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REMARKS ON KAHLER-EINSTEIN MANIFOLDS

YOZO MATSUSHIMA

The main purpose of this note is to characterize a compact Kihler-
Einstein manifold in terms of curvature form. The curvature form 2 is an
EndT valued differential form of type (1,1) which represents the curvature
class of the manifold. We shall prove that the curvature form of a Kahler
metric is the harmonic representative of the curvature class if and only if
the Kiahler metric is an Einstein metric in the generalized sense (g.s.), that
is, if the Ricci form of the metric is parallel. It is well known that a
Kahler metric is an Einstein metric in the g.s. if and only if it is locally
product (globally, if the manifold is simply connected and complete) of
Kahler-Einstein metrics. We obtain an integral formula, involving the in-
tegral of the trace of some operators defined by the curvature tensor, which
measures the deviation of a K#hler-Einstein metric from a Hermitian sym-
metric metric. In the final section we shall prove the uniqueness up to
equivalence of Kahler-Einstein metrics in a simply connected compact com-
plex homogeneous space. This result was proved by Berger [3] in the case
of a complex projective space and our proof is completely different from
Berger’s.

1. Throughout this paper we shall denote by M a compact Kahler
manifold and by 7 and T* the holomorphic tangent bundle and the holo-
morphic cotangent bundle of M respectively. The real differentiable tangent
bundle of M will be denoted by T, The vector space of smooth sections
of a vector bundle F will be denoted by I'(F). A section X of T is a com-
plex vector field of holomorphic type or of type (1,0) and we denote by X
the conjugate of X; X is a section of the conjugate bundle T of T. We
denote by <, > the Hermitian metric in 7, that is, if X, Y € I'(T), then

X, Y>=¢X,7),
where g denotes the Kihler metric in M. We have then
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X, Z> =<KDY, Z) + <, DiZ)

for X, Y, ZeI'(T), where D denotes the operator of the covariant differenti-
ation in the Kihler manifold M.

It {E,} (@=1,2,-++, n, n=dim,M) is a local holomorphic frame field
of T, then we have [6]

(1- 1) thEb = EFlCzbEc, DaE—b = DEEb =0

for @, b=1,2,- .-, n, where D, = Dz, and Dz = Dj,.

Throughout the paper we shall denote by E the holomorphic vector
‘bundle EndT = T*®T. The covariant derivative DyA of a section 4 of E
is defined to be a section of E such that

(Dx A)XY) = Dx(A(Y)) — A(D5Y), X, Y € ['(Tr*.
Let L be an E-valued differential 7-form. The covariant differential
DL of L is an E-valued differential (» 4 1)-form such that

741

(DL)(Xl, e, Xon) = 2(“1)i+1DXi(L(X1, T, Xi, vy, X))

i=1

+ 2(—-1)1+1L([Xl’ Xj]s Xlr ctty Xi) crty Xj’ ct XT+1))

i<y

wereh X, +;, X1y € ['(ThR).
If L is of type (p, ¢), then DL is a sum of a form D’'L of type (p + 1,
q) and a form D"L of type (p, ¢+ 1):

DL=DL+D'L

Let {E,} be a local holomorphic frame field of 7 defined in an open
set U of M and if we write L in the form

(1.2) L'Ea—_‘év‘#lﬂz'Eb;

where L} are differential forms of type (p, ¢) defined in U, then it follows
from (1.1) and (1.2) that

D'L.E, = ?d”LZ- E,.
In other words, we have

* If Y & I'(Tx), then we can write Y uniquely in the formY =Y, + ¥, with Y, e I'(T)
and A(Y) will denote the value of A for the section Y, of T.
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D'L = d”L,

where d”’L denote the E-valued form defined by (d’’L}). In particular, for
a section A of E, we have

(d"A)X) = DzA, XeI(T).

The covariant derivative DyL of L is an E-valued 7-form such that

(DXL)(Xh c X,) = DX(L(Xl, MY XR)) - ZL(Xl, oo, Dy Xy, - - <, Xr)

The operator Dy is type preserving and for r = 2, we have:

(1.3) (DL)YX, Y, Z) = (DxL)Y, Z) + (DyL)Z, X) + (DzL)(X, Y).

