J. Austral. Math. Soc. (Series A) 68 (2000), 1-9

SOME PROPERTIES ON ISOLOGISM OF GROUPS MOHAMMAD REZA R. MOGHADDAM and ALI REZA SALEMKAR

(Received 4 September 1997; revised 16 February 1999)

Communicated by R. B. Howlett

Abstract

In this paper a necessary and sufficient condition will be given for groups to be \mathcal{V} -isologic, with respect to a given variety of groups \mathcal{V} . It is also shown that every \mathcal{V} -isologism family of a group contains a \mathcal{V} -Hopfian group. Finally we show that if G is in the variety \mathcal{V} , then every \mathcal{V} -covering group of G is a Hopfian group.

1991 Mathematics subject classification (Amer. Math. Soc.): primary 20E10, 20E36; secondary 20F28. Keywords and phrases: covering group, isologism, Hopfian group.

1. Introduction and preliminary results

Let F_{∞} be the free group freely generated by a countable set $\{x_1, x_2, ...\}$ and let V be a subset of F_{∞} . Let the variety of groups V be defined by the set of laws V. It is assumed that the reader is familiar with the notion of the verbal subgroup, V(G), and the marginal subgroup, $V^*(G)$, associated with the variety V and a given group G. See Neumann [8] for more information on varieties of groups.

In 1940, Hall [1] introduced the notion of isoclinism and then he extended it to the notion of \mathcal{V} -isologism, with respect to a given variety of groups \mathcal{V} . If \mathcal{V} is the variety of Abelian or nilpotent groups of class at most n, then \mathcal{V} -isologism coincides with isoclinism and *n*-isoclinism properties, respectively (see [1, 2]).

In the next section we define some closure operation with respect to a variety of groups \mathcal{V} , and show that a group G is \mathcal{V} -isologic to a group H (written by $G_{\widetilde{\mathcal{V}}}$ H) if and only if G and H have the same \mathcal{V} -closure (see Theorem 2.5).

Finally, if H_1 and H_2 are two \mathcal{V} -covering groups of a given group G and f is an epimorphism of H_1 onto H_2 with some other condition, then f is an isomorphism.

^{© 2000} Australian Mathematical Society 0263-6115/2000 \$A2.00 + 0.00

From this result we conclude that all \mathcal{V} -covering groups of an arbitrary group in the variety \mathcal{V} are Hopfian.

In the following we recall the definitions of isologism and the Hopf property of groups.

DEFINITION 1.1. Let \mathcal{V} be a variety of groups defined by the set of laws V, and let G and H be two groups. Then the pair (α, β) is said to be a \mathcal{V} -isologism between the groups G and H, if the maps

$$\alpha: G/V^*(G) \longrightarrow H/V^*(H),$$

$$\beta: V(G) \longrightarrow V(H)$$

are isomorphisms such that for all words $v(x_1, \ldots, x_r)$ in V and all the elements g_1, \ldots, g_r in G, we have

$$\beta(\nu(g_1,\ldots,g_r))=\nu(h_1,\ldots,h_r),$$

whenever $h_i \in \alpha(g_i V^*(G))$, for i = 1, 2, ..., r. In this case we write $G \simeq H$ and say that the group G is \mathcal{V} -isologic to H.

A group G is said to be a Hopfian group, if every epimorphism $G \rightarrow G$ is an isomorphism, otherwise G is non-Hopfian.

Clearly isologism is an equivalence relation, and hence gives rise to a partition on the class of all groups into equivalence classes, the so called *isologism families*.

One notes that if A is any group belonging to the variety \mathcal{V} , then $G \times A \approx G$, for all groups G.

The proof of the following lemma is straightforward (see also Hekster [3]).

LEMMA 1.2. Let V be a variety of groups and H be a subgroup and N be a normal subgroup of a group G. Then the following statements hold:

(i) $H \approx HV^*(G)$. In particular, if $G = HV^*(G)$ then $G \approx H$. Conversely, if the marginal factor group $G/V^*(G)$ satisfies the descending chain condition on subgroups and $G \approx H$, then $G = HV^*(G)$.

(ii) $G/N \approx G/N \cap V(G)$. In particular, if $N \cap V(G) = \langle 1 \rangle$, then $G \approx G/N$. Conversely, if V(G) satisfies the ascending chain condition on normal subgroups and $G \approx G/N$, Then $N \cap V(G)$ is trivial.

