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Abstract

Density dependent Markov population processes in large populations of size N were
shown by Kurtz (1970), (1971) to be well approximated over finite time intervals by
the solution of the differential equations that describe their average drift, and to exhibit
stochastic fluctuations about this deterministic solution on the scale

√
N that can be

approximated by a diffusion process. Here, motivated by an example from evolutionary
biology, we are concerned with describing how such a process leaves an absorbing
boundary. Initially, one or more of the populations is of size much smaller than N , and
the length of time taken until all populations have sizes comparable to N then becomes
infinite as N → ∞. Under suitable assumptions, we show that in the early stages of
development, up to the time when all populations have sizes at leastN1−α for 1

3 < α < 1,
the process can be accurately approximated in total variation by a Markov branching
process. Thereafter, it is well approximated by the deterministic solution starting from
the original initial point, but with a random time delay. Analogous behaviour is also
established for a Markov process approaching an equilibrium on a boundary, where one
or more of the populations become extinct.
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1. Introduction

A continuous-time version of the two morphs stage in the bare bones evolution model of
Klebaner et al. (2011, Section 3) can be represented as a pure jump Markov processXN on Z

2+,
with the first component the count of wild-type individuals, initially around their carrying
capacity, and the second the count of mutant individuals. The transition rates are

X −→ X + (1, 0) at rate a1X1,

X −→ X + (−1, 0) at rate X1

{(
X1

N

)
+ γ

(
X2

N

)}
,
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Escape from the boundary 1191

X −→ X + (0, 1) at rate a2X2,

X −→ X + (0,−1) at rate X2

{
γ

(
X1

N

)
+

(
X2

N

)}
.

Initially, X1 has a value near its carrying capacity Na1, and X2 = 0. At some time, which
we call 0, Z0 mutant individuals are introduced into the population; Z0 is thought of as fixed,
irrespective of the (large) value ofN . The mutants and wild-type individuals differ only through
their birth rates a1 and a2. Each species has per capita death rate given by the density of its own
population, together with an additional component of γ multiplied by the density of individuals
of the other species. If γ > 1, members of the other species cause a higher mortality rate than
those of the same species; if γ < 1, they cause a lower mortality rate than those of the same
species, favouring the possibility of coexistence. If a2 < γa1, the mutants have negligible
chance of survival, but if a2 > γa1, there is a nonzero probability pN(Z0) ≈ 1 − (γ a1/a2)

Z0

that the mutant strain will become established. In this case, if also a1 > γa2, the two populations
will eventually come to coexist; if, instead, a1 < γa2, the wild-type population will be driven
to extinction. Note that, as expected, coexistence is impossible if γ > 1. In this paper we are
primarily interested in describing how the process develops up to the time at which the mutants
represent a positive fraction of the population when N is large. We also examine the detail of
how the wild-type becomes extinct when a1 < γa2.

This process is a particular example of a more general family of processes, that we now
investigate. We suppose thatXN is a Markov population process on Z

d+ having transition rates

X → X + J at rate NgJ
(
X

N

)
, X ∈ Z

d+, J ∈ J,

where J is a finite subset of Z
d . We assume that the functions gJ are continuously differentiable

for x ∈ R
d+ and we write

F(x) :=
∑
J∈J

JgJ (x), x ∈ R
d+

to denote the infinitesimal drift of the process xN := N−1XN . Letting {PJ : J ∈ J} be
independent rate 1 Poisson processes, the evolution of xN can be described (Kurtz (1978)) by

xN(t) = xN(0)+ 1

N

∑
J∈J

JP J (NGJN(t)) = xN(0)+
∫ t

0
F(xN(u)) du+mN(t), (1.1)

where

mN(t) :=
∑
J∈J

J

{
PJ (NGJN(t))−GJN(t)

N

}
, (1.2)

and GJN(t) := ∫ t
0g

J (xN(u)) du. The process mN is a well-behaved vector-valued martingale.
In differential form, (1.1) can be expressed as

dxN(t) = F(xN(t))dt + dmN(t),

and the corresponding ‘deterministic equations’, given by leaving out the martingale innova-
tions, are

dξ

dt
= F(ξ). (1.3)
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1192 A. D. BARBOUR ET AL.