2. Let A be a section of E = EndT. The adjoint A* of A is a section
of E such that

(AX,. Yy =LKX, A¥Y)

for any X, Y eI'(T). A section A is said to be symmetric if A = A*,

LemMA 1. Let A be a symmietric section of E. Then A is a holomorphic section
if and only if DA =0.

Proof. A section A is holomorphic if and only if d”A=D"A=o.
Since DA = D'A+ D"Aand D'A and D"’ Aare of type (1,0) and of type (0,1)
respectively, if DA =0, we get D’A=D"A=0, and so A is holomorphic.
Conversely let A be a holomorphic section. Let {E,} be a local orthonor-
mal frame bundle and put D, = Dy, and D; = Dg,, A(E,) = %}AQE,,. Since
D"A =0, we have DzA! =0 for all @, b, c. Moreover since A is symmetric,
we have A7 = A§ and so the conjugate complex of D; A} is D,A¢ and hence
D,A{ =0 for all @, b, c. This means that D'’A =0, and so DA=D'A+ DA
=0,

Let L be an E-valued differential form of type (1,1). We define an
E-valued differential form L* of type (1,1) by putting

(2.1) L¥X, Y)=—L({Y, X)*

LEmMA 2. Let L be an E-valued differential form of type (1,1) such that L*
=—L. Then L is d"~closed if and only if the covariant differential DL of L is
zero.
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Proof. As in the proof of Lemma 1, we have to show that DL =0 if
and only if D’'L =0. By (1.3), (D'L)E,, Ey, E.) = (DL)(E,, E,, E,) = D,L(E,,
E)— (D,L)E,, E,) and (D"L)E,, E,, E)= —(D;L)(E., E.)+ (D:L)(E,, E)),
where {E,} is a local orthonormal frame field in 7. If we write L locally
in the form

L(E,, E)E, = ;Llﬁb?Et
with Li,; = LYE,, E,), then D'L =0 is equivalent to the set of equations
*) DyLiys = DyLiys

and also D””L =0 means that

(**) D3Lyz = DsLiy;
for all a, b, ¢, I and k. Moreover since L* = —L, we have
ngb'c' = L_lch .

Then the conjugate complex of D,L},; is equal to DzL%.5. It follows from
this that (*) and (**) are equivalent and this proves that D’'L =0 if and only
if DL = 0. ‘

DeriNITION. An E-valued 2-forms L is called a generalized curvature form
if L satisfies the following conditions:

1) L is of type (1,1) and L* = —L.
2) d'’L =0.
3) LIX,V)Z=L(Z P)X for X, Y, ZeI(T).

Remark. The third condition on L is called the first Bianchi identity
for L. By Lemma 2, we can replace the second condition by DL = 0; that
is, (DxL)Y, Z)+ (DyL)Z, X)+ (DzL)X, Y)=0 and this last condition is
known as the second Bianchi identity. We have included the notion of
generalized curvature forms to make clear the relation of our results to
those of Nomizu [9].

For each generalized curvature form L we define the Ricct form K = K,
of L as follows: K is a differential form of type (1,1) in M defined by

KX, YV)=Tr(L(X,Y), X, Ye(T).

Clearly K is d'’-closed.
There exists a section S = S, of E such that
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SX,Y>=K(X,7)
for all X, Y e I(T). We call S the Ricci tensor of L. Since L satisfies L =
—L*,- S satisfies S = S*, that is, S is symmetric.
If {E,} is a local orthonormal frame of 7, then

(2.2 S=L(E, E,).

In fact, (SE,, E = TrL(E,, E,) = 2X<L(E,, E.)E,, E,> and by the condi-
tion 3) on L, L(E,, E,)E, = L(E,, EC)E,,.“ By the condition L = —L* and by
3), we have <L(E,, E)E,, Eo> =Ey, L(E, EJ)E.> = E,, L(E., EJ)E> = (L(E,,
E,E, E> and hence <SE,, E,) = %}(L(Ea, E,)E,, E;> which proves (2.2).