Now, in the spirit of the above Lemma 1.2 (ii), we introduce the following

DEFINITION 1.3. Let \mathcal{V} be a variety of groups defined by the set of laws V. A group G is said to be \mathcal{V} -Hopfian, with respect to \mathcal{V} -isologism, if G contains no non-trivial normal subgroup N satisfying $N \cap V(G) = \langle 1 \rangle$.

2. V-isologism of groups

Let \mathcal{V} be a variety of groups defined by the set of laws V. A group G is called \mathcal{V} -marginal group, if $G = V^*(G)$.

Now, in the following we define a \mathcal{V} -closure operation similar to [9], which is done for the variety of Abelian groups.

DEFINITION 2.1. Let G be a group. Then $\{G\}_{\mathcal{V}}$ denotes the smallest class of groups containing G, closed under the operation of forming direct products with \mathcal{V} -marginal groups, and satisfying the following property: if $H \in \{G\}_{\mathcal{V}}$ then every subgroup K of H which satisfies $H = KV^*(H)$ is also in $\{G\}_{\mathcal{V}}$, and for every normal subgroup N of H which satisfies $N \cap V(H) = \langle 1 \rangle$ the quotient group H/N is also in $\{G\}_{\mathcal{V}}$. We call the set $\{G\}_{\mathcal{V}}$ the \mathcal{V} -closure of G.

One should note that we may replace the group G by a set of groups $\{G_i\}$, thus obtaining a \mathcal{V} -closure operator for sets of groups.

The following proposition can be proved easily.

PROPOSITION 2.2. Let $\{G_i\}$ and $\{H_i\}$ be two sets of groups. Then

- (a) $\{G_i\} \subseteq \{G_i\}_{\mathcal{V}}$.
- (b) $\{\{G_i\}_{\mathcal{V}}\}_{\mathcal{V}} = \{G_i\}_{\mathcal{V}}.$
- (c) if $\{G_i\} \subseteq \{H_j\}$, then $\{G_i\}_{\mathcal{V}} \subseteq \{H_j\}_{\mathcal{V}}$.

The following result yields the necessary tools for our main result (Theorem 2.6).

THEOREM 2.3. Let G and H be two groups. Then G and H are \mathcal{V} -isologic if and only if a group C and subgroups V_G^* , V_H^* of C exist such that $G \cong C/V_H^*$, $H \cong C/V_G^*$ and the following equivalent statements hold:

(a) $G \cong C/V_H^* \simeq C \simeq C/V_G^* \cong H$;

(b) $C/V_H^* \times C/V(C) \underset{\widetilde{V}}{\sim} C_H \cong C \cong C_G \underset{\widetilde{V}}{\sim} C/V_G^* \times C/V(C),$

for some subgroup C_H of $C/V_H^* \times C/V(C)$ and some subgroup C_G of $C/V_G^* \times C/V(C)$.

PROOF. It is clear that if such groups C, V_G^* and V_H^* exist then $G \simeq H$.

Conversely, let $G \approx H$, and (α, β) be a \mathcal{V} -isologism between the groups G and H. Assume

$$C = \{(g, h) \in G \times H \mid \alpha(g V^*(G)) = h V^*(H)\},\$$

$$V_G^* = \{(x, 1) \in G \times H \mid x \in V^*(G)\},\$$

$$V_u^* = \{(1, y) \in G \times H \mid y \in V^*(H)\}.$$

Clearly, $V_G^* \cong V^*(G)$ and $V_H^* \cong V^*(H)$. Define the map φ from C into G by $\varphi(g, h) = g$. It is easy to see that φ is an epimorphism with ker $\varphi = V_H^*$. Hence $C/V_H^* \cong G$. Similarly $C/V_G^* \cong H$.

(a) The verbal subgroup V(C) is generated by

$$\{(\nu(g_1,\ldots,g_r),\beta(\nu(g_1,\ldots,g_r)))\mid g_1,\ldots,g_r\in G,\nu\in V\}.$$

Clearly, $V(C) \cap V_H^* = \langle 1 \rangle$, for if $(g, h) \in V(C) \cap V_H^*$ then g = 1 and hence $h = \beta(1) = 1$. Similarly $V(C) \cap V_G^*$ is also trivial. Thus by Lemma 1.2 (ii),

$$C/V_G^* \underset{\mathcal{V}}{\sim} C \underset{\mathcal{V}}{\sim} C/V_H^*,$$

which proves part (a).

