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Hg and Pb are of public health concern due to their toxic effects on vulnerable fetuses, persistence in pregnant and breast-feeding mothers,
and widespread occurrence in the environment. To diminish maternal and infant exposure to Hg and Pb, it is necessary to establish guide-
lines based on an understanding of the environmental occurrence of these metals and the manner in which they reach the developing
human organism. In the present review, environmental exposure, acquisition and storage of these metals via maternal–infant interaction
are systematically presented. Though Hg and Pb are dispersed throughout the environment, the risk of exposure to infants is primarily
influenced by maternal dietary habits, metal speciation and interaction with nutritional status. Hg and Pb possess similar adverse effects
on the central nervous system, but they have environmental and metabolic differences that modulate their toxicity and neurobehavioural
outcome in infant exposure during fetal development. Hg is mainly found in protein matrices of animal flesh (especially fish and shellfish),
whereas Pb is mainly found in osseous structures. The potential of maternal acquisition is higher and lasts longer for Pb than for Hg. Pb
stored in bone has a longer half-life than monomethyl-mercury acquired from fish. Both metals appear in breast milk as a fraction of the
levels found in maternal blood supplied to the fetus during gestation. Habitual diets consumed by lactating mothers pose no health hazard
to breast-fed infants. Instead, cows’ milk-based formulas pose a greater risk of infant exposure to neurotoxic substances.

Mercury: Lead: Pregnancy: Breast milk: Lactation

Most substances that persist in the environment and that
meet the criteria for human-milk surveillance programmes
are lipid soluble (Berlin et al. 2002). The exceptions are
Hg and Pb. Both metals are of equal public health concern
due to their widespread occurrence, persistence in the
environment and toxic effects. Hg and Pb are ubiquitous
in the environment and reach human populations through
air, drinking water and the food chain. Naturally occurring
background levels of Hg and Pb depend on geochemical
conditions. However, human activities can substantially
increase their release and dissemination into the environ-
ment. The widespread use of Hg and Pb results in large
environmental discharges. Furthermore, the chemistry of
these metals determines their occurrence, speciation, and
environmental routes to maternal acquisition and transfer
to vulnerable fetuses (in utero) and breast-fed infants (ex
utero). The detrimental effects of Hg and Pb to the devel-
oping infant central nervous system (CNS) are well known
(Mendola et al. 2002). Understanding how these toxic
metals are released in the environment and how they are
obtained and metabolised by the maternal organism is fun-
damental to establishing guidelines for diminishing
exposure and toxicity during early human development.

Diet is the main source of maternal exposure to Hg and
Pb, though a significant amount of Pb is also delivered by
airborne particles (Chamberlain, 1985). Maternal acqui-
sition of Hg is influenced by both its chemical form and
dietary source. After absorption, Hg is either bound to
metalothionein or cysteine residues of proteins, whereas
Pb is preferentially taken up by bones. Pb acquisition and
storage are modulated by maternal bone status, meal con-
tent of Pb, and accompanying osteoactive substances.
The metabolism of these tissues determines the persistence
of these metals in the maternal organism. Therefore, due to
the dynamics of maternal body tissues (muscle and bone),
the half-life of these metals is greatly different. And, in
turn, it is the half-lives that determine their transfer rates
from plasma to breast milk. The WHO considers concen-
tration ranges of 1·4 to 1·7 ng Hg/g and 2 to 5 ng Pb/g as
‘normal’ in breast milk (World Health Organization,
1989). Concentrations of Hg and Pb in breast milk are
important indicators of prenatal exposure, the period
when most neurotoxic insults occur.

Early analyses of Pb contamination of breast milk may
not be accurate. Gulson et al. (1998) discussed methodo-
logical problems related to Pb analysis in breast milk,
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especially the difficulties and inaccuracies attributed to Pb
contamination. Moreover, much of the old data and values
above 3 parts per billion of Pb in breast milk reported in
the last 15 years have been questioned.

The objective of the present study is to review the com-
plex interactions between environmental exposure and
maternal conditions (dietary practices, nutritional status
and physiological factors) that affect mammary transfer
of Hg and Pb to infants.

Mode of maternal acquisition of mercury and lead

Mercury

Clarkson (2002) has elegantly discussed the geochemistry
of Hg and its acquisition by human populations. Briefly,
Hg is released in the environment mainly as inorganic
Hg (In-Hg). However, sulfate-reducing bacteria reduce
metallic Hg to monomethyl-mercury (MMeHg). In this
form, Hg is disseminated in the food web and is biocon-
centrated at the top of the food chain. Mainly as
MMeHg, it is taken up by aquatic organisms and is bio-
concentrated in the trophic food chain where it is sub-
sequently consumed by fish-eating populations. Although
the consumption of MMeHg in fish is the primary means
of human acquisition of organic Hg, dental fillings con-
taining metallic Hg are the second most significant route
of Hg acquisition and the primary source of human In-
Hg contamination. These Hg species are differentially
metabolised by the maternal organism.

After the accidental poisoning in Iraq, studies conducted
on lactating mothers showed that the mean half-life of
MMeHg in blood was 65 d (Bakir et al. 1973). The obser-
vation that blood-clearance half-life is faster (42 d) in lac-
tating women than in non-lactating women (Greenwood
et al. 1978) indicates that reproduction accelerates the
maternal-Hg metabolism. Moreover, Hg transfer rates in
utero (pregnancy) and ex utero (breast-feeding) differ
depending on the chemical form of Hg (organic or inor-
ganic). Both chemical forms (organic and inorganic) are
equally efficiently transferred through milk (Mansour
et al. 1973) but organic Hg is more readily transferred
across the placenta than the inorganic form. In the Iraqi
study, milk-Hg was 5 % of blood-Hg but the organic frac-
tion of milk-Hg was only 3 % of blood-MMeHg (Bakir
et al. 1973). Studies in fish-eating populations of the Ama-
zonia region of Brazil (Barbosa & Dorea, 1998) show that
Hg body burden (measured via hair-Hg) in infants was not
significantly correlated with breast-milk Hg but with
maternal hair-Hg. This indicates that the placenta plays a
greater role in Hg transfer than milk, even in cases of pro-
longed breast-feeding (1·5 years). In addition, mean
changes of 10 to 20 % of maternal Hg burden (hair-Hg)
were observed during the second and third trimesters of
pregnancy (Barbosa et al. 1998).

Experiments show that Hg acquisition in early life is
more quantitatively significant during the prenatal period
than during breast-feeding (Mansour et al. 1973; Norden-
hall et al. 1995; Vimy et al. 1997; Sakamoto et al. 2002).
Nordenhall et al. (1995) reported that when hamsters
were injected with labelled Hg, 11 % of the dose appearing
in the litter was transferred via the placenta while only

1·7 % was transferred via milk. Similar effects were
observed in rats fed 5 parts per million MMeHg during ges-
tation and lactation. In addition, brain-Hg of offspring was
1·4 times higher than in the dams. Brain-Hg decreased in
the offspring during lactation, suggesting that Hg derived
from milk was limited (Sakamoto et al. 2002).

Extrapolation of animal data to man should take into
account, among other things, the high protein concentrations
in milk of differing animal species. Based on total N
measurements, protein concentrations are 3·4 times higher
in cows’, 11·8 times higher in rat and 13·9 times higher in
rabbit milk than in human milk (Rossi & Wright, 1997). Fur-
thermore, Sundberg et al. (1999) demonstrated differences
between mice and man in protein Hg binding in milk and
plasma. Moreover, specific protein fractions change during
human lactation (Sanchez-Pozo et al. 1986).

Lead

Pb is widespread in the environment. Industrial pollution and
exhaust fumes from leaded petrol are the primary sources of
Pb contamination of water, food and air (Wade et al. 1993).
The quantity of Pb in food and water is also attributed to: the
use of pesticides containing Pb; soil uptake by plants and its
subsequent consumption by grazing animals; contamination
during industrial and domestic food processing, such as those
used in food canning, water plumbing and food served in
glazed pottery (Whanger, 1982; Needleman & Bellinger,
1991). An authoritative discussion of Pb-isotope studies
and environmental sources was recently published (Gulson
et al. 2003).