3. For any two E-valued differential forms L and L’ of type (p, g),
we denote by <L, L’) their scalar product defined by the Hermitian metric
in T and by (L, L') their inner product i.e.,

(L, L= <L, Lav,

where dv denotes the volume element of the Kihler manifold M. The
adjoint of the operator d’’ with respect to the inner product will be denoted
by ¢”. If L is of type (p, ¢+ 1), then 6L is of type (p, q) and (3"'L, L’)
= (L, d"L’) holds for any L’ of type (p, g).

The complex Laplacian []”/ is the operator defined by

O =d"s" +38"d".

The operator [ is type preserving and an E-valued form L is said to be
harmonic if [J/L = 0.

Let D?%E) denote the complex vector space of all E-valued forms of
type (p, ¢) and let

D?E) = X D"YE).

q

Then D?(E) is a complex with coboundary operator d’’; the cohomology
group of the complex D?(E) is denoted by H?%(M,E). By the Dolbeault-
Serre theorem, we have a canonical isomorphism

H?(M, E) = H{M, (AT*) ® E)

where, for any holomorphic vector bundle F, F denotes the shief of germs

https://doi.org/10.1017/50027763000014847 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000014847

166 YOZO MATSUSHIMA

of holomorphic sections.

Let 2 be the curvature form of the Kihler metric in M. Then  is an
E-valued form of type (1.1) and 4”2 = 0. Hence @ represents a cohomology
class in H“YM, E) = H(M, T* Q E), where E=T*®T. The cohomology
class is independent of the choice of Kahler metric in M. We shall call
this cohomology class the curvature class of M. As a matter of fact, the
curvature class may be defined for any compact complex manifold; it is
defined to be the cohomology class in H“!(M, E) represented by the curva-
ture form of a connection of type (1, 1) in T, for more details see Atiyah
[1]. Moreover, the curvature class of M is zero if and only if 7 has a
holomorphic linear connection [1].

Let L be an E-valued form of type (1,1). Then 6L is an E-valued
form of type (1,0). By an easy computation and by the Stokes theorem, we
obtain the following formula. Let {E,} be a local orthonormal frame field
of T. Then

(3.1) (8"L)Ea) = 2 (DoL)(Eq, Eu)

foralla=1,2+--, n.

LemMa 3. Let L be a generalized curvature tensor and S the Ricci tensor of
L. Then we have

(3.2) 5L = D'S.

Proof. Let {E,} be a local orthonormal frame field of 7. By Lemma
2 we have DL =0 and hence (D,L)E,, E,) = (D,L)E,, E;) and by (3.1) we
obtain (3" L)(E,) = AbVJ(DaL)(Eo, E,) = bZDa(L(Eb, E,)) — Zb}L(DaEb, E,) — Xb}L(Eb,
D,E;). On the other hand, by (2.2), (D'SYE,)= D,S = bEDa(L(Eb, E3) and

hence

(8" L)Eq) = (D"SAEq) = ZH{L(DuE, E,) + L(Es, D Ey)}.

We show that the second term of the right hand side is zero. To see this
let D,E, = XI',E, and D.E, = XI'$,E,. Then D,E,= XT¢,E,. It follows

from
0= Da<Eb, Ed> = <DaEb9 Ed> + <Eb, DEEd> that ['g,b + fg;c =0

for all a, b, ¢ and hence
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Zb {L(DaEb, Eb) + L(Eb, DaEb)} = bECFSbL(Ec, Eb)

+ bZI_“f,’;bL(Eb, E,) = (Ié+ T2,)L(E,, E,) =0.

b c
This proves that (8"’ L)E,) = (D'SYE,) for all a and hence 'L = D’S.

ProrosiTiON.  Let E be a generalized curvature form of a compact Kdihler
manifold M. Then L is a harmonic E-valued form, where E = EndT, if and only
if the Ricci tensor Sy of L is a holomorphic section of E. Moreover Sy is a holo-
morphic section of E if and only if S, is parallel.