4

(b) We define the subgroup C_G of $C/V_G^* \times C/V(C)$ to be

$$C_G = \{ (x \, V_G^*, x \, V(C)) \mid x \in C \}.$$

It is clear that the map $\psi : C \to C_G$, given by $\psi(x) = (x V_G^*, x V(C))$, defines an isomorphism and hence $C \cong C_G$. Now, in view of Lemma 1.2 (i), to show

$$C/V_G^* \times C/V(C) \simeq C_G$$

it is enough to prove that $C/V_G^* \times C/V(C) = C_G V^*(C/V_G^* \times C/V(C))$. Let $a = (x V_G^*, y V(C))$ be an arbitrary element of $C/V_G^* \times C/V(C)$. Clearly a = bc, where $b = (x V_G^*, x V(C)) \in C_G$ and $c = (V_G^*, x^{-1}y V(C))$. It is easily seen that

$$c \in V^*(C/V_G^* \times C/V(C)).$$

This implies that

$$C/V_G^* \times C/V(C) \subseteq C_G V^*(C/V_G^* \times C/V(C)).$$

The reverse containment follows immediately. Hence

$$C \cong C_G \simeq C/V_G^* \times C/V(C).$$

By a similar argument it follows that

$$C \cong C_H \simeq C/V_H^* \times C/V(C),$$

in which $C_H = \{(y V_H^*, y V(C) | y \in C\}.$

The following corollary generalizes a result of Weichsel [9] to an arbitrary variety of groups.

COROLLARY 2.4. Let G and H be two groups and V be a variety of groups. Then $G \approx H$ if and only if there exists a V-marginal group K, a subgroup L of $G \times K$ with $LV^*(G \times K) = G \times K$ and a normal subgroup N of L such that $N \cap V(L) = 1$ and $H \cong L/N$.

PROOF. Assume that $G \simeq H$, then the result follows from the above theorem by taking K = C/V(C), $L = C_H$, and $N = V_G^*$.

Conversely, suppose the required groups exist, then it follows immediately that $H \simeq L \simeq G \times K \simeq G$.

Using the notation as in Definition 2.1 we obtain the following.

THEOREM 2.5. $\{G\}_{\mathcal{V}}$ is the \mathcal{V} -isologism family of the group G, and hence $G \simeq_{\mathcal{V}} H$ if and only if $\{G\}_{\mathcal{V}} = \{H\}_{\mathcal{V}}$.

PROOF. Clearly the \mathcal{V} -isologism family of the group G contains G and it is closed under the operations given in Definition 2.1, and hence it contains $\{G\}_{\mathcal{V}}$. But by Corollary 2.4, any group isologic to G can be constructed from G using the allowable operations of $\{G\}_{\mathcal{V}}$, and so is contained in $\{G\}_{\mathcal{V}}$.

Finally, in this section we show that for any group G, the set $\{G\}_{\mathcal{V}}$ contains a group, H say, which is \mathcal{V} -Hopfian with respect to \mathcal{V} -isologism.

THEOREM 2.6. Let G be a group. Then there exists a normal subgroup N of G such that $G \simeq G/N$ and G/N is V-Hopfian.

PROOF. Let $\mathscr{N} = \{N \leq G \mid N \cap V(G) = \langle 1 \rangle\}$. Clearly the set \mathscr{N} is non-void, as it contains the trivial subgroup. We define a partial ordering on \mathscr{N} by inclusion and clearly by Zorn's Lemma we can find a maximal normal subgroup N in \mathscr{N} . Since $N \cap V(G) = \langle 1 \rangle$, it follows, by Lemma 1.2, that $G \simeq G/N$. Now, suppose there exists $M/N \leq G/N$ such that $M/N \cap V(G/N) = \langle 1 \rangle$. By [3, Proposition 2.3] and Dedekind's modular law, we have $M \cap V(G) \subseteq N$. Since $N \cap V(G) = \langle 1 \rangle$, it follows that $M \in \mathscr{N}$. On the other hand, we have $N \subseteq M$, so by the maximality of N, it follows that M = N. Therefore M/N is trivial, and hence G/N is \mathcal{V} -Hopfian with respect to \mathcal{V} -isologism.

3. Hopfian property

Let H_1 and H_2 be two \mathcal{V} -covering groups of a given group G. In this final section we give a sufficient condition for an epimorphism of H_1 onto H_2 to be an isomorphism.

