements of $\operatorname{Proj}(A, \alpha_A)$ then T_2 is abelian, contrary to the fact that A is more-special. So there exists $\lambda' \in \operatorname{Proj}(A, \alpha_A)$ with $I_G(\lambda') = T_3$. Now let b be any type 3 element, then by the arguments above $C_G(b) = T_1$. So by 1.8 of [4], $0 = z - s + t_1$; and similarly by considering y and xy, $2z + t_2 + t_3 = |A| = z + r + s + t$, so that $z = r + s + t_1$. Thus $r + 2t_1 = 0$, and hence $r = t_1 = 0$, z = s, and $|Z(T_1)| = 2z$.

We now consider T'_1 . We note from the proof of 3.1 that [x', b] is the same element w of order 2 for all $b \in A - Z(T_1)$ and all $x' \in T_1 - A$. Let $c, d \in A$, then

$$[cx, dx] = \begin{cases} 1, & \text{if } c, d \in Z(T_1) \text{ or } c, d \notin Z(T_1); \\ w, & \text{otherwise.} \end{cases}$$

Similar calculations show that [cx, d] or [c, dx] is 1 or w, and hence T'_1 is the group of order 2 generated by w. Thus [A:U] = 4.

Case 2: A contains no element of type 3.

In this case every element of A is α -regular, and a is of type 4. As in the proof of 3.1 we have for c a type 4 element that for all $x' \in C_G(c) - A$, all $y' \in G - C_G(c)$, and all $b \in A$ with $x' \notin C_G(b)$, that $z^{-1} = w = z \neq 1$; where w = [x', b] and z = [y', c]. Suppose c has $C_G(c) = T_2$, then it follows that for any type 2 element 'b' that [y, b] = [x, b], so that $xy^{-1} \in C_G(b) = A$, a contradiction. We obtain a similar contradiction if we assume that $C_G(c) = T_3$. Thus either r = 0, or all type 4 elements c have $C_G(c) = T_1$.

Now |A| = z + r + t, and A contains $z + \frac{r}{4} + \frac{t}{2}$ conjugacy classes of G. Suppose G fixes k elements and has m orbits of length 2 in its action on $\operatorname{Proj}(A, \alpha_A)$. Then |A| = k + 2m, and it follows from 1.8 of [4] that $k + m = z + \frac{r}{4} + \frac{t}{2}$. Thus $k = z - \frac{r}{2}$, and so $z \ge \frac{r}{2}$. Now $|Z(T_i)| = z + t_i$ and $U \le Z(T_i)$, so that z divides t_i for $1 \le i \le 3$. Thus z divides t and hence r. We conclude that r = 0, z, or 2z.

Suppose r = 0. Then as in Case 1 we may now show that T'_i has order 2 for $1 \le i \le 3$. So $z + t_1 = t_2 + t_3$, $z + t_2 = t_1 + t_3$, $z + t_3 = t_1 + t_2$, and hence adding we obtain that t = 3z. Thus [A:U] = 4.

Suppose now r > 0. Then $|Z(T_1)| = z + t$. If r = 2z, then |A| = 3z + t. So z + t divides 2z, and since z divides t we conclude that t = z. Thus [A : U] = 4. Finally if r = z, then we obtain similarly that z + t divides z, which is impossible.

We have thus proved that G/U has order 16, also G/U has p.r.x. $(1, \beta)$ for any cocycle β of G/U with $inf([\beta]) = [\alpha]$ from 1.2. Now since A is a more-special subgroup of G of minimal index 4 and $[A:U] \neq 2$, we have that G has p.r.x.(2, 1) but not p.r.x.(1, 1) by 3.5 of [8] and 2.3. Thus there exists a cocycle γ of G/U with $inf([\gamma]) = [1]$ for which G/U is of γ -central type. Finally suppose Ug has order 8 in G/U. Then $\langle U, g \rangle$ is special and has index 2 in G, contrary to the definition of A. Thus G/U has exponent 2 or 4.

We can now immediately proceed to classify G/U, and hence prove Theorem 2. The proof we shall give actually contains additional information about the various cohomology classes of G/U.

Proof of Theorem 2. Suppose firstly that G/U is abelian. Then by 3.2, G/U has exponent 2 or 4 and order 16, so $G/U \cong C_2 \times C_2 \times C_2 \times C_2$, or $C_4 \times C_4$, or $C_4 \times C_2 \times C_2$.

R. J. HIGGS

Suppose $G/U \cong C_2 \times C_2 \times C_2 \times C_2$. The set of skew-symmetric 4 × 4 matrices over \mathbb{Z}_2 consists of 1 matrix of rank 0, 28 of rank 2, and 35 of rank 4. These correspond as in the proof of Theorem 1 to 1, 28, and 35 cohomology classes of G/U for which G/U has minimal p.r.x. 0, 1, and 2 respectively.

Suppose $G/U \cong C_4 \times C_4$. Then $M(G/U) \cong C_4$. Now consider inf: $M(G/U) \rightarrow M(G)$. We have that $[\alpha] = \inf([\beta])$ for some $[\beta] \in M(G/U)$, and so ker(inf) must be of order 2, since G does not have p.r.x.(1, 1). Thus $[\beta]$ has order 4, and G/U is of β -central type, contrary to 3.2(ii).