Our interest here is in deriving an approximation to the process xN in circumstances in which
the initial state is close to x̄, an unstable equilibrium point of (1.3), as in the bare bones example
given above. In the seminal papers of Kendall (1956) and Whittle (1955), written in the context
of Bartlett’s (1949) Markovian SIR epidemic process, a basic description was proposed. Such
processes should behave much like branching processes near x̄, as far as those components in
which numbers are small are concerned, and should then look more and more like solutions to
the deterministic equations as the numbers grow. The deterministic part of the approximation
was established for general Markov population processes in Kurtz (1970, Theorem (3.1)), who
showed that, if limN→∞ xN(0) = x0 then sup0≤t≤T |xN(t)− ξ(t)| → 0 in distribution for any
finite T > 0, where ξ satisfies (1.3) with ξ(0) = x0. In particular, if x0 = x̄, Kurtz’s (1970)
theorem implies that xN(t) stays asymptotically close to x̄ over any fixed finite time interval.
However, the deterministic solution ξN starting with xN(0) close to x̄ may still eventually
escape from x̄, but the time that it takes to do so is asymptotically infinite as N → ∞, so that
Kurtz’s (1970) theorem is not suitable for describing what eventually happens. Such outcomes
may nonetheless be of considerable practical importance in applications. The aim of this
paper is to show that the Kendall–Whittle description can indeed be established in considerable
generality, and to give some measure of the accuracy of the resulting approximation.

Under appropriate conditions, we prove that the process xN , if it indeed escapes from x0, then
closely follows the path of the solution to the deterministic equations, but with a random time
shift, and that the time required to escape from x0 is of orderO(logN). This behaviour is exactly
what one might expect on the basis of the Kendall–Whittle description, with the random time
shift reflecting the essential randomness that occurs in the early stages of the branching phase.
However, proving that it is actually the case is not so easy. One main difficulty is presented by
the asymptotically infinite length of time that elapses, while the process is escaping from the
boundary, since this necessitates good control over the behaviour of the process over long time
intervals. A related difficulty is to keep control of the branching approximation for a long enough
time to ensure that the subsequent development is indeed almost deterministic. Our approach
is to establish an extremely accurate approximation, in terms of the total variation distance
between the probability distributions of the two processes, over a very long initial time interval.
Once this has been achieved, the subsequent development can be described well enough by the
deterministic solution. We then go on to prove complementary results, describing the behaviour
of a process that approaches a stable equilibrium point of the deterministic equations at which
some coordinates of the process take the value 0.

1.1. Assumptions

Our general setting is as follows. The specialization to the bare bones example is given in
Section 1.4. Denote by x(1) the first d1 components of x and by x(2) the remaining d2 = d−d1
components, and split J = (j1, . . . , jd) = (J (1), J (2)) in the same way. For transitions with
J (2) 	= 0, suppose that the rates are always of the form gJ (x) = ḡJ (x)xs(J ) for some s(J ) such
that d1 < s(J ) ≤ d , and that ḡJ (x0) > 0; we also assume that Ji ≥ 0 for all i 	= s(J ) such
that d1 < i ≤ d , and that Js(J ) ≥ −1. We denote the set of all such transitions by J2. These
assumptions are natural in a population context; in particular, if the constraints on the elements
of such J are violated, some of the components could become negative. The function F can
now be written in the form

F(x) =
(
A(x)

B(x)

)
x(2) +

(
c(x(1))

0

)
,
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where, for each x, A(x) and B(x) are d1 × d2 and d2 × d2 matrices, respectively, and c(x(1))
is a d1-vector. Suppose that x(1)0 is a strongly stable equilibrium of dξ (1)/dt = c(ξ (1)) and that
x
(2)
0 = 0. Then the solution ξ of the deterministic equations starting at x0 is the constant x0, and

the stochastic system xN , if started near x0 with x(2)N (0) = 0, typically spends an amount of time
that is at least exponential in N before leaving the vicinity of x0 (Barbour and Pollett (2012,
Theorem 4.1)). However, if the initial value x(2)N (0) is not 0, but takes the value x(2)N,0 = N−1Z0
for some 0 	= Z0 ∈ Z

d2+ , and if B0 := B(x0) is such that ξN , the solution of (1.3) starting from
this initial condition, leaves the neighbourhood of the boundary, then xN has positive probability
of doing so as well.

Henceforth, we shall suppose that xN(0) = xN,0 satisfies |x(1)N,0 − x
(1)
0 | ≤ N−5/12. Under

the equilibrium distribution for x(1)N when x(2)N = 0, typical values of |x(1)N,0 − x
(1)
0 | are of or-

derO(N−1/2), so that such a starting condition is reasonable. Suppose also that x(2)N,0 = N−1Z0.
Our assumptions imply thatB has nonnegative off-diagonal entries near x0; we also assume that
it is irreducible, and that the largest eigenvalue β0 of B0 is positive. In addition, the elements
of the matrices A and B are assumed to be continuously differentiable functions of x. The
stability of x(1)0 is expressed by assuming that the function c is of the form

c(w) = C(w − x
(1)
0 )+ c̃(w), w ∈ R

d1+ ,

where C is a fixed d1 × d1 matrix such that, for some γ1 < ∞,

|eCtx| ≤ γ1|x|, x ∈ R
d1 , t ≥ 0,

as is the case if all the eigenvalues ofC have negative real part, and where for someKc, ρ1 > 0,
and for w1, w2 ∈ R

d1+ such that maxi=1,2 |wi − x
(1)
0 | ≤ ρ1,

|c̃(w1)− c̃(w2)| ≤ Kc|w1 − w2|
{
|w1 − w2| + min

i=1,2
|wi − x

(1)
0 |

}
.