Then we conclude that every \mathcal{V} -covering group of a group in the variety \mathcal{V} has the Hopf property.

Let $1 \to R \to F \xrightarrow{\pi} G \to 1$ be a free presentation of a group G, where F is a free group and $R = \ker \pi$. Then the *Baer-invariant* of G with respect to the variety \mathcal{V} , denoted by $\mathcal{V}M(G)$, is defined to be $R \cap V(F)/[RV^*F]$, where V(F) is the verbal subgroup of F and $[RV^*F]$ is the least normal subgroup T of F contained in R such that $R/T \subseteq V^*(F/T)$. One may check that the Baer-invariant of a group G is always Abelian and independent of the choice of the free presentation of G. In particular, if \mathcal{V} is the variety of Abelian or nilpotent groups of class at most c ($c \ge 1$), then the Baerinvariant of the group G will be $(R \cap F')/[R, F]$, which is the Schur-multiplicator of G, or $(R \cap \gamma_{c+1}(F))/[R, cF]$ (where F repeated c times), respectively (see [4]).

We recall that an exact sequence $1 \to A \to G^* \to G \to 1$ is called a \mathcal{V} -stem extension with respect to the variety of groups \mathcal{V} , when $A \subseteq \mathcal{V}(G^*) \cap \mathcal{V}^*(G^*)$. If in addition $A \cong \mathcal{V}M(G)$, then the above extension is called a \mathcal{V} -stem cover. In this case G^* is said to be a \mathcal{V} -covering group of G. It is of interest to know the class of groups that do not have \mathcal{V} -covering groups (see [7]). In [6] we have also shown that a given group G has always a \mathcal{V} -covering of a group, it is assumed that \mathcal{V} is a suitable variety.

The following results of [5] are needed to prove the main result of this section.

THEOREM 3.1 (Moghaddam and Salemkar [5]). Let V be a variety of groups defined by the set of laws V, and let $1 \rightarrow R \rightarrow F \rightarrow G \rightarrow 1$ be a free presentation of a group G. Then

(i) If S is a normal subgroup of F such that

$$\frac{R}{[RV^*F]} = \frac{R \cap V(F)}{[RV^*F]} \times \frac{S}{[RV^*F]},$$

then $G^* = F/S$ is a \mathcal{V} -covering group of G.

(ii) Every V-covering group of G is a homomorphic image of $F/[RV^*F]$.

(iii) For any \mathcal{V} -covering group G^* of G with an exact sequence $1 \to A \to G^* \to G \to 1$, such that $A \subseteq V^*(G^*) \cap V(G^*)$ and $A \cong \mathcal{V}M(G)$, then there exists a normal subgroup S of F, as in (i), such that $F/S \cong G^*$ and $R/S \cong A$.

COROLLARY 3.2. With the above assumption, for any V-covering group G^* of a given group G, there exists an epimorphism $\overline{\psi}$ from $F/[RV^*F]$ onto G^* such that

$$\frac{R}{[RV^*F]} = \frac{R \cap V(F)}{[RV^*F]} \times \ker \tilde{\psi},$$

where the image under $\overline{\psi}$ of the first factor is equal to A.

The following lemma is needed for the proof of Theorem 3.4 below, which is the main result of this section.

LEMMA 3.3. Let G be a group, and

a commutative diagram of groups such that the first row is exact and the second one is a V-stem extension of G. If the homomorphism φ is onto, then so is ψ .

PROOF. It is easily shown that $H_2 = (\text{Im }\psi)A_2$. Hence by [3, Theorem 2.4],

$$V(H_2) = V(\operatorname{Im} \psi)[A_2 V^* H_2].$$

But $A_2 \subseteq V^*(H_2)$, by the assumption. Thus $V(H_2) = V(\operatorname{Im} \psi)$. We also have $A_2 \subseteq V(H_2)$, which implies that $A_2 \subseteq V(\operatorname{Im} \psi) \subseteq \operatorname{Im} \psi$, and hence $H_2 = \operatorname{Im} \psi$. \Box

THEOREM 3.4. Let G be a group and let

 $1 \longrightarrow A_i \longrightarrow H_i \longrightarrow G \longrightarrow 1, \quad i = 1, 2$

be two V-stem covers of G with respect to the variety V. If $\psi : H_1 \to H_2$ is an epimorphism such that $\psi(A_1) = A_2$, then ψ is an isomorphism.