Few studies exist that address the dietary factors that
regulate Pb metabolism, even though Ca influences Pb
absorption and bone retention. Studies in adults have
shown that Pb attachment to erythrocytes results in faster
bone uptake of Ca (Heard & Chamberlain, 1984). Studies
using 203Pb have shown that both Ca and P reduce Pb
absorption from 63 to 10·6 % (Heard & Chamberlain,
1982). Also, the addition of cows’ milk to a low-Ca diet
may cause a reduction in Pb absorption (Blake & Mann,
1983).

The maternal acquisition of Hg and Pb depends not only
on the metal (and its chemical form) but also on environ-
mental factors related to food and nutrition.

Environmental and breast-milk mercury and lead

Mercury speciation

Two outbreaks of Hg toxicity have been well documented.
In Iraq, wheat laced with Hg-containing fungicide was
used to make bread. And, in Japan, the cause of Minamata
disease was attributed to the consumption of contaminated
fish. Poisoning of Iraqi mothers resulted in high concen-
trations of Hg in breast milk, ranging from 10 to 200 ng
Hg/g. Although there were no measurements of breast-
milk Hg of Japanese mothers at the time of the Minamata
disease outbreak, breast milk of healthy Minamata mothers
was measured years later and displayed high total Hg
(60 ng Hg/g) concentrations (Harada, 1968). In addition,
in agricultural districts, breast-milk Hg concentrations
were one order of magnitude higher (Wakatsuki, 1973).
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Organic Hg poisoning, caused by the use of Hg-containing
fungicide in Iraq and also by industrial pollution in Mina-
mata Bay (Japan), constitutes isolated episodes of neuro-
toxic outbreaks due to Hg contamination of food (bread
and fish). It is worth mentioning that, in Germany, acciden-
tal exposure to Hg-disinfectants did not affect breast-milk
Hg concentrations (Muller et al. 1986).

More commonly, maternal environmental Hg exposure
is directly related to fish consumption (MMeHg) or amal-
gam filling (In-Hg). Infant MMeHg exposure during fetal
development and breast-feeding is strongly related to
maternal Hg burden (Barbosa & Dorea, 1998). The trans-
fer of Hg from the mother to the fetus is through the pla-
centa (World Health Organization, 1996) and occurs at
different rates, depending on the source of Hg (amalgam
fillings or fish eating). These Hg sources influence total
Hg concentrations in breast milk (Table 1). In mature
milk, positive associations between breast-milk Hg and
fish consumption (Oskarsson et al. 1995, 1996) and
between breast-milk Hg and amalgam fillings (Oskarsson
et al. 1995, 1996; Drasch et al. 1998) have been demon-
strated. However, in transitional milk, such associations

were not statistically significant (Klemann et al. 1990).
Oskarsson et al. (1995) demonstrated that 51 % of total
Hg in milk was In-Hg. And Westoo (1973) reported
high levels of total Hg (0·3 to 1·6mg/l) with proportions
of MMeHg ranging from 8 to 100 %. Oskarsson et al.
(1995) found that when freshwater fish (one to two
meals) was consumed over the course of a 6-week
study, it resulted in a significant increase in blood-Hg.
Despite elevated blood-Hg in fish eaters, there was no sig-
nificant difference in milk-Hg between fish eaters as com-
pared with controls. Vimy et al. (1997) observed that total
milk-Hg was not associated with fish consumption but
with amalgam fillings. They noted that amalgam fillings
might contribute up to 38 % of total milk-Hg, thereby
indicating that a negligible amount of Hg (75 ng/d) is
available for transfer to breast-fed (850 ml/d) infants. In
only one instance has maternal occupational exposure to
Hg (via vapour in lamp factories) been studied (Yang
et al. 1997). Exposed mothers were found to possess a
significantly higher mean Hg concentration (8·5 ng/ml)
than controls (1·6 ng/ml), mostly due to higher proportions
of In-Hg.

Table 1. Total mercury concentrations (ng/g or ng/ml) in breast milk according to country or according to those who may be affected
by environmental factors

Reference Country Hg concentration Comments

Al-Saleh et al. (2003) Saudi Arabia 4·15 Riyadh residents
2·19 Al-Ehssa residents

Bakir et al. (1973)* Iraq 10–200 Poisoning by methyl-Hg fungicide in wheat
Baluja et al. (1982) Spain 9·5
Barbosa & Dorea (1998) Brazil 5·8 High fish eaters
Drasch et al. (1998) Germany ,0·2 No amalgam fillings

0·57 One to four amalgam fillings
0·50 Four to seven amalgam fillings
2·11 Over seven amalgam fillings

Galster (1976) Eskimos 7·6 Coastal
3·2 Interior

Grandjean et al. (1995a) Faroe Islands 2·45 Correlated with pilot-whale meals
Harada (1968) Japan 63 Healthy mothers from Minamata
Juszkiewicz et al. (1975) Poland 6·3 Rural area

5·6 Urban area
Klemann et al. (1990) Germany 1·9 5–10 d; no correlation with amalgam fillings
Muller et al. (1986) German NG Hg-containing disinfectant did not affect breast-milk Hg
Nunes-Junior & Sotério (2000) Brazil 3·3 Non-fish eaters living near gold fields

ND Control (non-fish eaters)
Oskarsson et al. (1995) Sweden NG 6 weeks of one to two meals freshwater fish

NG Control
Paccagnella & Riolfatti (1989) Italy 13·9
Ramirez et al. (2000) Philippines 0–60 Only five samples above DL
Vimy et al. (1997) Canada 0·24 Amalgam fillings

0·15 Control
Wakatsuki (1973)*† Japan 0·50–0·54 Range in agricultural district
Westoo (1973) Sweden 0·8
Winfield et al. (1994) Canada 0·03–0·62 Range
World Health Organization (1989) Guatemala 1·6

Hungary 1·4
Nigeria 2·5
Phillippines 1·7
Sweden 3·3
Zaire 2·7

Yang et al. (1997) China 8·5 Occupational exposure
1·6 Control

NG, not given; ND, not detected (below detection limits); DL, detection limit (2 ng/ml).
* Data extrapolated from figure.
† Parts per million
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In Swedish mothers, the estimated erythrocyte:plasma
ratio of MMeHg is twenty times higher than that of In-
Hg (Vahter et al. 2000). This result indicates that In-Hg
is the favoured form of transfer from maternal plasma to
milk. It has been estimated that 50 to 80 % of Hg in
human milk is in the inorganic form (Skerfving, 1988;
Oskarsson et al. 1996). Thus, recent exposure to MMeHg
from fish consumption is reflected in Hg levels in maternal
blood but not in milk. In milk, an average of 51 % of total
Hg was found to be In-Hg, whereas in blood, only 26 %
was present in the inorganic form (Oskarsson et al. 1995,
1996).

Fish consumption and amalgam fillings are the most
important sources of MMeHg and In-Hg respectively.
Despite the potentially higher toxicity of organic Hg, its
transfer is attenuated by the mammary-gland barrier.

Environmental lead

Industrial and urban pollution can increase environmental
levels of Pb, which, in turn, ultimately affect Pb concen-
tration in milk. Environmental sources of Pb in breast
milk are shown in Table 2. Mean Pb concentrations until
1973 ranged from 5 to 277mg Pb/ml (Dillon et al. 1974).
The World Health Organization’s (1989) international
study showed that industrialised countries (Sweden,
Hungary) had higher breast-milk Pb concentrations than
non-industrialised countries (Guatemala, Nigeria and
Zaire). Also, studies comparing urban and rural areas
showed that breast-milk Pb concentrations were signifi-
cantly higher in some urban areas (Huat et al. 1983). In
Egypt, large urban centres (Cairo, Alexandria, Assiut)
had higher milk Pb concentrations than less populated
areas (Saleh et al. 1996). However, this was not true in
the Philippines and Zaire (Table 2). Unaccounted sources
of environmental Pb or maternal constitutional factors
may operate to promote differences in breast-milk Pb
between rural and urban centres. Al-Saleh et al. (2003)
also showed higher breast-milk concentrations in rural
(Al-Ehssa) compared with Riyadh mothers.

Despite a wide range of Pb concentrations in human
milk, there have been no reports of toxicity caused by
breast-feeding. In electrical battery factories in China,
occupational exposure to Pb caused a significant increase
in breast-milk Pb (Li et al. 2000). In one case, a woman,
who had worked in an electrical battery factory during
her pregnancy (USA), had an infant who displayed no
adverse neurological effects, even though the baby had
received comparable levels (Table 2) of Pb in breast milk
(Ryu et al. 1978).