From the Perron–Frobenius theorem, there also exist 0 < γ3 < γ2 < ∞ such that

|eB0t x| ≤ γ2eβ0t |x|, x ∈ R
d2 , t ≥ 0

and
|eB0t x| ≥ γ3eβ0t |x|, x ∈ R

d2+ , t ≥ 0. (1.4)

We also choose 0 < ρ2 ≤ ρ1 small enough so that

bJ∗ := inf|x−x0|≤ρ2
|ḡJ (x)| > 0 for all J ∈ J2.

We denote by ‖G‖ the matrix norm ‖G‖ := supy : |y|=1{|Gy|}. For matrix functions G(x), we
write ‖G‖ρ := sup|x−x0|≤ρ ‖G(x)‖ and

‖DG‖ρ := sup
|x−x0|≤ρ,|x′−x0|≤ρ

{‖B(x)− B(x′)‖
|x − x′|

}
.

In all the arguments that follow, constants involving the symbol k are defined solely in terms of
the functions A, B, and c, and associated constants such as ρ2, and do not vary, either with N ,
or with the choices made for the quantities ε(i), 1 ≤ i ≤ 4, appearing in Lemmas 2.1 and 2.2.
Constants involving the symbol δ are typically to be chosen suitably small, but again only with
reference to the functions A, B, and c, and to associated constants such as ρ2.
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1.2. Main results

Under these assumptions, we carry out a programme indicated in Barbour (1980), but now
in more general circumstances. We first show that the initial behaviour of Nx(2)N is well
approximated by that of a supercritical d2-type Markov branching process Z, defined at the
beginning of Section 3, whose mean growth rate matrix is B

0 . Let u be the left eigenvector
of B

0 corresponding to β0, normalized so that u 1 = 1, and let the corresponding right
eigenvector be v, normalized so that uv = 1. Then branching process theory (Athreya and
Ney (1972, Chapter V.7, Theorem 2)) implies that Z(t)e−β0t → Wu almost surely (a.s.) as
t → ∞, where the random variable W has mean Z

0 v and satisfies W > 0 on the set of
nonextinction, and in consequence, for as long as this approximation holds

x
(2)
N (t) ≈ eβ0{t+β−1

0 logW }u
N

; (1.5)

the results that we use are proved in an online appendix; see Barbour et al. (2014). The
development of ξ (2)N , the second group of components of the solution of the deterministic
equation, also initially parallels that of x(2)N , in that the linear approximation to (1.3) near x0
yields

ξ
(2)
N (t) ≈ eB0tZ0

N
∼ eβ0t (vZ0)u

N
= eβ0{t+β−1

0 log(vZ0)}u
N

, (1.6)

by virtue of the Perron–Frobenius theorem (Seneta (2006, Theorem 2.7)). The quantity W
in (1.5) is replaced in (1.6) by its expectation, so that, apart from the random time shift
β−1

0 (logW − log EW), the two paths are much the same. This simple description of the
development of xN turns out to be true also if all components, and not just those of the second
group, are considered; the formal statement of this, together with some estimate of the accuracy
of the approximation, is the main message of Theorem 1.1. Note that the approximations (1.5)
and (1.6) need t to be large, so that in the first case the branching asymptotics and in the second
the Perron–Frobenius asymptotics give good approximations. On the other hand, t should not
be so large as to invalidate the linearizations around x0, implicit in both approximations. It is
the need to satisfy both requirements simultaneously, with sufficient accuracy, and for large
enough values of t , that provides a major source of complication in the proofs.

In Section 3 we show that the branching approximation in fact holds in total variation up to a
time τxN,α , chosen so thatNvx(2)N (τ xN,α) is approximatelyN1−α for any α > 1

3 . As is shown by
example in Section E of the online appendix (see Barbour et al. (2014)), approximation in total
variation is typically not accurate for α ≤ 1

3 , but it is essential to the subsequent argument that
we can take α < 1

2 ; we take α = 5
12 for the remaining development. If the branching process

is absorbed in 0, then so too, with high probability, is x(2)N . If not, then we show that xN(τxN,α)
is close to ξ(tξN,α), where tξN,α = β−1

0 (1 − α) logN +O(1) is the approximate time t at which
the deterministic solution ξN starting in xN(0) satisfies vξN(t) = N1−α . The details are to
be found in Proposition 3.1.