Finally suppose $G/U \cong C_4 \times C_2 \times C_2$. Then by 5.4 of [12] the set of elements which are γ -regular for all cocycles of G/U is isomorphic to C_2 . Thus in this case G/U is not of γ -central type for any cocycle γ of G/U, contrary to 3.2(iii). Alternatively Lemma 2 of [1] also gives this result.

Now suppose G/U is non-abelian. Then again since G/U has exponent 4 and order 16 we have that G/U is isomorphic to one of the following five (non-isomorphic) groups: 1. $D_4 \times C_2$; 2. R, as in the statement of Theorem 2; 3. $Q \times C_2$, Q the quaternion group; 4. $\langle x, y, z : x^4 = y^2 = z^2 = 1, xy = yx, zx = xz, yz = zx^2y \rangle$; 5. $C_4 \ltimes C_4$.

In Case 1, $M(D_4 \times C_2) \cong C_2 \times C_2 \times C_2$ from p. 378 of [13]. Here we may consider normal cocycles γ of $D_4 \times C_2$ as in Proposition 1 of [13], and show that the elements of order 4 in D_4 are γ -regular for exactly 6 classes [γ] of $M(D_4 \times C_2)$. For these classes $D_4 \times C_2$ cannot be of γ -central type and so must have p.r.x.(1, γ). It follows that $D_4 \times C_2$) has p.r.x. 1 for 6 cohomology classes of $D_4 \times C_2$, and has minimal p.r.x. 2 for the remaining 2 classes.

In Case 2, $M(R) \cong C_2 \times C_2$ from p. 378 of [13], and from [5] R has p.r.x. 1 for 3 cohomology classes of R and has minimal p.r.x. 2 for the remaining class.

In Cases 3, 4, or 5 we may consider groups of order 32 with centre of order 2 (see [14]), and we conclude by using 3.5 of [12] that G/U is not of γ -central type for any cocycle γ of G/U, contrary to 3.2(iii).

Finally we give examples to show that groups satisfying Theorem 2 do exist, noting that examples satisfying Theorem 1 have already been given on p. 456 of [8].

EXAMPLES 1. Let G be either of the extra-special 2-groups of order 32. Then G has an ordinary character of degree 4 by V.16.14 of [6]. We indicated at the end of Section 2 how to show that G has p.r.x. $(1, \alpha)$ for 10 cohomology classes $[\alpha]$ out of the 32 in M(G). Also for any such class $[\alpha]$, U = Z(G), so that G/U is elementary abelian of order 16.

2. Let G be either of the groups G_1 , G_2 of order 32 described in [5]. Then from [5] $G/Z(G) \cong \mathbb{R}$, and G has both an ordinary character of degree 4 and p.r.x. $(1, \alpha)$ for the unique non-trivial cohomology class of G. Also U = Z(G) for $[\alpha]$.

3. Let G be either of the two groups of order 32 with $G/Z(G) \cong D_4 \times C_2$. Then G' is cyclic of order 4 from [14]. Also G has an ordinary character of degree 4 by using 3.5 of [8], or since G has 11 conjugacy classes from [14]. It follows that the kernel of the inflation homomorphism from G/Z(G) into G has order 2. Now from the proof of Theorem 2 exactly four classes of $M(D_4 \times C_2)$ will inflate to give two classes $[\alpha]$ of M(G) for which G has p.r.x. $(1, \alpha)$. Lastly U = Z(G) for both such $[\alpha]$.

REFERENCES

1. F. R. DeMeyer and G. J. Janusz, Finite groups with an irreducible representation of large degree. *Math. Z.* 108 (1969), 145–153.

2. R. J. Higgs, On the degrees of projective representations. Glasgow Math. J. 30 (1988), 133-135.

3. R. J. Higgs, Groups whose projective character degrees are powers of a prime. Glasgow Math. J. 30 (1988), 177-180.

4. R. J. Higgs, Projective characters of degree one and the inflation-restriction sequence. J. Austral. Math Soc. (Series A) 46 (1989), 272–280.

5. P. N. Hoffman and J. F. Humphreys, Non-isomorphic groups with the same projective character tables. Comm. Algebra 15 (1987), 1637-1648.

6. B. Huppert, Endliche Gruppen. I. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 134, (Springer-Verlag, Berlin, Heidelberg, New York, 1967).

7. I. M. Isaacs, *Character theory of finite groups*. (Pure and Applied Mathematics, a series of monographs and textbooks; 69), (Academic Press, New York, London, 1976).

8. I. M. Isaacs and D. S. Passman, Groups whose irreducible representations have degrees dividing p^e. Illinois J. Math. 8 (1964), 446-457.

9. G. Karpilovsky, *Projective representations of finite groups*. (Monographs and Textbooks in Pure and Applied Mathematics; 94), (Marcel Dekker, New York, Basel, 1985).

10. G. Karpilovsky, *The Schur multiplier*. (London Mathematical Society monographs; new ser., 2), (Oxford University Press, Oxford, New York, 1987).

11. H. N. Ng, Degrees of irreducible projective representations of finite groups. J. London Math. Soc. (2) 10 (1975), 379-384.

12. E. W. Read, On the centre of a representation group. J. London Math. Soc. (2) 16 (1977), 43-50.

13. K. I. Tahara, On the second cohomology groups of semidirect products. Math Z. 129 (1972), 365-379.

14. A. D. Thomas and G. V. Wood, *Group tables*. (Shiva mathematics series; 2), (Shiva, Orpington, 1980).

DEPARTMENT OF MATHEMATICS UNIVERSITY COLLEGE, BELFIELD, DUBLIN 4, IRELAND.