Although airborne particles are the main source of
maternal exposure, they are not direct modulators of
breast-milk Pb.

Maternal constitutional factors related to mercury and
lead in breast milk

Both Hg and Pb have low transfer coefficients (,1) from
blood to breast milk (Tables 3 and 4). Due to the pro-
tein-binding properties of Hg, its transfer efficiency may
be higher than that of Pb. However, the special affinity

of Pb for bone appears to favour a higher bioaccumulation
of Pb than Hg in soft tissues. Therefore, maternal transfer
(in utero and ex utero) of these two metals is different.
MMeHg in muscle is estimated to have a 72 d half-life
(Sweet & Zelikoff, 2002) with a blood clearance half-life
of 42 d (Greenwood et al. 1978). However, kinetic studies
with 204Pb have indicated a three-compartment model of
Pb elimination with half-lives of 35 d in blood, 40 d in
soft tissues, and an extremely slow half-life in skeletal
tissue (Rabinowitz et al. 1976). In the tibia of adult smelter
workers, the half-life of Pb is estimated to be between 9
and 15 years (Brito et al. 2001).

The estimated mean transfer efficiency from maternal
blood to milk for Hg and Pb is shown in Tables 3 and 4,
respectively. It appears that mammary glands exert an
important barrier that restricts the transfer of Hg (organic
and inorganic) and Pb. In the studies reporting the highest
mean blood-Hg concentrations (Bakir et al. 1973; Yang
et al. 1997; Klopov, 1998), the estimated milk:blood
ratio was reported as the lowest of all other milk:blood
comparisons (Table 3). It is reasoned that low milk-Hg
concentrations are attributed to low protein concentrations
in mature milk. Indeed, colostrum has significantly higher
protein concentrations and, likewise, consistently higher
mean milk-Hg concentrations (Table 3). This can be inter-
preted as a protective aspect of breast-feeding and also
explains why prenatal exposure is initially high and then
diminishes as lactation progresses. Yang et al. (1997)
demonstrated that, in occupationally exposed mothers, the
proportion of In-Hg was higher than in control mothers
(Table 3). The mean milk:blood ratios were less variable
and consistently low for Pb (Table 4). The only exception
was found in Chinese (Shanghai) non-exposed mothers in
whom there were higher Pb concentrations in milk than
in maternal blood (Li et al. 2000).

There are maternal constitutional factors that affect Hg
secretion into breast milk, such as maternal age (Juszkie-
wicz et al. 1975) and lactation stage (Drexler & Schaller,
1998). Both In-Hg and organic Hg are found to be associ-
ated with proteins in breast milk. In-Hg is mostly bound to
caseins and, in low proportions, to albumin (Mata et al.
1997) and to the outer layer of fat globules (Sundberg
et al. 1999). Differential protein binding may significantly
alter both total Hg and MMeHg (fish-Hg) transfer from
maternal serum to milk. Furthermore, total protein concen-
trations decrease during lactation, from colostrum to
mature milk (Dorea et al. 1984), and protein composition
differences in colostrum and mature milk may affect the
distribution rates of organic Hg and In-Hg in milk. For
example, the specific decrease in cysteine may reach
50 % (Davis et al. 1994). Likewise, there is a decline in
Hg concentrations between colostrum and mature milk
(Table 5). Vahter et al. (2000) demonstrated a decreased
Hg concentration in blood (In-Hg) and urine (total Hg)
during lactation.

The few studies that examined the effects of maternal
constitutional variables on Pb concentrations in breast
milk are shown in Table 6. A demonstrable, albeit slight,
decline between colostrum and mature milk is seen in all
studies. Such subtle changes appear to reflect bone turn-
over during lactation. Gulson et al. (2003) revised data
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Table 2. Lead concentrations (ng/g or ng/ml) in breast milk according to country or according to those who may be affected by
environmental factors

Reference Country Pb concentration Comments

Abusamra (1995) Sudan 2·6
Al-Saleh et al. (2003) Saudi Arabia 25·16 Riyadh residents

37·3 Al-Ehssa residents
Altmann et al. (1981) Austria 128 Treated with calcium phosphate

and vitamin C
148 Control

Casey (1977) New Zealand ,10
Counter et al. (2000) Ecuador 17·4 Occupationally exposed in

cottage ceramic industry
Dabeka et al. (1986) Canada 1·0 Samples collected in 1981
Dillon et al. (1974) USA 26
Fong et al. (1998) China 250 Exposed

8·7 Control
Frkovic et al. (1997) Croatia 10·6 Rijcka residents

4·7 Non-residents, regional
5·7 Smokers
7·9 Non-smokers

Guidi et al. (1992) Italy 126·5 Urban
45·6 Rural

Hallen et al. (1995) Sweden 0·9 Smelter area
0·5 Control

Haschke & Steffan (1981) Austria 50·2
Huat et al. (1983) Malaysia 25·3 Urban (air Pb 2·7–5·6mg/m3)

Malaysia 21·1 Rural
Larsson et al. (1981) Sweden 2 3–6 months
Lechner et al. (1980) Austria 23·9 High traffic

15 Low traffic
Li et al. (2000) China 91·8 Occupationally exposed

5·6 Control (Shanghai)
Rica & Kirkright (1982)* NG 17·3 Poor urban residents

14·7 High-standard urban residents
20·0 Rural areas

NG 18·7 Poor urban residents
16·0 High-standard urban residents
16·0 Rural areas

NG 18·7 Poor urban residents
Rodriguez Rodriguez et al. (1999) Spain 0·11
Ryu et al. (1978) USA 19–63 Range, 1–3 weeks, occupational

exposure during pregnancy
29 Control (four mothers)

Saleh et al. (1996) Egypt 66 Cairo, urban
101 Assiut, urban

9 Minia, rural
9 Matrouh, rural

Sternowsky & Wessolowski (1985) Germany 15·5 Urban, colostrum
12·5 Rural, colostrum
9·1 Urban, mature
8·0 Rural, mature

Tiran et al. (1994) Austria 3·4 Median
Tripathi et al. (1999) India 1·9
VanderJagt et al. (2001) Nigeria 67 Median; nomadic semi-pastoralists
Vavilis et al. (1997) Greece 90 Urban (air 0·54mg/m3)

84 Rural
Walker (1980) USA 20
World Health Organization (1989) Guatemala 3·3 Urban

2·8 Rural
Hungary 14·9 All
Nigeria 4·1 Rural
Philippines 16 Urban

17 Rural
Sweden 16·8 All
Zaire 3·1 Urban

6·0 Rural
Zahradnicek et al. (1989) Czechoslovakia 1·7 In 94·2 % of samples

NG, not given.
* Freeze-dried samples (3–9 months) comparing socioeconomic conditions of unidentified countries (NG). Original mean values (130, 110, 150, 140,

120, 120, 140) were converted to wet weight by applying the factor of 7·5 suggested by Yoshinaga et al. (1991). The same data were reported by Bar-
nett et al. (1983).
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Table 3. Mercury concentrations (ng/g or ng/ml) in samples of maternal blood and breast milk

Reference Country Blood Milk Estimated milk:blood Comments

Bakir et al. (1973) Iraq 870 29 0·03 Accidental poisoning
Drexler & Schaller (1998) Germany 0·25 0·9 3·60 Colostrum

0·59 0·40 0·68 Colostrum
0·01 0·11 7·8 Colostrum

Fujita & Takabatake (1977) Japan 25 3·6 0·14
Klopov (1998) Russia 12·7 2·7 0·21 Colostrum, Norilsk

16·3 5·1 0·31 Colostrum, Salakhard
Negretti de Bratter et al. (1987) Germany 1·0 2·6 2·6 Colostrum
Oskarsson et al. (1995) Sweden 2·3 0·6 0·26
Pitkin et al. (1976) USA 1·0 0·9 0·9 Rural population
Plockinger et al. (1993)* Austria 4·5 NG ,0·40 Detection limit of 1·8
Ramirez et al. (2000)* Philippines 24 36 1·38 Colostrum (five of seventy-eight samples)
Schramel et al. (1988a)† Germany 2·7 5·5 † Colostrum
Skerfving (1988) Germany 3·8 3·1 0·82
Yang et al. (1997) China 7·0 1·9 0·27 Organic Hg, occupational exposure

10·8 6·5 0·60 Inorganic Hg, occupational exposure
2·5 0·8 0·32 Organic Hg, control
4·3 0·8 0·19 Inorganic Hg, control

17·8 8·5 0·48 Total Hg, occupational exposure
6·8 1·6 0·24 Total Hg, control

NG, not given.
* The ratio was estimated from the reported detection limit.
† Unequal number of observations (n 5 and n 4 respectively).

