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GENERALIZED DE LA VALLÉE POUSSIN 
DISCONJUGACY TESTS FOR LINEAR DIFFERENTIAL 

EQUATIONSO 
BY 

D. WILLETT 

1. Introduction. In this paper, we study the oscillatory behavior of the solutions 
of the linear differential equation 

(1.1) Ly = ri(t)/
n-»+---+rn(t)y9 

where 

(1.2) Ly ES y^+Pl(t)yin-i,+ . . . +pn(t)y 

and all functions are assumed to be continuous on a bounded interval [a, b). An 
«th-order linear equation is said to be disconjugate on an interval / provided it 
has no nontrivial solution with more than n — 1 zeros, counting multiplicities, in /. 
We assume that Ly = 0 is disconjugate on [a, b) and derive a disconjugacy criterion 
for (1.1) of the form 

0.3) 2 f w 0 k - f c + i ( 0 * < i . 

The function vk is determined in terms of fundamental principal systems of solu
tions of Ly = 0, which is a concept defined in Willett [19] and further described in §2. 

Condition (1.3) is a generalization of the multitude of disconjugacy tests which 
are called de la Vallée Poussin tests. Such tests were originated by de la Vallée 
Poussin [17]. They are of the form 

(1.4) 2 (b-ar\\rk\\A* ^ h 
fc=i 

where Ak is a constant and ||r|| is some norm of r, and apply to equation (1.1) for 
the special case 

L = Dn. 

Recent surveys which include results of this type have been carried out by Ararna 
and Ripianu [0], Richard [12], and A. Yu. Levin [10]. Other results have been 
obtained by Martelli [11] and Hartman [3]. There is also a series of papers in 
Japanese by Hukuhara [4], Sato [13], and Tumura [16], which are not available 
to me. However, Hukuhara [5] (cf. also, Math. Reviews 29, No. 3704) lists some 
of the results in these papers. 
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Most of the past results involving conditions of the type (1.4) are derived directly 
from the differential equation by using inequalities relating the growth of functions 
to the growth of their derivatives, or by using differential inequalities. An alternate 
approach is suggested by the nature of the de la Vallée Poussin condition, which is 
a "smallness condition" associated with considering the equation 

(1.5) y^^r^y^-^+^'+r^y 

a perturbation of the equation 

(1.6) fn) = 0. 

In §2, we derive our disconjugacy condition (1.3) from this viewpoint, that is, we 
consider (1.1) a perturbation of a disconjugate equation Ly=0 with Ly defined by 
(1.2). The main result is Theorem 2.3. 

In §3, we give some applications of Theorem 2.3. We list the main application 
here in order to give a comparison with known results. 

Let [x] denote the greatest integer contained in x. 

THEOREM 1.1. If 

7) » f \r (01 <'-fl>',-1P-'>" 
•l} [(«-l)/2]![ii/2]!j0

 lW)l (b-af-1 

„-i (2-i-D r» 

-dt+l"-1 f \rx(t)\dt 
J a 

r - , (t-ay-Kb-tf^ 
, , vc-i dt < 1, 

then (1.5) is disconjugate on [a, b). 

For the proof of Theorem 1.1, see §3. 
Theorem 1.1 is a generalization to (1.3) of a very precise result of Levin [9] for 

equations of the form 

(1.8) ?» = rn(t)y. 

In the case of (1.8), condition (1.7) falls short (in generality) of reproducing Levin's 
result by a factor of 2, when n is odd, and a factor of 2{n— l)/n, when n is even. In 
the case of equation (1.8), condition (1.7) can be replaced by the two conditions 
which are formed from (1.7) by replacing |rn|byr+ =(|rn | +rn)/2andrn =(|rn | -rn)/2, 
because of the comparison theorem of Kondrat'ev [6]. 

Condition (1.7) immediately implies disconjugacy conditions of the form 
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where A k , k= 1 , . . . , n, are constants, 1 <p<co, and 

a» \ UP 

^\r(t)\pdt/(b-à)j , l<p<co, 
HrJU = s u p { | r ( 0 | : a < t < b}. 