In Section 4 we show that the deterministic and stochastic paths ξ̃N and x̃N , both starting
at xN(τxN,5/12), and with time argument restarting at 0, stay asymptotically close for large N
until an elapsed time tN (δ), at which 1 ξ̃N first attains the value δ, for a small but fixed
δ > 0; note that tN (δ) = β−1

0 α logN + O(1). The details are given in Proposition 4.1; the
fact that α < 1

2 is needed to maintain the accuracy of approximation up to times at which the
second components of the paths have attained asymptotically nonnegligible size. From this
point onwards Kurtz’s (1970) theorem, together with the Lipschitz continuity of the solutions
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of the deterministic equations with respect to their initial conditions, can be used to justify the
further deterministic approximation to xN as long as the deterministic curve remains within
some fixed, compact subset of R

d+. Thus, xN closely follows the deterministic path, but at a
random rate, with the randomness quickly settling down to a fixed time shift of order O(1).
The combined theorem is as follows; the parts not justified by theorems in Kurtz (1970), (1978)
are proved in the following sections. For the statement of the theorem, we make the following
general definitions:

τZ(0) := inf{t > 0 : Z(t) = 0}, τ xN(0) := inf{t > 0 : x(2)N (t) = 0}, (1.7)

τZN,α := inf{t : vZ(t) ≥ N1−α + vZ0}, (1.8)

τxN,α := inf{t : vNx(2)N (t) ≥ N1−α + vZ0}, (1.9)

t
ξ
N,α := β−1

0 {(1 − α) logN − log(vZ0)}
with the infimum of the empty set taken equal to ∞, and for the particular choice α = 5

12 , we
define

τZN∗ := τZN,5/12, τ xN∗ := τxN,5/12, t
ξ
N∗ := t

ξ
N,5/12. (1.10)

For the Markov branching process Z, defined at the beginning of Section 3, we set W :=
limt→∞ vZ(t)e−β0t .

Theorem 1.1. With the assumptions and definitions of Section 1.1, suppose that xN(0) is such
that |x(1)N (0) − x

(1)
0 | ≤ N−5/12 and that x(2)N (0) = N−1Z0 for fixed 0 	= Z0 ∈ Z

d2+ . Then,
except on an event EcN1 of asymptotically negligible probability, the paths of Nx(2)N and
of Z can be coupled so as to be identical until the time min{τZ(0), τZN∗}, in which case
τZN∗ = τxN∗ = β−1

0 { 7
12 logN − logW } +O(N−7/48).

Let K be any fixed compact subset of R
d+. Suppose that T is such that ξN(t

ξ
N∗ + t) ∈ K

for all 0 ≤ t ≤ T , where ξN denotes the solution to the deterministic equation starting with
ξN(0) = xN(0). Then there exist constants γ > 0, kT < ∞, and an event ETN2 such that, on
{τxN∗ < ∞} ∩ EN1 ∩ ETN2,

sup
0≤t≤5/12β−1

0 logN+T
|xN(τxN∗ + t)− ξN(t

ξ
N∗ + t)| ≤ kT N

−γ (1.11)

and limN→∞ P[ETN2 | {τZN1 < ∞} ∩ EN1] = 1.

The proof of the branching approximation is given in Section 3 and its content summarized
in Proposition 3.1. The proof of the subsequent deterministic approximation, up to a time
at which xN is away from the boundary, is given in Section 4 and its content summarized in
Proposition 4.1. The extension to further choices ofT follows from Kurtz (1970, Theorem (3.1))
and approximation is then by a nondegenerate path. There is no universal choice possible for
the exponent γ appearing in (1.11), which is a reflection of the greater delicacy required for
the approximations derived here than in the setting of Kurtz (1970) when any γ < 1

2 would
satisfy; we give an example to illustrate this in Section E of the online appendix; see Barbour
et al. (2014).

Theorem 1.1 can be interpreted in the sense that, to a first approximation, the random
process xN follows the deterministic curve starting at the same point, but with a random delay
of τxN∗ − t

ξ
N∗ ∼ β−1

0 {log(vZ0)− logW }. The initial condition for Z0 could be allowed to
depend onN , in which case the distribution ofW would depend onN , too: if |Z(N)0 | → ∞ then
log(vZ(N)0 )− logW(N) →d 0, so that, to this level of approximation, the initial randomness
would disappear.

https://doi.org/10.1239/aap/1449859806 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1449859806


1196 A. D. BARBOUR ET AL.

1.3. Absorption

Our motivating example actually contains two periods in which the process is close to a
boundary, the second being when the wild-type becomes extinct. The setting is then almost
exactly as in Section 1.1, except for the fact that the deterministic solution converges to 0 in
some of its coordinates, instead of moving away from 0. In the notation of Section 1.1, this
corresponds to having the largest real part among the eigenvalues of B0 being negative; we
denote it by −β1. In this setting, we also assume that the eigenvalues of C all have negative
real parts.