Proof. Since d”L =0, L is harmonic if §L =0. By Lemma 3, we
have ¢"’L = D'S and DS = D’'S+ D”S, d"S = D"S. Since S is symmetric,
we have 4”S =0 if and only if DS =0 by Lemma 1 and this proves our
assertion in the proposition.

A Kihler metric is said to be a Kahler-Einstein metric in the genera-
lized sense (g.s.) if the Ricci form is parallel. Since the curvature form .is
obviously a generalized curvature form, we obtain as a special case of the
proposition the following:

TueoreMm 1. A4 compact Kihler manifold is a Kdihler-Einstein manifold in the
g.s. if and only if the curvature form is a harmonic E-valued form, where E = EndT.

Remark. According to Atiyah [1] the curvature class of a complex
manifold is zero if and only if the holomorphic tangent bundle 7T has a
holomorphic linear connection. Therefore if a compact Kihler-Einstein
manifold in the g.s. M admits a holomorphic linear connection, then the
curvature form Q of M is zero by Theorem 1 and so M is locally flat. It is
also known that if the second Chern class of a compact Kahler-Einstein
manifold M is zero, then M is locally flat (Apt [2]). A complex manifold
M is said to be a complex affine manifold if M admits a holomorphic linear
connection whose curvature and torsion are zero. There is no known ex-
ample of compact complex affine Kédhler manifold which is not flat (cf [11]).

4. Let L be any E-valued form of type (1,1). The components of L
with respect to a local frame field of 7 will be denoted by L},a, b, k, I
=1,2+--,7n); namely if {E;} is a local frame field and L(E.E,)E;, =
;L,ﬁ(Ea, E\)E, then Lig5= LLYE. E,. If {E,} is orthonormal we write
L+,5 in place of Li,; Let 2 be the curvature form of M. We denote the

https://doi.org/10.1017/5S0027763000014847 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000014847

168 YOZO MATSUSHIMA

components of 2 by Rl so that we have

Q- Elc = EI(Zleéajwa A a_)b)El’
where {0w®} denotes the local coframe bundle such that o*E,) =d¢. The
components of the Ricci tensor of 2 will be denoted by K}; K% denotes the
conjugate complex of K.

Then the components of the E-valued form [J”L are given by the fol-
lowing formula:

(O"Llkis = =S D*DsLiys + S KiLker

—c;".i 9°°L 415 R o5

+ 3 RlusLiss — LisaRbar)
where D¢ = g°¢D,. In particular, for L = 2, we obtain from the first Bianchi
identity Rl;z = Rl

(O"2kes = — Z‘} DDzR;.5 + g KiRlys

+ 3} 0 RiusRiuz

—c‘;.i 9 UREGR 5 + RiszRus)
Suppose now that the metric is Kéhler-Einstein. Then we have

Ks=093 (b,c=1-+-,n)

where p is a constant. Assume that our local frame is orthonormal. Then
since []”2 =0 by Theorem 1, we obtain '

0=—2D.D;Ri;5 + PRy
+§R7ic3R7ka?
- § {R7ixR7e05 + Rii0zR7e15}
(I, kya,b=1,2,+++, n)
Hence we get
"2, 2> =60+ <DR, DR)> + p|Q2|*+ F— 2G =0,

where 4 is a differential form of type (0,1) defined by 4(E,) = <D:2, 2>, DR
denotes the covariant differential of the curvature tensor (note that this is
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distinct from the covariant differential of 2 which is zero), |2[ is the length
of the curvature form Q and F and G are functions on M defined as follows:

F = 3} Ry 5 R7105R5 1059

G =32} Ry15eR7005R% 107
where sum extends over all indices.
Integrating over M, we obtain

(DR, DR) + p(2, 2) + SMde - zSMde —0.

Since (DR, DR) z 0 and (DR, DR) = 0 means that M is Hermitian symmetric,
we see that

2SMde — SMde — 0@, 2)20

and the equality holds if and only if M is Hermitian symmetric.