We obtain by applying Holder's inequality to (1.7) the following values for the 
coefficients A k , k= 1,..., n, in (1.9) : 

(1.10) Ak = (2^ -1 ) ; Ï0TP = °°> 

(1.11) Ak = 22~2k for/» = 1, 

m - n A ( ^1,2r(A) X1"»"» , , , pk-l 
d-12) A = ( 2 2 A _ l r ( A + 1 / 2 ) ) f o r l < j P < o o , A = ^ - r . 

To see how the Gamma Functions in (1.12) arise, consult formulas (5) and (13) 
in [2, pp. 9-10]. 

For p=co, the best values of Ak in (1.9), except for n — 3 or 4, that have appeared 
in the literature seem to be 

A
 l

 A
 l 

0.13) 
(fc-l)l 

fc [(fc~l)/2]![fc/2]!2^(2n-1-l)' ~~ ' ' • *' ' 

which were obtained by Levin [8] and Hukuhara [4], and 

*.-
L2 1 ~ n2n~19 n~~ n\nn [ 2 J* 

(1.14) 

A - n~~k h - 0 1 

which were obtained by Tumura [16] and Bessmertnykh and Levin [1]. One can 
easily show that for values of k sufficiently close to n and n sufficiently large, the 
coefficient Ak in (1.10) is smaller than either of its counterparts in (1.13) or (1.14). 
For example, A n in (1.10) is always smaller than A n in (1.13) or (1.14) for all 
n>4. 

For p= 1, the best values of Ak that have appeared in the literature seem to be 

A _ L"/^J A _ ? l - n [n/2] 
(n-l)2n 

(1.15) 
A = <hzM k - 2 n-l 

* t(^-l)/2]![(/t-2)/2]!2fc-1(2n-1-l)' * • • • . * h 
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which were obtained by Hukuhara [4] and Hartman [3], and 

(1.16) 

JL A — ?~n 

An9 A l ~ 2 ' 

(*- l ) (k-l\k-3 

P-l)/2]!p-2)/2]!4*(2» 
k = 2 , . . . , « —1, 

which were obtained by Hartman [3]. The same remark again applies, that is, 
(1.11) is substantially better than (1.15) and (1.16) for values of k close to n and n 
sufficiently large. However, in all fairness to Hartman, we point out that Hartman 
further generalizes the basic disconjugacy condition by replacing (1.9) with two 
such conditions with the first having 

/•(a + W/2 

Ik*||i = kfc(OI dtj{b-a\ k=l,...,n, 
J a 

and the second having 

Ik*||i = f kfc(0| dt/(b-a), k=l,...,n. 
J(a + b)l2 

In this case, the coefficients Ak are as defined in (1.15). Hartman also is able to 
incorporate the coefficient rx into an exponential function in a worthwhile manner, 
which successfully completes one of the generalizations attempted in [20]. The 
latter generalization is not particularly important in practice, however, since the 
coefficient rx can be always eliminated from a given equation by well-known trans
formations. 

For 1 <p <oo, the best values of Ak that have appeared in the literature seem to 
be 

n 17Ï A _Kn-DI2]l[nl2]l _ 1 
(1.1/) An = (/i-l)! ' x 2 ^ ' 

Ak = 9n-1_ i* k ~ 2,..., n — l9 

which were obtained by Martelli [11]. Here, one can easily show that for at least 
the values of k when 2k >n, (1.12) produces a smaller value for Ak than (1.17). 

The cases n = 2 and n = 3 are treated further in §3, and refinements of Theorem 1.1 
are obtained for these cases. A comparison with known results is made there. 

Finally, all the known results mentioned above and in §3 actually imply dis
conjugacy on the closed interval [a, b] provided Ly = 0 is nonsingular at b. We will 
show in a future paper that (1.9) and the corresponding condition in Theorem 2.3 
of the next section are each sufficient to imply disconjugacy on [a, b] in this case, 
and even in some cases when Ly=0 is singular at a or b, provided strict inequality 
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holds in (1.9) and (2.11). Ly=0 is singular at a or b in this case means a= —oo, 
b=co, or one of the coefficients/^ is not improperly integrable on (a, b). 