Under these modified assumptions, we consider stochastic and deterministic processes ξ̃δ
and xN,δ that are started close to one another, as is implied by the previous results, at a point
where they are reasonably close to the stable equilibrium x0. To be more precise, we first
suppose that |xN,δ(0)− x0| ≤ δ, and that ξδ is the solution to the deterministic equations with
ξδ(0) = xN,δ(0). We then show that for δ chosen small enough, the two processes remain
close for a further time tN (δ) := β−1

1 (log δ + 5
12 logN), at which point the second group of

coordinates, those that are converging to 0, are of magnitude approximatelyN−5/12, and the first
coordinates are at a similar distance from x

(1)
0 . We also show that, if |ξδ(0)− ξ̃δ(0)| = O(N−γ )

for some γ > 0, then, for δ chosen small enough, |ξ (1)δ (tN (δ))− ξ̃
(1)
δ (tN (δ))| = O(N−γ−ε)

for some ε > 0, and N5/12|ξ (2)δ (tN (δ))− ξ̃
(2)
δ (tN (δ))| = O(N−γ /2). After this time, the

process (Nx(2)N (tN (δ)+ t), t ≥ 0) is well approximated by a branching process Z in total
variation, with rates as before. The following theorem summarizes these results; the proofs are
given in Section A of the online appendix; see Barbour et al. (2014).

Theorem 1.2. Suppose that the assumptions of Section 1.1 hold with the above modifications.
Then there exist δ > 0 and an event EN , whose complement has asymptotically negligible
probability, such that, on EN , if |xN,δ(0)− x0| ≤ δ, and if |xN,δ(0)− ξ̃N,δ(0)| = O(N−γ1) for
some γ1 > 0, then

sup
0≤t≤tN (δ)

|x(1)N,δ(t)− ξ̃
(1)
N,δ(t)| ≤ k̃(1)N−γ , sup

0≤t≤tN (δ)
{eβ1t |x(2)N,δ(t)− ξ̃

(2)
δ (t)|} ≤ k̃(2)N−γ

with tN (δ) := max{β−1
1 (log δ + 5

12 logN), 0} and for suitable k̃(1), k̃(2), and γ > 0.
After tN (δ), the process Nx(2)N,δ(tN (δ)+ ·) can be coupled to be identical until extinction to the
(now subcritical) Markov branching processZ, except on an event of asymptotically negligible
probability. In particular, for a suitable constant h∗, the time tN (δ) + TN at which x(2)N is
absorbed in 0 is such that L(β1TN − logN − log(vξ̃N,δ(tN (δ)))− log(h∗)) converges in
total variation as N → ∞ to a Gumbel distribution.

The approximation given by Theorem 1.2 shows that, to a first approximation, the random
process xN follows the deterministic curve starting at the same point until the time tN (δ) =
β−1

1 (log δ + 5
12 logN). The law of large numbers forZ starting atNx(2)N,δ(tN (δ)) then shows that

the same is true afterwards; however, for such times, x(2)N,δ is uniformly small and x(1)N (t) is close
tox0, and so the conclusion is of little interest. By contrast, the branching approximation delivers
more detailed information. In particular, the time taken by the deterministic solution ξ̃N,δ from
tN (δ) until t̂N := inf{t > 0 : vξ̃N,δ(t) = N−1} is such that

t̂N ∼ β1
−1{logN + log(vξ̃N,δ(tN (δ)))}.

The deterministic solution itself never reaches ξ̃ (2)N,δ = 0 in finite time, but t̂N is the sort of approx-
imation that might be made for the time to extinction, based on deterministic considerations.
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From Theorem 1.2 we see that this is reasonable, but that the duration in the stochastic model
has an additional random component β−1

1 {G+ log(h∗)}.
1.4. The bare bones example

These results can all be applied to the bare bones example discussed earlier, which is of the
form proposed in Section 1.1, withd1 = d2 = 1. In the initial stages, the matricesA(x) andB(x)
are the scalars −γ x1 and (a2 − γ x1 − x2), and the function c(x1) = −a1(x1 −a1)−(x1 −a1)

2,
so that we haveC = −a1 < 0 and c̃(x1) = −(x1 − a1)