The functions F and G can be interpreted as follows by introducing
two kinds of operator defined by curvature tensor. These two curvature
operators appeared in the paper [5]. Let {E,} be any local orthonormal
frame of 7. The linear operator

“
HTQRT->TRT

is defined by
H E,QE,—~ kleEab‘zEk@EL-

Let
H(kl)(ab) = REabT-
Then

H(E,®E,) = kz;}I(kl)(ab)(Ek ® E.).
By the first Bianchi identity Rz,;7 = Rgpa7 = R74,% We have

Haen = Haooo = Hupan

It follows then that H(E,Q E, — E,Q E,) =0 and that H(E, R E,+ E,Q E,)
is a symmetric tensor. Moreover since we have Rz,,7 = R;;,5 the matrix

H = (Hunow)

is Hermitian. Now we aobtain:
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121 = 33 Rgoy71Rz007 = 23 HavanHunten = TrH?,
F =2 ReoniRscasRev iz
= 2} HuvwowHaneaoHeown = TrH®,
The operator
P:TRT->TRT
is defined by
P:E, ®Eb'—)§REla'ﬂEk X E..

Let
P(kl)(ab) = Rilaﬁ-

Then

P(Ea ® Eb) = %‘. P(Icl)(ab)Ek ® E,.

Since Rz;.5 = R,37, = Rzpir, we have Pupws = Panan and hence the matrix
P= (P(kL)(ab))

y
is Hermitian. Moreover we have:

Py = Powrars Paney = Paaan
G = 2 Ry e R av Ry 103

= 33 PunoPaortanPanwa
= 31 PuvaoPioanPavar = TrP3,

Thus we get G = TrP?
Summing up we obtain the following

THEOREM 2. Let M be a compact Kdihler-Einstein manifold. Then we have
4.1) 2§MTrP3dv - pSMTrH%’v - SMTrHsdv =0

and the equality holds only when M is Hermitian symmetric. In the above inequality
p is a constant such that pg,; = K,5 and |Q2|* = TrH? = TrP2,

Remark. We have TrP= TrH = Z‘%’R,,—,,,,,g =31K;, = np and hence
a, a

np = TrP=TrH, n=dim.M.
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We consider now the special case where n = 2. Then we have
(4.2) R1105 + Ry205 = Rani1 + Ravez = P0as (@, b=1,2).
We define a linear operator J: TQT—>T®T by
JEQE)=EQE, JE;QE)=—-EQ®E, (b=12).
Then from (4.2) and from the first Bianchi identity we obtain
(4.3) J'P] = pI — H,

where I is the identity operator T® T'— T ® T and H denotes the operator
T®T—>TQ®T whose matrix is the conjugate complex of H. It follows
easily from (4.3) that

{ TrP? = —2p% + 3pTrH? — TrH?
TrH?® = —2p3 + 3pTrP? — TrP3,

We obtain from (4.1) the following formulae

(4.4) 3S TrPedy — 4pg TrP2dv + LS (TrP)tdv = 0,
M M 2 JIu

(4.4) 3STrH3dv - SpSwTerdv + pSM(TrH)Zdv <o.

The Chern numbers of M are given by the formulae

2 — 1 —_ 1 2
M1 = gL (TrHpay, olM1= g | Trea,
and we have also TrP= TrH, TrP* = TrH? 20 =TrH. We can express
(4.4) and (4.4') in the form
3

o) TrPdv — 40+ o[M1+ —pci{M1 2 0,
8n2 Iu 2

3
8r?

SMTrH“dv —5pc [ M]+ pc}[M]=0,

and the equality holds if and only if M is Hermitian symmetric. The
geometric meaning of the integral of TrP? and T7H?® is not known.