2. Disconjugate perturbations of disconjugate equations. In what follows, by 
solution we shall always mean a nontrivial solution. A function <p is said to have a 
zero at c of order k if <p(c) — • • • =c)(fc~1)(c)=0 and <p(fc)(c)#0. The usual notation 
for open, closed, and half-open intervals is used. 

This section is concerned with determining an effective criteria for deciding 
whether equation (1.2) is disconjugate on a given bounded interval J, given that 
Ly=0 is disconjugate on /. We start with the following lemma: 

LEMMA 2.1. (Sherman). If (1.2) is not disconjugate on [a9 b)9 then 3[c9 d]^(a9 b) 
and a solution q> of (1.2) which has a total of at least n zeros at c and d and does 
not vanish in (c9 d). 

Proof. This lemma is an immediate consequence of Theorem 2 of Sherman 
[14], which states that the first conjugate point function rj(x) is continuous, and 
Theorem 5 of Sherman [15], which states that there always exists a solution with 
n zeros concentrated at c and d if d=7)(c). 

Lemma 2.1 can be used to establish the following "ineffective" characterization 
of disconjugacy for (1.2). 

THEOREM 2.1. Equation (1.2) is disconjugate on [a, b), if and only if, for any 
[c, d]^(a, b)9 3 a system (yl9..., yn) of solutions of (1.2) such that yk has a zero 
at c of order k—\ and a zero at d of order n—k. 

Proof. Assume (1.2) is not disconjugate on [a, b). By Lemma 2.1, there exists 
[c9 d]^(a, b) and a solution q> with a total of at least n zeros at c and d. Let (yl9... yn) 
be the system of solutions for the interval [c, d] that exist by hypothesis, that is, 
yk has a zero at c of order k— 1 and a zero at d of order n—k, k— 1 , . . . , n. Clearly, 
(yu • • •> yn) is a linearly independent set. Hence, there exists constants cl9.. .9cn 

such that 

(2.1) <p™(t) = ciynt)+ • • • + ^ ( 0 , c<t<d, 

k = 0 , . . . , H—1. 

If cp has a zero of order m at c, then letting t=c and fc=0,..., m— 1 in (2.1) im
plies cx= - - • =cm=0. Next, letting t=dand k=0,..., n—m — l implies cm+1= • • • 
= cn=0, since <p has a zero of order at least n—mdXd. But then <p is identically 
zero, which is a contradiction. Hence, (1.2) is disconjugate on [a, b). 

That the converse statement is true is well known from the equivalence of dis
conjugacy and the existence-uniqueness of solutions of boundary value problems 
for linear equations. 

In what follows, we assume Lw=0 is disconjugate on (a, b). Let [c9 d]^(a, b). 
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We have shown in [19] that Lu=0 has a fundamental principal system (ul9..., un) 
of solutions on [c, d\ that is, uk has a zero of order k— 1 at c and 

(2.2) i i m J ^ ) o, fc=l,...,w-l. 
t->d- uk+1(t) 

Since rf is a finite number in the present context, (2.2) implies that uk must have a 
zero at d of order at least n—k. But (2.2) also implies that (ul9..., un) is a linearly 
independent set of solutions, hence, the Wronskian W(ul9..., un) does not vanish 
in [c, d\. This implies that uk has a zero at d of order at most n—k, since otherwise 
JF=0 at t=d. We have just proven the following lemma: 

LEMMA 2.2. If (ul9 . . . , un) is a fundamental principal system on [c, d], then uk 

has a zero of order k—\ at c and a zero of order n—k at d. 
We also showed in [19] that the formal adjoint equation L*v=0 has a fundamental 

principal system (vn,..., v±) on [c, d]. Let \<j<n and define 

(2.3) Hj{Us) = { 
fc = i 
2 ( i - ) n " f c ^(0[^) /^) ] ' , c < s < u 

2 (-i)n-fc+1^(0[^)MWr, *<*<</, 

where 22=i = 0 —22=n + i« Then, the function //,(*, 5) is (w — l)-times continuously 
differentiate in t for c<s<d, c<t<d, except for finite jump discontinuities at 
t=s in the (»—2)nd and (« —l)st derivatives. Let M(0 = wX0 a n d j4> • • •> M be 
defined as follows: 

i',('K(0-2 K-̂ COKCO = {?' lZÎ"""~1' 
m*j L 1 ? /C — AZ. 