Table 4. Lead concentrations (ng/g or ng/ml) in samples of maternal blood and breast milk

Reference Country Blood Milk Estimated milk : blood Comments

Baum & Shannon (1996) USA 340 10 0·03
290 10 0·03

Gulson et al. (1998) Australia 29 0·73 0·02
24 0·73 0·03

Hallen et al. (1995) Sweden 32 0·9 0·03 Smelter area
31·4 0·5 0·01 Control

Hanning et al. (2003) Canada 22·9 2·01 0·09
Huat et al. (1983) Malaysia 173 25·3 0·14 Urban

Malaysia 158 21·1 0·13 Rural
Klopov (1998) Russia 161·7 26·7 0·17 Colostrum, Norilsk

124·2 22·5 0·18 Colostrum, Salakhard
Kovar et al. (1984) England 101 2 0·02 5 d
Kulkybaev et al. (2002) Russia 0·51 0·27 0·54 Balkhash

0·49 0·28 0·57 Karaganda
Li et al. (2000) China 0·68 5·63 8·3 Non-exposed mothers
Moore et al. (1982) Scotland 200 20 0·10
Namihira et al. (1993) Mexico 460 25 0·05 Vicinity of smelters
Nashashibi et al. (1999) Greece 149 20 0·13
Ong et al. (1985) Malaysia 151 48 0·31
Oskarsson et al. (1995) Sweden 33 0·8 0·02
Plockinger et al. (1993) Austria 37 35·8 0·97
Rabinowitz et al. (1985) USA 72 17 0·23
Rockway et al. (1984) USA 119 3 0·02
Ryu et al. (1983) USA 96 26 0·26
Sartorelli et al. (1986) Italy 91 36 0·40
Schramel et al. (1988a)* Germany 39 2·6 0·06 Colostrum

30 2·6 * Unequal
Sowers et al. (2002) USA 14 6·1 0·43 1·5 months

16 5·6 0·35 3 months
17 5·9 0·35 6 months
14 4·3 0·31 12 months

Toth et al. (1989) Hungary 213 64 0·30
Yarushkin (1992) Russia 234 209 0·89

* Unequal number of observations (n 27 and n 34 respectively).
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from their studies and estimated that the contribution of
endogenous Pb to blood-Pb during pregnancy was about
33 %, increasing significantly during the postpartum
period. The Pb transferred from the maternal skeleton via
cord blood is about 79 % in women consuming 500 mg
Ca/d (Gulson et al. 2003). A recent study by Manton
et al. (2003) found that bone resorption, rather than dietary
absorption, controls changes in blood-Pb. In some studies,

although blood-Pb decreased from pregnancy to preg-
nancy, comparisons of parity status (Frkovic et al. 1997)
and gestation age (Friel et al. 1999) showed no significant
differences. Friel et al. (1999) suggested a median differ-
ence between preterm and full-term milk.

For Pb, body storage is higher and lasts longer. Despite
that, the mammary-gland barrier is effective in maintaining
a low milk:plasma ratio for both Hg and Pb.

Table 6. Lead concentrations (ng/g or ng/ml) in breast milk as a function of maternal consti-
tutional variables

Reference Country Milk Parameters

Friel et al. (1999) Canada 0·50 Full-term, 2 weeks
2·0 Full-term, 3 weeks
1·0 Full-term, 4 weeks
4·0 Full-term, 5 weeks
3·0 Full-term, 6 weeks
4·0 Full-term, 7 weeks
3·0 Full-term, 8 weeks
2·0 Full-term, 12 weeks

Frkovic et al. (1997) Croatia 10·4 ,25 years
5·7 .25 years
5·8 Primiparous
8·7 Multiparous

Hurgoiu & Caseanu (1986) Romania ND Preterm
Krachler et al. (1998a) Austria 2·3 Colostrum, 1–3 d

2·7 Transitory milk, 4–17 d
2·4 Mature milk, 42–60 d

Nashashibi et al. (1999) Greece 18 Caesarian delivery
21 Vaginal delivery

Perrone et al. (1994)* Italy 0·13 Term, 1 week
0·16 Preterm, 1 week
0·11 Term, 2 weeks
0·13 Preterm, 2 weeks
0·12 Term, 3 weeks
0·12 Preterm, 3 weeks
0·08 Term, .3 weeks
0·6 Preterm, .3 weeks

Sowers et al. (2002) USA 6·1 1·5 months
5·6 3 months
5·9 6 months
4·3 12 months

Turan et al. (2001) Turkey 14·6 Colostrum
Yarushkin (1992) Russia 791 Colostrum

209 Mature milk

ND, not detected.
* Original mean values of freeze-dried samples (1·0, 1·2, 0·82, 1·0, 0·9, 0·9,0·9, 0·6) were converted to wet

weight by applying the factor of 7·5 suggested by Yoshinaga et al. (1991).

Table 5. Mercury concentrations (ng/g or ng/ml) in breast milk as a function of maternal con-
stitutional variables

Reference Country Milk Parameters

Drexler & Schaller (1998) Germany 0·9 Colostrum
0·25 Mature milk
0·40 Mature milk
0·17 Mature milk
0·11 Mature milk
0·04 Mature milk

Juszkiewicz et al. (1975) Poland 8·1 Maternal age .30 years
5·6 Maternal age ,30 years

Negretti de Bratter et al. (1987) Germany 2·6 Colostrum
1·5 Mature milk, 10 d

Schramel et al. (1988a) Germany 5·5 Colostrum
2·0 Mature milk
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Concurrent exposure to mercury, lead and other
neurotoxic substances in breast milk

It is known that nursing infants and especially fetuses are
most vulnerable to toxic substances. However, it is debata-
ble whether Hg toxicity is attenuated when consumed as
part of good-quality fish protein (Clarkson, 1995) or due
to metabolic interactions with micronutrients (S-amino
acids, Se, vitamin E), which are also present in fish
(Peraza et al. 1998). Early experiments in cats showed
that, although brain levels of MMeHg differed between
cats fed fish containing intrinsic or added Hg (6 mg/kg),
MMeHg was equally detrimental to the CNS (Albanus
et al. 1972). Fish-Hg concentrations (6 mg Hg/kg) found
in industrially polluted Swedish waters are high when com-
pared with fish species of non-polluted waters of the Rio
Negro (Amazon, Brazil). In predatory species of high-
methylating tropical ecosystems, fish-Hg ranges from
0·45 to 1·06 mg Hg/kg (Barbosa et al. 2003).

Toxic metals (Pb, Cd, Hg) and organic substances in
industrially polluted environments can occur concomitantly.
Most often, persistent pollutants appear in the same food
groups. In fish, in addition to lipophilic organochlorine pol-
lutants (OCP), MMeHg is ubiquitously present, mostly due
to the feeding behaviour of fish. In the case of maternal fish
consumption, exposure to MMeHg and neurotoxic lipophi-
lic OCP is certain (Muckle et al. 2001; Jacobson & Jacob-
son, 2002). Unfortunately, most of the maternal transfer of
these toxic metals and other neurotoxic substances occurs
during pregnancy, the most vulnerable period of the devel-
oping fetal CNS (Mendola et al. 2002). Faroese mothers
who routinely consume pilot-whale meat containing high
concentrations of MMeHg had relatively high blood con-
centrations of Hg, Pb and OCP (Grandjean et al. 1995a).
Furthermore, while MMeHg and OCP are bioaccumulated
by fish (or seafood), OCP are also accumulated in meats
(especially poultry), eggs and dairy products (Sell et al.
1975; Schaum et al. 2003).

The consequence of multiple exposures to toxic sub-
stances is a complex issue in developmental toxicology.