2. Assuming that a2 > γa1, the unstable
equilibrium of the deterministic equations is x0 = (a1, 0), and β0 = B(x0) = a2 − γ a1 > 0.
The set J2 consists of the transitions {(0, 1), (0,−1)}, and s(J ) = 2 for both of them; the
corresponding functions ḡJ are a2 and (γ x1 + x2), respectively. The process Z is a linear
birth and death process with per capita birth and death rates a2 and γ a1, respectively, and its
behaviour is well understood. In particular, the limiting random variableW , conditional on the
event of nonextinction, has a gamma distribution Ga(Z0, 1). Hence, if Z0 = 1, the delay in
following the deterministic curve, given in general by

τxN∗ − t
ξ
N∗ ∼ β0

−1{log(vZ0)− logW },

has the distribution of {a2 − γ a1}−1G1, where G1 has a Gumbel distribution.
For the latter stages of the example, in the case when a1 < γa2, the wild-type individuals

eventually die out. To match the formulation in Section 1.3 it is necessary to swap the meaning
of the coordinates so that the second coordinate now represents the remaining numbers of wild-
type individuals. The matrices A(x) and B(x) become the scalars −γ x2 and (a1 − γ x2 − x1),
and the function c(x1) is given by −a2(x1 −a2)−(x1 −a2)

2, so that we obtainC = −a2 = −κ
and c̃(x1) = −(x1 − a2)

2. The strongly stable equilibrium of the deterministic equations with
the mutants established is given by x0 = (a2, 0), and −β1 = B(x0) = a1 − γ a2 < 0. The
set J2 consists as before of the transitions {(0, 1), (0,−1)}, and s(J ) = 2 for both of them;
the corresponding functions ḡJ are a1 and (γ x1 + x2), respectively. The branching process Z
is again a linear birth and death process, with per capita birth and death rates a1 and γ a2,
respectively. For this process, the constant h∗ appearing in the final approximation can be
evaluated using the definition in Heinzmann (2009, p. 299) as 1 − a1/(γ a2). Combining this
with the above, we can deduce that the asymptotics of the entire time from the introduction of
a single mutant until the extinction of the wild-type individuals is given by

G1

{a2 − γ a1} + 1

{γ a2 − a1}
{

log

(
1 − a1

(γ a2)

)
+G2

}
+ T (N),

whereT (N) = ({a2−γ a1}−1+{γ a2−a1}−1) logN+O(1) is the time taken for the deterministic
curve to get from the initial state, where the proportion of mutants isN−1, to the state in which
the proportion of wild-type individuals isN−1; andG1 andG2 are independent Gumbel random
variables. The duration of the closed stochastic epidemic, studied in Barbour (1975), could
also be approached in a similar way. In that example, however, the function c is identically 0,
so that the final stages have to be treated differently.

2. The deterministic solutions

For use in our arguments, we collect some properties of the solutions to the deterministic
equations in the neighbourhood of the initial point, deferring the proofs of the lemmas to the
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online appendix; see Barbour et al. (2014). We first use variation of constants to rewrite the
equations in the form

ξ (1)(t) = ξ (1)(0)+
∫ t

0
{A(ξ(u))ξ (2)(u)+ c(ξ (1)(u))} du

= x
(1)
0 + eCt (ξ (1)(0)− x

(1)
0 )

+
∫ t

0
eC(t−u){A(ξ(u))ξ (2)(u)+ c̃(ξ (1)(u))} du, (2.1)

ξ (2)(t) = ξ (2)(0)+
∫ t

0
B(ξ(u))ξ (2)(u) du

= eB0t ξ (2)(0)+
∫ t

0
eB0(t−u){B(ξ(u))− B0}ξ (2)(u) du. (2.2)

We recall that, in the arguments that follow, constants involving the symbol k do not vary with
the choices made for the quantities ε(i), 1 ≤ i ≤ 4. In our applications, these quantities become
small, as N increases, as negative powers of N , and the assumptions made about them in the
lemmas are automatically satisfied for all sufficiently large N . For use in what follows, define

t0(δ, ε) := β0
−1log

(
δ

ε

)
, t1(δ, ε) := β1

−1log

(
δ

ε

)
for δ ≥ ε > 0, (2.3)

where β0 is as in Section 1.1 and β1 is as in Section 1.3.