The main use of the function f/y is described in the following lemma. 

LEMMA 2.3 (Willett [19]). For eachfe C[c9 d), the function 

(2.4) wj(t) = j * Hj(t9 s) (£* ^( r ) / ( r ) rfr) * 

exists in Cn[c, d\ Lwj=f and 

(2.5) wf\t) = o(fik+l(t)), as f -> </-, fc = 0 , . . . , n-1. 

THEOREM 2.2. Assume that Lu = 0 is disconjugate on [a9b), [c, d] <= (a, b), and 
Hj is defined by (2.3). If for each j , j = 1 , . . . , n, the equation 

(2.6) y At) = uAO + j * Hfr s) (£ v^r)F[y^r)] rfr) «fr, 

w/zere 

(2.7) F[y] = rxCOy1-1^ • • • + r n (0* 

/20s a solution y5 e C""1^, d], //ze/7 y3- has a zero at c of order j — 1 and a zero at d of 
der n — j. 
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Proof. Let yj^Uj+Wj so that w5 is given by (2.4) with/(r) = F[j;(r)]. Thus, Wj 
satisfies (2.5). Now, Lemma 2.2 implies um has a zero of order n - m a t d and vm 

has a zero of order m - 1 at d. Thus, from the definition of j4+i> we conclude that 
/4+1 has a zero of order n—k—j2itd,k=0,...,n —j. Hence, (2.5), implies wf\d)=0 
for fc=0,..., n-j\ that is, Wj has a zero at d of order at least n—j+1. Since K, 
has a zero at d of order n—j and yj=uj+wj9 we conclude that jy has a zero at rf 
of order n—j. 

Now consider the situation at c. The continuity of H fa s) implies 

yf\t) = uf \t)+ j ' ^ (t, s) (£* I;/T)F[>>/T)] rfr) A, * = 0 , . . . , n-2. 

Since wy has a zero of order j — 1 at c by Lemma 2.2, y} has a zero of order at least 
j— 1 at c provided 

(2.8) lim f 
t-»c+ Jt 

(',*) is = 0, k = 0, ...J-2. 

But the integral in (2.8) is bounded by 

2 K\t)\[vm(t)Mt)i 
m = j + l 

Since wJJ0, i?m, and t?y have zeros at c of order m—k—l,n — m, and w — j9 respectively, 
the product u^vjvj has a zero at c of order j—k—\. Thus, (2.8) follows. There 
remains to show that j>y has a zero at c of order at most jf— 1. We note that Lemma 
2.3 implies 

Lyt = F[yj] = r1^»-1>+ • • • + rnyn, j = 1,. ..,/*, 

which means that {yl9..., yn} is a set of solutions of a linear differential equation. 
From the behavior of yj at d, it is furthermore clear that {j>i,..., yn} is a linearly 
independent set on [c, d]. Hence, the Wronskian W{yu . . . , yn) does not vanish 
at t=c, which would not be the case ifyi/)(c)=0 for anyy, 1 <j<n. 

THEOREM 2.3. Assume that Lu=0 is disconjugate on the bounded interval {a, b). 
For each [c, d]^(a, b), let (uu . . . , un) and (vn,.. ,,vx) be the fundamental principal 
systems on [c, d) of Lu=0 and L*v=09 respectively, and let Hj(t, s;c,d) be the 
corresponding function defined by (2.3). Let 

(2.9) 

where 

(2.10) 

"*(0 sup sup pk(t;c,d,j), 
[c,d]=<a,6) l s y s n 

Pi = VjUj, 

dtk~l Pk = V) 

\Pn = 1+vA 

ds, k = 2, . . . ,«— 1 
x i / , 

0fn A. 
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If 

(2.ii) 2 p M O k W ) * * i, 

then equation (1.1) fa disconjugate on [a, b). 

Proof. The theorem follows from Theorems 2.1 and 2.2 provided equation (2.6) 
has a solution j , for each j,j= 1, . . . , w, and each [c, rf]<=(a, £). For a fixed interval 
[c, d]c(a, b) and a fixedy, (2.11) implies 

(2.12) 2 f MOI Pn-*+iMt < 1. 