Studies relating infant neurological insults (in utero and
ex utero) to maternal fish consumption are complicated
to conduct and interpret. This is due to the difficulty of dis-
entangling individual from cumulative effects of neuro-
toxic pollutants, which are often present in habitual diets
(Risher et al. 2003). Concurrent exposure to neurotoxic
substances (MMeHg and OCP) consumed in fish by Cana-
dian autochthons was associated with subtle functional
immune alterations (Belles-Isles et al. 2002). When com-
paring maternal smoking and blood-Hg concentrations,
Bjerregaard & Hansen (1996) reported that smoking was
significantly correlated with low birth weight, while cord-
blood-Hg, attributed to the consumption of marine mam-
mals, was not. Faroese children aged 18 months who had
been exclusively breast-fed for at least 6 months weighed
0·59 kg less and were 15 mm shorter than those who were
formula-fed (Grandjean et al. 2003). The transfer of con-
taminants (Hg and OCP) from human milk ‘fully explained
the attenuated growth’, even though it was also found that
doubling of the cord blood-Hg (in utero exposure) was
associated with decreased weight and height (Grandjean
et al. 2003). It should be noted that prenatal neurological
insults may appear after breast-feeding age.

On a molar basis, the mean concentrations of Hg and Pb
in fetus and infant brains are very close (Lutz et al. 1996).
But, breast-milk concentrations of Hg and Pb vary greatly
among populations. Breast milk of most urban populations
contains both Hg and Pb. However, in studies measuring
both metals in the same samples (Table 7), regardless of
the country and environmental diversity, Pb concentrations
were systematically higher than Hg with mean Pb:Hg ratios
varying from 1 to .35. Therefore, it appears that, world-
wide, the potential for milk concentrations exceeding the
reference dose is higher for Pb than for Hg.

Environmental pollution from industry and human
activities is not restricted to Hg and Pb. Other co-occurring
neurotoxic xenobiotics have not yet been disentangled
from Hg and Pb; collectively they are the determinants
of health effects on infants mainly through maternal trans-
fer during pregnancy.

Table 7. Concentrations (ng/g) of mercury and lead in the same samples of breast milk

Reference Country Hg concentration Pb concentration Pb:Hg Comments

Ding et al. (1993) China 1 27 27
Durrand & Ward (1989) England 113–358 12–139 – Range of values
Gundacker et al. (2000) Austria 4·1 1·5 0·36
Gundacker et al. (2002) Austria 1·59 1·63 1·0
Lutter et al. (1997) Kazakhstan ND–0·08 ND–0·26 – Range of means
Oskarsson et al. (1995) Sweden 0·6 0·8 1·3
Plockinger et al. (1993) Germany ND 35·8 .35
Schramel et al. (1988a) Germany 2·0–5·5 1·9–6·9 – Range of means
Schramel et al. (1988b) Germany 2·0 2·6 *
Ursinyova & Hladikova (1997) Slovakia 1·6 4·2 2·6
World Health Organization (1989) Guatemala 1·56 2·9 1·8

Hungary 1·43 14·9 10·4
Nigeria 2·15 4·9 2·3
Phillipines 1·71 16·6 9·7
Sweden 3·34 16·8 5·0
Zaire 2·65 5·0 1·9

ND, not detected.
* Unequal number of observations for Hg (n 15) and Pb (n 34).
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Intrinsic features of breast-feeding related to mercury
and lead exposure

Counteractive nutrients of breast milk

Because of the known counteractive effects of Se and Ca
on Hg and Pb metabolism, respectively, it is essential to
examine these interactions in breast milk. Se and Ca con-
centrations in human milk have been thoroughly discussed
and reviewed (Dorea, 1999, 2002). The mean Se concen-
tration of breast milk varies greatly among studies
(Dorea, 2002). Also, variations in breast-milk Ca concen-
trations are observed but, unlike Se, they neither depend
on maternal constitutional variables nor on dietary Ca of
natural foods or supplements (Dorea, 1999).

Due to the long duration of breast-feeding among popu-
lation groups with high intakes of fish, the amount of Hg
consumed by the breast-fed infant can be substantial. Bar-
bosa & Dorea (1998) compared Amazonian riparian indi-
viduals with other population groups. They estimated that
Hg exposure in 53 % (25/47) of the milk samples was
greater than the WHO reference dose. Conservative esti-
mates of breast-milk production (600 ml/d) and infant
body weight at 3 months (5·46 kg) compute to a daily
exposure of 0·64mg Hg/kg body weight (Barbosa &
Dorea, 1998). This level of exposure is greater than the
0·5mg Hg/kg body weight recommended for adults
(World Health Organization, 1996). Based on similar cal-
culations using data from Swedish mothers, i.e. 1000 ml/

d and infant intake of 150 g/kg body weight, Oskarsson
et al. (1996) reported that the highest observed daily
exposure of Hg was of the order of 0·3mg Hg/kg body
weight per d. Grandjean et al. (1995a) in the Faroe Islands
reported only three cases with calculated daily exposure
above the WHO recommended limits. And, in Italy,
Paccagnella & Riolfatti (1989) found that 66 % of the
milk samples would result in Hg exposure above
recommended levels.

The wide range of breast-milk Se concentrations
depends on Se consumed in food and supplements. In natu-
ral foods, Se concentrations reflect the Se content of the
soils where the food is grown. Se prophylaxes, obtained
through soil-Se fertilisation or maternal supplements, are
effective in raising breast-milk Se concentrations. Though
there is wide variation of Se concentrations, it has been
reported that the median breast-milk Se concentrations in
studies conducted worldwide are 26, 18, 15 and 17mg
Se/l in colostrum (0–5 d), transitional (6–21 d), mature
(1–3 months) and late lactation (.5 months), respectively
(Dorea, 2002). Studies that determined Hg and Se in the
same breast-milk sample are shown in Table 8. In these
studies, the mean Se:Hg ratios ranged from 18 to 49.

The reported averages of Ca concentrations range from
84 to 541 mg Ca/l (median 252 mg/l). For P, the average
values range from 17 to 276 mg/l (median 143 mg P/l).
Taken together, the median Ca:P ratio is 1·7 with a
range of 0·8 to 6. Animal studies have shown that Pb

Table 8. Selenium:mercury and calcium:lead molar ratios in the same samples of breast milk

Reference Country Hg or Pb concentration Se or Ca concentration Se:Hg or Ca:Pb Comment

Studies with Hg (nmol/l) and Se (nmol/l)
Garg et al. (1993) India * * 36
Grandjean et al. (1995a) Faroe Islands 12 241 20
Schramel et al. (1988a) Germany 27·4 544·6 19·9 Colostrum
Schramel et al. (1988b) Germany 15·0 177·3 11·8

11·5 164·6 14·3
27·4 228 8·3
11·5 215·3 18·7
10 226 22·6

World Health Organization (1989) Guatemala 8·0 243·2 30
Hungary 7·0 176 25
Nigeria 12·5 304 24
Philippines 8·5 420·8 49
Sweden 16·7 166 10
Zaire 13·5 244·4 18

Studies with Pb (nmol/l) and Ca (mmol/l)
Gulson et al. (2001) Australia 3·5 6013 1718 £ 103

Hurgoiu & Caseanu (1986) Romania ND 6337 .6337 £ 103

Martino et al. (2001) Spain 7·2 6262 869 £ 103

Richmond et al. (1993) England 145 6287 43·4 £ 103

Schramel et al. (1988b) Germany 9·2 7·11 775·4 £ 103

33·3 7·18 215·6 £ 103

9·2 7·31 797·2 £ 103

11·1 7·41 667·6 £ 103

12·5 7·08 564·6 £ 103

World Health Organization (1989) Guatemala 13·9 2695 193·9 £ 103

Hungary 71·9 2535 35·3 £ 103

Nigeria 23·6 2010 85·2 £ 103

Philippines 80·1 2402 30 £ 103

Sweden 81·1 2090 25·8 £ 103

Zaire 24·1 2438 101·2 £ 103

ND, not detected.
* Powdered samples.
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bioavailability varies in different milk diets (Pallinger-
Hallen & Oskarsson, 1995). A decreased Pb bioavailabil-
ity was seen for control (water, 47 %) . human milk
(42 %) . infant formula (40 %) . cows’ milk (31 %)
. rat’s own milk (11 %). Differences in Ca concen-
trations between human milk (300 mg Ca/l) and formulas
(600 mg Ca/l) did not affect bone mineralisation or Ca
homeostasis (Hillman, 1990). But, supplementation of
human milk with P resulted in reduced urinary Ca
excretion in 1-week-old term infants (Senterre et al.
1983). Low levels of vitamin D in human milk were
found to affect bone mineralisation in breast-fed infants
(Hillman, 1990).