Lemma 2.1. Under the assumptions of Section 1.1, there exists a δ0 with 0 < δ0 ≤ 1, depending
only on the functions A,B, and c and associated constants such as ρ2, with the following
properties. If ξ satisfies (2.1) and (2.2), with initial condition such that |ξ (1)(0)− x

(1)
0 | ≤ ε(1)

and |ξ (2)(0)| = ε(2), and if

4γ1ε
(1) ≤ min

{
1,

(
ρ2

4

)}
, ε(2) ≤ δ0,

and if also

ε(1) log

(
1

ε(2)

)
≤ min

{
1,

β0

(24γ2γ1‖DB‖ρ2)
,

β0

(32Kcγ 2
1 )

}
,

then, for all 0 ≤ t ≤ t0(δ0, ε
(2)),

sup
0≤u≤t

|ξ (1)(u)− x
(1)
0 | ≤ k(1){ε(1) + ε(2)eβ0t }, sup

0≤u≤t
e−β0u|ξ (2)(u)| ≤ k(2)ε(2),

sup
0≤u≤t

e−β0u|ξ (2)(u)− eB0uξ (2)(0)| ≤ k(3)ε(2)
{
ε(1) log

(
1

ε(2)

)
+ ε(2)eβ0t

}

for suitable k(1), k(2), and k(3). Furthermore, if ξ̃ satisfies (2.1) and (2.2) with initial con-
dition ξ̃ (0) satisfying |ξ̃ (2)(0)− ξ (2)(0)| ≤ ε(3) ≤ k(4)(ε(2))1+γ and |ξ̃ (1)(0)− ξ (1)(0)| ≤
k(5)ε(2) log(1/ε(2)) for some k(4), k(5) > 0, and 0 < γ < 1, then there exist k(6), k(7), k(8), and
0 < δ1 ≤ δ0 such that, for all ε(2) ≤ min{k(8), δ1},

sup
0≤u≤t0(δ1,ε(2))

|ξ (1)(u)− ξ̃ (1)(u)| ≤ k(6)(ε(2))γ /2,

sup
0≤u≤t0(δ1,ε(2))

{e−β0u|ξ (2)(u)− ξ̃ (2)(u)|} ≤ k(7)(ε(2))1+γ /2.

Here, δ1 may depend on the choice of γ , as well as on the functions A,B, and c.
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We also consider the final stages of such a process, before absorption in a strongly stable
equilibrium with the 2-components equal to 0. Under such circumstances, we can still work
under assumptions similar to those made in Section 1.1. The main difference is to require that
the eigenvalue of B0 with largest real part is negative; we denote it by −β1. We also assume
that the equilibrium x0 is strongly attractive, in the sense that

|eCtx| ≤ γ1e−κt |x|, x ∈ R
d1 , t ≥ 0

for some κ > 0 and γ1 < ∞; the previous assumptions of Section 1.1 only required κ ≥ 0.
The analogue of Lemma 2.1 is then as follows.

Lemma 2.2. With the assumptions of Section 1.1, modified as in Section 1.3, let ξδ satisfy (2.1)
and (2.2) with ξδ(0) =: xδ0 such that |xδ0 − x0| ≤ δ. Then, for any 0 < κ ′ < min{κ, β1}, there
exists a δ0 > 0 and constants k̂(i) such that, for all 0 < δ ≤ δ0,

sup
u≥0

eκ
′u|ξ (1)δ (u)− x

(1)
0 | ≤ k̂(1)δ, sup

u≥0
eβ1u|ξ (2)δ (u)| ≤ k̂(2)δ,

sup
u≥0

eβ1u|ξ (2)δ (u)− eB0ux
(2)
δ (0)| ≤ k̂(3)δ2.

Furthermore, for any θ > 0, there exists a δ(θ) > 0 such that, for any 0 < δ ≤ δ(θ),
if ξ̃δ satisfies (2.1) and (2.2) with ξ̃δ(0) satisfying |ξ̃δ(0)− xδ0| ≤ ε(4), and if 0 < η < δ and
ε(4)η−θ ≤ K for K defined implicitly in Equation (D.33) of the online appendix (see Barbour
et al. (2014)), then

sup
0≤u≤t1(δ,η)

|ξ (1)δ (u)− ξ̃
(1)
δ (u)| ≤ k̂(5)ε(4)η−θ ,

sup
0≤u≤t1(δ,η)

{eβ1u|ξ (2)δ (u)− ξ̃
(2)
δ (u)|} ≤ k̂(6)ε(4)η−θ

for suitable k̂(5) and k̂(6).

Note that the estimates made in the discussion preceding Theorem 1.2 can be justified by
the final statements of Lemma 2.2. Taking ε(4) = O(N−γ ) for some γ > 0 and η = N−5/12,
choose θ such that θ < max{κ ′/β1, 6γ /5}.