But (2.12) is sufficient to imply the usual successive approximations starting with 
Uj(t; c, d) converges to a solution yfo) of (2.6) for c< t< d. 

Condition (2.11) is a generalized de la Vallée Poussin type condition for dis-
conjugacy of (1.1). We shall compute the functions vj for some special operators L 
in the next section. 

3. Applications. The main application of Theorem 2.3 that we have at this time 
is Theorem 1.1 of §1. 

Proof of Theorem 1.1. Let L=^Dn and [c, d]<^(a, b). The fundamental principal 
system on [c, d] for w(n)=0 is given by (ul9 ...,wn) with 

(d-ty-nit-c)1*-1 

»-«>=m (m-1)! 
The fundamental principal system on [c, d] for the adjoint equation, which is 
#(n)=0, is given by (vn,..., vx) with vm=*un-m+1. We use the following estimate: 

(3.1) |,4P)(0| ^ ( j - i ) ^ - ^ j (#i-l)(n-2)...(«-/>). 

Hence, the functions pk=pk(t; c, d,j) defined by (2.10) satisfy 

(3.2) Pk < 2 K-^OMO 

*£â 
// f\n-k 9 n - l 1 

A «~C) WW.' * = 2,...,»-l; 
n ^ n = /^/-A"-1 (f-c)"-1 / J - A " - 1 Q - c ) - 1 

^ Pi \d- c) (_/_ i) !(B _/) ! - U - c j [(» -1)/2] ! [nil] f 

(3.4) * * 1 - f ^ |«&-«(0K(0 * 1 +2 , ( < H - ( ^ 1 W ) I ^ ^ 

Since the product (d—t)(t—c)/(d—c) is monotone increasing in d and monotone 
decreasing in c, it is a trivial matter to compute the supremum with respect to all 
[c, d]<^(a, b) of the upper bounds computed for the pk in (3.2)-(3.4). Letting these 
functions be the vk in (2.11) results in (1.7), and the theorem follows. 
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It is the case that the estimates made in (3.2)-(3.4) can be improved upon for 
particular values of n9 for example, we obtain for « = 3 

COROLLARY 3.1. If 

(3.5) 2 J W ) | * + £ ^ L ^ ± ) W O I dt+jl(t^ayty WO I * < 1, 
then 

(3.6) y+rMy' + r&W + rMy = 0 

is disconjugate on [a, b). 

As in the case of (1.9), condition (3.5) can be considered a generalization in 
some respects of the known de la Vallée Poussin tests for (3.6). Besides the results 
mentioned in §1, we note the test of Lasota [7] obtained for just the third-order 
equation: 

(b-a) „ „ (b-a)2 „ „ (b-a)3 „ .. 
(3.7) —^— ||ri||oo+—^â— II*2II00+ 2?r2 ll^ll00 - L 

Corresponding to the coefficient triplet (1/4, 1/TT2, 1/2TT2) in (3.7), condition (3.5) 
generates the triplet (2,1/6,1/30). See Richard [12] for a survey of known results 
for the second- and third-order equations. 

We finish by illustrating for the second order case a way to reduce the effect of 
the coefficient rx(t). We consider the equation 

(3.8) / = r&W + rMy 

as a perturbation of 

(3.9) Lu = u"-rx(t)u' = 0. 

The adjoint equation to Lw=0 is 

(3.10) L*v = v' + (riv)' = 0, 

and it is a simple matter to compute the fundamental principal systems for (3.9) 
and (3.10) in terms of constants and the function 

E(t) = exp M r^ds). 

In this case 

v,(t) = ( £ E(s) dsj ( £ E(s) dsj /E(t) ( £ E(s) &), 

so that Theorem 2.3 implies 

COROLLARY 3.2. If 

(3.11) F \r2(t)\E~\t) (Ç E(s)ds) (F E(s)ds\ dt < F E(s) ds, 

then (3.8) is disconjugate on [a, b). 
For a more complete analysis including generalizations of (3.11) for second 

order linear equations, see Willett [18]. 
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