PROOF. Let $1 \to R \to F \to G \to 1$ be a free presentation of the group G. By Theorem 3.1 (iii), there exist normal subgroups S_i of F, i = 1, 2, such that $H_i \cong F/S_i$ and $A_i \cong R/S_i$, and

$$\frac{R}{[RV^*F]} = \frac{R \cap V(F)}{[RV^*F]} \times \frac{S_i}{[RV^*F]}.$$

So we may regard ψ as an epimorphism from F/S_1 onto F/S_2 such that $\psi(R/S_1) = R/S_2$. Therefore, by Corollary 3.2, there exists an epimorphism $\varphi: F/[RV^*F] \rightarrow F/S_2$ such that ker $\varphi = S_2/[RV^*F]$ and the following diagram is commutative

where φ_1 and φ' are the restriction and the induced homomorphisms of φ , respectively. One can easily check that φ' is an isomorphism. We claim that there exists a homomorphism $f: F/[RV^*F] \to F/S_1$ such that the following diagrams are commutative.

where $\psi': G \to G$ is induced by ψ , and $\varphi' \circ {\psi'}^{-1}$ is an isomorphism. The homomorphism f is obtained as follows. Since ψ is surjective there is a homomorphism $\tilde{f}: F \to F/S_1$ such that $\psi(\tilde{f}(x)) = \varphi(x[RV^*F])$ for all $x \in F$. We see that $\psi(\tilde{f}(R)) = R/S_2$, and so $\tilde{f}(R) \subseteq \psi^{-1}(R/S_2) = R/S_1$. Since $R/S_1 \subseteq V^*(F/S_1)$ it follows $\tilde{f}([RV^*F])$ is trivial; thus \tilde{f} induces a map $f: F/[RV^*F] \to F/S_1$, as required.

Lemma 3.3 implies that f is onto. Put ker $f = T/[RV^*F]$. Then $T(R \cap V(F)) = R$. But ker $f \subseteq \ker \varphi$, and hence $T \subseteq S_2$ and so $T = S_2$. Therefore ker $f = \ker \varphi$, which implies that ψ is an isomorphism.

The following corollary shows that all \mathcal{V} -covering groups of any group in the variety \mathcal{V} are Hopfian.

COROLLARY 3.5. Let \mathcal{V} be a variety of groups defined by the set of laws V, and G be an arbitrary group of \mathcal{V} . Then every \mathcal{V} -covering group of G is Hopfian.

PROOF. Let G^* be a \mathcal{V} -covering group of G. Then there exists a normal subgroup A of G^* such that $A \subseteq V(G^*) \cap V^*(G^*)$, $A \cong \mathcal{V}M(G)$, and $G^*/A \cong G$. Since G is in the variety, it follows that $V(F) \subseteq R$, and hence $\mathcal{V}M(G) = V(F)/[RV^*F]$. Thus if $f : G^* \to G^*$ is an epimorphism, then f(A) = A; and hence by the above theorem G^* is a Hopfian group.

Acknowledgement

The authors wish to thank the referee for his valuable suggestions, which made the paper more readable.

Isologism of groups

References

- [1] P. Hall, 'The classification of prime-power groups', J. Reine Angew. Math. 182 (1940), 130-141.
- [2] N. S. Hekster, 'On the structure of n-isoclinism classes of groups', J. Pure Appl. Algebra 40 (1986), 63-85.
- [3] -----, 'Varieties of groups and isologisms', J. Austral. Math. Soc. (Series A) 46 (1989), 22-60.
- [4] M. R. R. Moghaddam, 'On the Schur-Baer property', J. Austral. Math. Soc. (Series A) 31 (1981), 343-361.
- [5] M. R. R. Moghaddam and A. R. Salemkar, 'Varietal isologisms and covering groups', Arch. Math., to appear.
- [6] —, 'Characterization of varietal covering and stem groups', Comm. Algebra, to appear.
- [7] M. R. R. Moghaddam, A. R. Salemkar and M. M. Nasrabadi, 'Some inequalities for the Baerinvariants, and covering groups', preprint.
- [8] H. Neumann, Varieties of groups (Springer, Berlin, 1967).
- [9] P. M. Weichsel, 'On isoclinism', J. London Math. Soc. 38 (1963), 63-65.

Faculty of Mathematical Sciences

Ferdowsi University of Mashhad

Iran

e-mail: Moghadam@science2.um.ac.ir