Let 4, #2, ps and g, be the eigen-values of P. Since H(E,R®E,+ E,
®E,;) =0, one of the eigen-values of H is equal to zero. Then it follows
from (4.3) that p is an eigen-value of P and we put g, =p. Then we
have p = py + p, + ¢35 because 2p = TrP and we can express the function
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f =3TrP3— 4pTrP? + % (TrP)? in the form*
(4.5) = — (s — pa)? — paltts — £21)? — p3(py — o).

For each unit tangent vector at # € M let o(#) denote the holomorphic
sectional curvature for the complex line spanned by #, that is,

ou) = 43 Ry, U UTU® = &KHU QU), URQ Ud.
We can choose a local orthonormal frame field {E,, E;} in such a way that
o(E\(x)) = 4R7; 17 = 11\1/4[&)1( o(#) and that Rt,,5=0 for a# 5. ([3]. Then Ri,
+ Rz;,5 = pday and hence Riz,,5 =0 for a# b and Ry 1 = Ryppz = ¢ — Ryt
Moreover Rzy.z = ¢ — Rr13z = 0 — (0 — Ryy11) = Ryj7. Using these relations
and the Bianchi identity, we can express the eigen-values of P easily by
the components of curvature tensor and we get

1 = —Rip23, te = Rryoz + [Rysetl, #88 = Ryioz — | Rrzotl.
If we assume that the bisectional curvatures [7] are nonnegative, we can

show that f =<0 and hence f =0 by (4.4). Then M is symmetric and iso-
metric either to P? or P* x P'. This result was found by Berger [3].

5. Let M be a compact simply connected complex manifold. We
assume that M is homogeneous and that M has a Kihler metric. Let G¢
be the identity component of the group of all holomorphic transformations
of M and let G, be a maximal compact subgroup of G,. It is well-known
that G, is also transitive on M and G, is semi-simple and G¢ is the com-
plexification of G (cf. [4]). Since G, is compact and M has a Kahler metric,
we may assume that M has a G,-invariant Kéahler metric. Let » = i"*Fdz!
Ao AdZ"ANdZ* N -+ + ANdZ" be any Gyp-invariant volume element in M.
Then the differential form 7, = 2d’d’' log F is well defined and 7, does not
depend on the choice of v. Moreover 7, is Go-invariant and it was proved
by Koszul [8] that 7, is negative definite. Since the Ricci form of any G-
invariant in M coincides with —7, by a well-known formula (cf. [6]), every
Go-invariant K#hler metric has the same Ricci form which is equal to —7,.
Let o, = —7,. Then w, is positive definite and G,-invariant and so the fun-
damental form of a Gy-invariant Kihler metric g,. Then g, is Kihler-
Einstein. We call g, the canonical Kéahler metric in M with respect to G,.

TueorEM 3. Any Kihler-Einstein metric g on M is equivalent to go; i.e.,
there exists a holomorphic transformation @ of M and a positive constant a such that

* I owe this formula and (4.3) to B. Smyth.
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ago = ¢*g.

Proof. We may identify the Lie algebra of G, with the Lie algebra a
of all faolomorphic vector fields of M. Then the subalgebra of a correspon-
ding to G, is identified with the Lie algebra g, of all Killing vector field of
(M, go). Since G¢ is complex semi-simple and G, is maximal compact in
Gg, o is the complexification of g, and since the complex structure in the
Lie algebra a is given by the tensor J of the complex structure in M, we
have a = g, + Jg,. Now let g be any Kiahler-Einstein metric in M and g
the Lie algebra of Killing vector fields of (M, g). Since g is a compact
subalgebra of a and since g, is a maximal compact subalgebra of a, there
exists an element ¢ € G, such that Ad(¢p~')g < go. On the other hand, since
(M, g) is Kahler-Einstein, it is known that a = g + /g (10]). It follows then
that dimg = dimg, and hence Ad(p~')ga =g, and g is maximal compact.
The connected subgroup G of G, corresponding to g is a maximal compact
subgroup of G, and ¢™'Gop = G,. Since g is G-invariant, ¢*g is G,-invariant
and obviously ¢*g is also Kahler-Einstein. The fundamental form of ¢*g is
then proportional to @, and this proves the theorem.
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