The differences between Ca concentrations in breast
milk and formulas are large (Dorea, 1999). It is not yet
clear if the high Ca content of formulas protects infants
against Pb acquisition since other milk constituents, such
as lactose and fat, may enhance Pb absorption (Stephens
& Waldron, 1975). However, experiments have shown
that lactose at concentrations found in rat’s milk does not
enhance Pb absorption (Bushnell & DeLuca, 1983).
There is an indication that an inverse relationship exists
between dietary Ca (from sources other than human
milk) and Pb absorption and retention in infants (Ziegler
et al. 1978). In the case of breast-fed infants, the relation-
ship between Ca nutrition and Pb exposure is more difficult
to ascertain.

Fortunately for breast-fed infants, the occurrence of Se
and Ca is much higher than Hg and Pb in human milk.
A summary of studies that measured toxic metals (Hg
and Pb) and their respective counteractive nutrients (Se
and Ca) clearly shows that breast milk carries high
Se:Hg ratios and even higher Ca:Pb ratios (Table 8).

Breast-feeding and neuromotor development

Breast-fed infant exposure to multiple substances with
similar end-point effects, such as disturbance of neuromo-
tor responses, awaits studies to differentiate their effects.
The impact of the simultaneous occurrence of neurotoxic
substances has not been adequately evaluated in studies
comparing formula- v. breast-feeding. Furthermore, in
most studies reporting an association of maternal body-
Hg load with neurological disturbances in Amazonian
infants, the disturbances were attributed to fetal exposure
during gestation rather than exposure as a function of
breast-feeding duration (Cordier et al. 2002). Studies in
industrialised countries found no clear association between
the duration of breast-feeding and motor development but
did suggest that longer durations of breast-feeding benefit
cognitive development (Paine et al. 1999; Angelsen et al.
2001). Additionally, one Danish study reported that
breast-fed infants achieved motor milestones at earlier
ages than formula-fed infants (Vestergaard et al. 1999)
while Oddy et al. (2003) reported that the early introduc-
tion of milk other than breast milk was associated with a
reduced verbal intelligence quotient. Indeed, in the meta-
analysis study of Anderson et al. (1999), breast-feeding
had a positive effect on cognitive development tests.
Breast-feeding showed a small advantageous effect in neo-
nates with defined neurological (hemisyndrome, hypotonia,

or hypertonia) syndromes (Lanting et al. 1994). Collec-
tively, the data support the hypothesis that a long duration
of breast-feeding benefits cognitive development (Vester-
gaard et al. 1999). Furthermore, in Swedish infants,
exposure to Hg (blood MMeHg) diminished as breast-feed-
ing progressed (Sandborgh-Englund et al. 2001).

Protective factors in human milk can counteract the
effects of prenatal neurotoxic exposure. Vreugdenhil
et al. (2002) reported that the effects of prenatal exposure
to polychlorinated biphenyls were more pronounced in
formula-fed infants. Nutritional factors in breast milk
that are essential to normal neuromotor development
need to be evaluated with regard to maternal fish con-
sumption. Rocquelin et al. (1998) reported that in com-
munities with a dietary dominance of cassava and fish,
a human milk rich in C8–C14 and in PUFA is highly
beneficial to breast-fed infants. Docosahexaenoic acid
(DHA) derived from the essential n-3 fatty acids in the
maternal diet is accumulated in the developing fetal
brain and is critical for the infant’s neural and visual
functions (Innis & Elias, 2003). Additionally, Das
(2003) suggested that the negative correlation between
breast-feeding and insulin resistance and diabetes mellitus
can be related to the presence of significant amounts of
long-chain PUFA in breast milk. Concentrations of
DHA in the milk of Canadian women have decreased in
recent years (Innis & Elias, 2003). However, it has not
yet been established if this decline is related to a decrease
in fish consumption.

Some studies have shown negative neurobehavioural
effects in infants, which were attributed to neurotoxic
substances present in maternal fish consumption. How-
ever, the few studies that have examined harmful effects
in older children and adults who were exposed early in
life to neurotoxins showed no neurological outcome.
Myers et al. (2000) summarised studies carried out in
Samoa, Peru and the Seychelles, which showed no evi-
dence that consuming large quantities of fish is associ-
ated with clinical adverse effects on adults or children.
As for the long-term effects of consuming contaminated
fatty fish, there was no lasting impact on medical or psy-
chometric functions of Swedish boys in their conscript
examinations (Rylander & Hagmar, 2000). But, the dur-
ation of breast-feeding has been found to be positively
associated with intelligence in adults (Mortensen et al.
2002). Surprisingly, lifetime health effects due to fish
consumption have been studied in association with
cancer prevention (Vatten et al. 1990; Terry et al.
2003), the risk of Alzheimer’s disease (Morris et al.
2003), CVD (Guallar et al. 2002), infertility (Choy
et al. 2002) and, lately, in relation to the prevalence of
infectious diseases (Silbergeld et al. 2002). Other sub-
stances found in fish that are neurotoxic to infants,
such as OCP, have been studied in relation to breast
cancer (Gammon et al. 2002).

Breast-feeding is essential to the behavioural and neuro-
motor development of infants. Because the mammary-
gland barrier is effective in limiting the passage of Hg
and Pb to milk and because mothers can have choices
and select food (unlike dairy animals), breast-fed infants
are probably safer than formula-fed infants.
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Attenuation of infant exposure to mercury and lead
during nursing

Maternal fish-mercury consumption

Reducing maternal MMeHg contamination may occur by
removing Hg from foods or by avoiding the consumption
of fish and seafood. There is limited research on Hg
removal from foods. Roh et al. (1975) unsuccessfully
attempted to use thiolated aminoethyl celluloses and
reduced human hair to remove mercuric chloride added
to milk. Detoxification of naturally occurring MMeHg in
fish was proven ineffective by industrial (Aizpurua et al.
1997) and common cooking methods (Armbruster et al.
1988; Morgan et al. 1997; Chicourel et al. 2001). How-
ever, food preparation factors, such as increased cooling
time and loss of moisture and fat, can increase Hg concen-
trations (Morgan et al. 1997). Burger et al. (2003) demon-
strated that fish-Hg levels could increase from 45 to 75 %
due to weight loss in deep-frying. Despite its lipid solubi-
lity, MMeHg is found in fish-muscle protein structures. As
a consequence, the removal of fish skin and fat does not
affect MMeHg but it will reduce total lipophilic OCP in
this kind of food. Therefore, in most studies, reducing
the consumption of fish is recommended to decrease
maternal exposure to MMeHg (Oken et al. 2003).

Indeed, reduced fish consumption is effective in lower-
ing its specific biomarker (hair-Hg). In Hong Kong,
vegans who had not consumed fish, shellfish or meat for
at least 5 years showed very low hair Hg concentrations
when compared with other adults (Dickman et al. 1998).
Also, switching to a vegetarian diet was effective in lower-
ing hair-Hg in Sweden (Srikumar et al. 1992a,b). There-
fore, health specialists have proposed the introduction of
fish intake guidelines. The bioaccumulation of Hg at the
top of the aquatic food chain is due to fish-feeding strat-
egies, and aquatic organisms that reside at the top of the
food chain, such as predatory fish or larger marine mam-
mals, tend to have high Hg concentrations. Thus, the guide-
lines could recommend a reduced ingestion of these fish
and mammals. Alternatively, the guidelines could suggest
choosing to eat non-predatory aquatic species. In the case
of farmed fish, the ultimate MMeHg concentration depends
on the fish feed used. Farmed salmon has been shown to
have higher Hg concentrations than wild salmon (Easton
et al. 2002). Effective guidelines that aim to diminish Hg
body load by decreasing fish consumption should also
take into consideration that some protein sources may
come from animals raised on fishmeal rations. Hg concen-
trations increase in products (dairy, eggs, pork and poultry)
coming from animals raised on fishmeal rations (Sell et al.
1975). Farming practices of industrialised countries are
increasingly using animal by-products as ingredients fed
to animals used as food for human consumers (Dorea,
2004). Therefore, the consumption of such animal products
may result in a higher exposure to organic Hg than eating
fish (from the bottom of the food chain) twice weekly as
recommended.

Reducing fish consumption may curb contamination by
MMeHg and OCP, but it may also lead to the reduction
of essential nutrients that are important for fetal and
infant development. Indeed, for some native populations,

curtailing fish consumption may disturb their balanced sur-
vival strategy (Dorea, 2003). There are population groups
in tropical countries that depend heavily on cassava as an
energy source. As a consequence, they are exposed to natu-
rally occurring cyanogenic glucosides. In African popu-
lations, insufficient protein intake increases the toxicity
of cyanide derived from incompletely processed cassava,
thereby causing toxic ataxic neuropathy. Efficient cas-
sava-processing methods and the abundance of game and
fish protein in the Amazon have been credited with the
absence of neurotoxic diseases associated with cassava
consumption (Dorea, 2003).

Clarkson (1995) has suggested two mechanisms for the
attenuation of naturally occurring MMeHg in consumed
fish. Raised plasma amino acids from fish protein may
increase levels of leucine, methionine, phenylalanine and
other large neutral amino acids that might inhibit
MMeHg entry into the brain. Also, defence mechanisms
may operate in circumstances of chronic exposure to natu-
rally occurring fish-MMeHg. For example, the enterohepa-
tic cycle favours the conversion of MMeHg to In-Hg,
thereby facilitating Hg depuration. Clarkson & Strain
(2003) discussed nutrients (i.e. DHA, I, Fe, choline) in
fish with potential roles to modify the toxicity of
MMeHg in fish-eating populations. Recently, Passos et al.
(2003) suggested that an increased consumption of fruits
could decrease the Hg burden of the fish-eating populations
of the Brazilian Amazon.

Conscientious mothers are capable of choosing balanced
diets by selecting food items within food guidelines that
help abate the exposure to Hg from predatory fish species.
Such efforts, however, may be undermined by the con-
sumption of products from animals raised on fishmeals.

Dental amalgam fillings

Amalgam placement and removal and Hg exposure during
pre- and postnatal periods have been studied. Vimy et al.
(1990, 1997) have suggested that the placement and
removal of amalgam in pregnant and lactating mothers
could subject fetuses and neonates to exposure risks.
Lindow et al. (2003) reported that fetal hair-Hg was signifi-
cantly higher in babies when their mothers had amalgam
restoration procedures performed before or during preg-
nancy. Oskarsson et al. (1996) found that, in Swedish
mothers, Hg from amalgam fillings was the main source
of Hg in milk. Contrary to these results, several studies
have concluded that amalgam work on pregnant and
breast-feeding mothers poses no threat to fetuses and
infants. Drasch et al. (1998) compared Hg in breast milk
with that in formula and concluded that, even for mothers
with large numbers of dental amalgam, these fillings
should pose little danger to breast-feeding infants. It has
been shown that the amount of Hg released from dental
amalgam is minimal. Indeed, during the first 2 months, it
is uncertain if any correlation between milk-Hg concen-
trations and maternal amalgam filling exists (Drexler &
Schaller, 1998).

Studies have concluded that Hg exposure in breast-fed
babies from maternal amalgam is of no significance to
fetal and neonatal Hg in blood (Drexler & Schaller,
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1998), and that newly made tooth fillings during pregnancy
had no influence on Hg concentrations of newborns (Stoz
et al. 1995). In addition, Jones (1999) estimated that 490
amalgam surfaces in an individual’s mouth would be
necessary to give off enough Hg vapour and ionic Hg to
meet maximum exposure guidelines. The worldwide use
of amalgam in dental practice for 150 years has not yet
been associated with health effects in breast-fed infants.

Abatement of environmental sources of maternal exposure
to lead

Contaminated air, water and food are major sources of Pb
exposure that can be improved. In industrialised countries,
the removal of Pb from petrol and from solder used in food
cans has greatly reduced Pb exposure, which may be
reflected in a decline in blood-Pb during the last two dec-
ades (Ducoffre et al. 1980; Annest et al. 1983). Although
the abatement of environmental sources of contamination
can be achieved, the removal of Pb from tap water depends
on water composition and initial Pb content and speciation
(Gulson et al. 1997). According to Gulson et al. (1997),
control of the filtering efficiency of Pb depends on several
factors. However, these may have no relevance when
examined for practical use, especially when considering
their impact on human health.

Pb has been found in various food and food-related
items. A recent study associated elevated blood-Pb with
traditional game consumption, reflecting a legacy of
using Pb-containing ammunition (Hanning et al. 2003).
In Sweden, a significant decrease of Pb concentrations in
hair was reported in hypertensive (Srikumar et al. 1992b)
and healthy (Srikumar et al. 1992a) subjects who switched
from an omnivorous to a lacto-vegetarian diet. Food and
utensils used in food preparation are notable sources of
maternal Pb contamination. Belgaied et al. (2003)
showed that Pb is leached from the glazes of some Tuni-
sian earthenware in concentrations high enough to consti-
tute a health hazard. A milk derivative that acts as a
leaching agent could carry as much as 1·4 mg Pb in a
drink from a mug. Studies in Mexico showed that the use
of Pb-glazed ceramics is a positive predictor of maternal
blood-Pb (Moline et al. 2000; Navarrete-Espinosa et al.
2000). Furthermore, Ca supplements may carry significant
amounts of Pb (Kim et al. 2003).

The abatement of environmental sources of Pb is effec-
tive in decreasing human exposure. Observed maternal Pb
contamination through Pb-glazed ceramics and Pb-con-
taminated nutritional supplements are special sources of
exposure that can be controlled.

Modulating endogenous lead

In the human body, 90 % of Pb is stored in bone. And,
according to Kalkwarf (1999), during lactation, part of
the Ca used for milk production comes from bone, result-
ing in a 3 to 9 % decrease in bone density. Therefore, con-
stitutional and environmental factors (such as hormones
and diet) that affect bone turnover are critical to the
endogenous availability of Pb during pregnancy and
lactation.

Oestrogens play an important role in bone metabolism
(Kitai et al. 1992) and women taking oral contraceptives
benefit from decreased bone turnover (Garnero et al.
1995), conservation of bone mineral density (Goldsmith
& Johnston, 1975) or even higher mean bone density
(Wolman et al. 1992). However, the long-term use of
oral contraceptives before gestation (Kirksey et al. 1979)
and during lactation (Dorea & Myazaki, 1998) does not
affect concentrations of Ca or P in milk. There is a signifi-
cant correlation between the C-terminal parathyroid hor-
mone-releasing protein and Ca concentration in milk
(Seki et al. 1997; Uemura et al. 1997).

With the exception of teenage motherhood and con-
ditions such as familial hypophosphataemia and hyperpar-
athyroidism during lactation, environmental or
constitutional variables do not consistently affect Ca and
P concentrations in breast milk (Dorea, 1999). Neverthe-
less, constitutional and environmental modulators of bone
metabolism (Pb storage and release) during lactation
need proper consideration. Changes in breast-milk Ca can
disturb Ca:Pb ratios. But, there are additional factors that
can affect bone-Pb release and availability during lactation.
Dietary options, such as vegetarianism, may (Dagnelie
et al. 1992) or may not (Finley et al. 1985; Specker,
1994) affect milk Ca. In vegetarian mothers, dietary Ca
intake (486 mg/d) and vitamin D status are low (Specker,
1994). Also, in situations of adverse Ca metabolism,
bone mineral status decreases. Lactating adolescent
mothers displayed decreased bone mineral status after 16
weeks of lactation (Chan et al. 1982). Lactating Nepalese
mothers consuming a diet with 42 % less Ca than US
mothers had greater bone turnover (urinary hydroxypro-
line) than their US counterparts (Moser et al. 1988).
Temporal patterns of bone-Pb contribution to blood-Pb
coincide with seasonal changes, suggesting that bone turn-
over could be higher in the winter months (Rothenberg
et al. 2001; Oliveira et al. 2002). An annual variation
in blood-Pb has been reported (Moore et al. 1982), but
a seasonal influence on bone-Pb was seen only in
prenatal blood-Pb (Rothenberg et al. 2001). Seasonal
differences were shown to affect plasma vitamin D in
mothers (Prentice et al. 1997) and infants (Dawodu et al.
2003). In addition, maternal vitamin D supplementation
can affect both maternal and infant bone metabolism
(Cancela et al. 1986).

Because breast-milk Pb concentrations are greatly influ-
enced by maternal bone metabolism (Sowers et al. 2002), it
may be possible to blunt ‘endogenous’ bone-Pb release by
supplementing osteoactive nutrients (Pires et al. 2002). The
consumption of milk products and use of Ca supplements
have been associated with both reduced blood-Pb levels
in pregnant women (Farias et al. 1996) and with lower
patella-Pb content in lactating women (Hernandez-Avila
et al. 1996). Mothers treated for Pb burden with calcium
phosphate and ascorbic acid had a 65 % decrease in urine
5-aminolevulinic acid and a 15 % decrease in milk Pb con-
centration (Altmann et al. 1981). The interaction of dietary
protein and bone metabolism has been further discussed by
Massey (2003). Though it has been shown that an ‘excess’
of dietary protein affects bone metabolism while low-pro-
tein nutrition can affect toxicity outcome (Chapman &
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Chan, 2000), the specific effect of protein on maternal
blood-Pb availability has not yet been explored.

Modulation of infant Pb exposure during pregnancy (in
utero) and lactation (ex utero) may be achieved by the sup-
plementation of osteoactive nutrients that ‘blunt’ maternal
bone-Pb release.

Formula use increases exposure risks

The advantages of breast-feeding outweigh the adverse
effects of Hg in the breast milk of fish-eating mothers of
developed societies (Grandjean et al. 1995b). Therefore,
it is probably of even greater benefit to traditional commu-
nities or countries with limited resources (Dorea, 2003).
Although adverse effects due to Pb in breast milk exist,
it has been concluded that breast-feeding is a better alterna-
tive to formulas (Mushak, 1999; Sinks & Jackson, 1999).
Moreover, shifting infant feeding from breast milk to for-
mulas does not guarantee a reduced exposure to neurotoxic
substances. It has been recognised that the heavy-metal
burden is higher in formula-fed infants than in breast-fed
infants (Niessen, 1986). Infant formulas may have higher
concentrations of Hg and Pb than breast milk. This may
be a reflection of the lack of quality control for Hg and
Pb in manufacturing.

Cows’ milk, the most utilised source of material in milk
diets of non-breast-fed infants, can be a significant source
of not only Hg and Pb but also of lipophilic OCP. Cattle
feed, especially in affluent countries, often contains signifi-
cant amounts of fishmeal, a source of bioaccumulated
MMeHg and lipophilic neurotoxic substances, and bone-
meal, a source of Pb contaminnation (Akayezu et al.
1997). Fishmeal is largely used in feeding dairy cows
(Yeo et al. 2003) to increase milk production and to stimu-
late increases in DHA, EPA (Gulati et al. 2003), and con-
jugated linoleic acid (Abu-Ghazaleh et al. 2002). Dairy
cows receiving marine oil supplements may have increased
milk-fat conjugated linoleic acid up to more than 300 %
above basal values (Chilliard et al. 2000). Indeed,
Jorhem et al. (1991) reported a decrease in the levels of
Hg in pig meat and attributed this to decreased fishmeal
in the pigs’ ration. Another important source of Pb con-
tamination is the salt used in mineral-salt mixtures of
cattle feed (Marcal et al. 2001). Metal poisoning in cows
due to accidental food contamination is frequently
reported.

If metal contamination is not high enough to clinically
affect the herd, it may pass unnoticed even though it
may result in elevated milk Hg and Pb concentrations. A
Polish dairy herd, poisoned by Hg, continued to produce
contaminated milk until metallic Hg was determined to
be the cause of some of their deaths. Even after 4·5
months, milk-Hg concentrations remained high (23 ng/g)
and yet the contaminated milk was still consumed by chil-
dren (Chodorowski et al. 2001). Baars et al. (1992) found
that, during an episode of Pb poisoning, dairy cows con-
suming about 60 g Pb did not show clinical signs of poison-
ing for 1 to 4 weeks. Such farming practices may channel
Hg and/or fish bioaccumulated lipophilic substances into
cows’ milk at levels much higher than those found in the
breast milk of health-conscious mothers. It is necessary

to control the levels of Hg and Pb in dairy animal feed
in order to abate both maternal and fetal exposure.

Oskarsson et al. (1996) reported higher Hg concen-
trations in formulas than in breast milk. Krelowska-Kulas
(1990) showed that cows’ milk in the proximity of a smel-
ter (Krakow, Poland) had Pb concentrations up to ten times
higher than in milk produced in agricultural areas distant
from industry. Casey (1977) analysed cows’ milk and
cows’ milk-derived infant formulas and found that Pb con-
centrations in these samples were consistently higher than
those found in breast milk. Moreover, higher Pb concen-
trations in formulas than in breast milk were observed in
New Zealand (Casey, 1977), Thailand (Chatranon et al.
1978), the UK (Kovar et al. 1984; Richmond et al.
1993), India (Tripathi et al. 1999), Spain (Rodriguez
Rodriguez et al. 1999; Martino et al. 2001), Australia
(Gulson et al. 2001) and Canada (Hanning et al. 2003).
In industrial regions of Austria (Styria), the range of Pb
concentration (0–20·4 ng Pb/g) in human milk was lower
than in formulas (0–35·4 ng Pb/g) (Tiran et al. 1994).
Furthermore, there was no significant difference in the con-
centrations of toxic Hg and Pb between vegetarian and
non-vegetarian diets of children (Ursinyova & Hladikova,
1998).

It is important to note that during preparation, infant for-
mulas end up over-concentrated (Dorea et al. 1988; Lucas
et al. 1992), which can further elevate metal intake. In
Germany, cows’ milk-based formulas, already higher
than human milk for Pb, sometimes were further contami-
nated by reconstitution of formula powder with the
addition of water containing Hg and Pb (Schumann,
1990). For example, Schumann (1990) demonstrated a
10-fold higher concentration of Pb when using two differ-
ent water samples. However, the increase in Hg was not of
practical importance. Tap water in Graz (Austria) can
increase Pb concentrations in formulas by 45 % (Krachler
et al. 1998b). Baum & Shannon (1997) reported Pb con-
centrations above safety levels in infant formulas that
were reconstituted in homes with plumbing over 20 years
old. The preparation of infant formula in a Pb-soldered
samovar resulted in Pb poisoning (Shannon, 1998). More-
over, if lactose promotes the absorption of Pb (Stephens &
Waldron, 1975), then it is a cause for increased concern
regarding Pb levels in infant foods prepared or derived
from cows’ milk.

Modern farming practices that use animal feeds with
ingredients high in MMeHg and Pb, such as fish- and bone-
meal, can result in dairy products and cows’ milk-based
infant formulas with higher concentrations than breast
milk of health-conscious mothers on habitual diets.

Concluding remarks

It is of public health interest that not only should poten-
tially hazardous substances be kept to a minimum, but
also that the unquestionable benefits of breast-feeding
(nutrition and psychological bonding) should be advocated.
Long-lasting maternal exposure to metals such as Hg and
Pb impacts the CNS during fetal development. But it
should be noted that the translactational barrier is more
effective than the transplacental barrier at preventing the
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transfer of these toxic metals to infants. Most studies of
fish-eating populations with high intakes of naturally
occurring fish-MMeHg are certainly of legitimate concern
for some population groups but, so far, no evidence
shown has justified the suppression of breast-feeding.
Neurological consequences of Hg or Pb in breast milk
have been detected only by neurobehavioural tests. Such
tests carry no prognostic value for neurological syndromes,
at least for Hg. Also, they do not separate prenatal insults
of either MMeHg (maternal fish consumption) or endogen-
ous Pb (maternal bone) exposure from postnatal exposure
in breast milk. The characterisation of foreign substances
as hazardous to nursing infants must take into consider-
ation potential nutritional risks from using alternatives (for-
mula-feeding). Additionally, in the present-day
environmental scenario, it is clear that changing breast
milk for cows’ milk-based formulas increases infant risk
of exposure to neurotoxic substances.
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