3. The branching approximation

In this section we establish the approximation to Nx(2)N by a Markov branching process Z
in the early stages, starting with xN(0) = xN,0 such that x(2)N,0 = N−1Z0 and |x(1)N,0 − x

(1)
0 | ≤

ε
(1)
N := N−α for α > 1

3 . The process Z is obtained by replacing ḡJ (xN(t)) by ḡJ (x0) in the
transition rates which have J (2) 	= 0, and by taking its corresponding jumps to be J (2). It is
a Markov branching process; for each J such that J (2) 	= 0, an individual of type s(J ) gives
birth to Ji individuals of type i, d1 < i ≤ d, (if Js(J ) = −1, this represents the death of an
individual of type s(J )) with per capita rate ḡJ (x0). It is thus natural to index the components
of Z by {d1 + 1, . . . , d} to match the indexing in XN ; we denote the resulting state space of Z
by Z. For z ∈ Z, let

qJ (z) := ḡJ (x0)zs(J ), q(z) :=
∑
J∈J2

qJ (z), (3.1)

then, ifZ is in state z, the time until its next jump is distributed as Exp (q(z)), and the probability
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that it is a J transition, causing a corresponding change of J (2) in Z, is qJ (z)/q(z), J ∈
J2. Since there are only finitely many J ∈ J, the means and covariances of the offspring
distributions of individuals of the different types are all finite. In particular, as noted in
Section 1.2, the mean growth rate matrix is given by B

0 , whose positive left and right
eigenvectors u and v are normalized so that u 1 = uv = 1. Our approximation shows
that, except on an event of negligible probability, the process Nx(2)N can be constructed so as
to have paths identical to those of Z, up to the time τZN1 at which, if ever, vZ has grown by
at least the amount N1−α from its initial value of vZ0. The full details are given below in
Proposition 3.1.

We begin by considering the first components x(1)N (·) of xN . Under our assumptions on F ,
they satisfy the equation

dx(1)N (t) = A(xN(t))x
(2)
N (t)+ C(x

(1)
N (t)− x

(1)
0 )+ c̃(x

(1)
N (t))+ dm(1)N (t),

where mN is as defined in (1.2), and this can be integrated by variation of constants to give

x
(1)
N (t) = x

(1)
0 + eCt (x(1)N,0 − x

(1)
0 )+

∫ t

0
eC(t−u){A(xN(u))x(2)N (u)+ c̃(x

(1)
N (u))} du

+m
(1)
N (t)+ C

∫ t

0
eC(t−u)m(1)N (u) du; (3.2)

note that

m
(1)
N (t)+ C

∫ t

0
eC(t−u)m(1)N (u) du =

∫ t

0
eC(t−u) dm(1)N (u),

explaining the stochastic term in (3.2). For x(2)N , up to the time at which it has made n(N)
jumps, it is enough for now to know that it is bounded by N−1{|Z0| + J ∗n(N)}, where
J ∗ := maxJ∈J2 |J |.

We first use (3.2) to show that x(1)N (t) moves away from x
(1)
0 rather slowly. For this, it is

necessary to show that |mN | remains uniformly small with high probability for a long enough
time interval. This is the substance of the following lemma. To state it, we define

τN := inf{t > 0 : |xN(t)− x0| > ρ2}
and use P

0 to denote probabilities given xN(0) = xN,0.

Lemma 3.1. Let TN := k logN for some k > 0, and define

EN(k) :=
{

sup
0≤t≤TN∧τN

|mN(t)| ≤ ηN1(k)
}
,

where ηN1(k) := (2
√
k

∑
J∈J |J |)N−1/2(logN)3/2. Then P

0[EN(k)c] = O(N−r ) for any
r > 0.

Proof. Let E′
N(k) denote the event

E′
N(k) :=

{
max
J∈J

sup
0≤t≤TN∧τN

∣∣∣∣PJ (NGJN(t))N
−GJN(t)

∣∣∣∣ ≤ 2

√
TN logN√

N

}
.

Note that the quantities t−1GJN(t) are uniformly bounded in t ≤ τN , because the functions gJ

are continuous and xN(t) is restricted to a compact set for such t . Denoting this bound by g∗,
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it follows from the Chernoff inequalities that, for N such that TN ≥ 1,

P[E′
N(k)

c] ≤ 2|J|√Ng∗TNN exp

{
− (logN)2

{2(g∗ + 1)}
}

= O(N−r ) for any r > 0. (3.3)

However, on the event E′
N(k),

sup
0≤t≤TN∧τN

|mN(t)| ≤
(

2
√
k

∑
J∈J

|J |
)
(logN)3/2√

N

so that EN(k) ⊃ E′
N(k), which, with (3.3), proves the lemma.

Now define τ1(m) := inf{t > 0 : |x(2)N (t)| > m/N} and write

d
(1)
N (t,m) := sup

0≤u≤t∧τ1(m)

|x(1)N (u)− x
(1)
0 |.

Lemma 3.2. With the assumptions and notation of Section 1.1, fix any k > 0, and assume
that N is large enough so that

k logN max{γ1|x(1)N,0 − x
(1)
0 |, η′

N1(k)} ≤ 1

(40γ1Kc)
,

where η′
N1(k) := ηN1(k)(1 + γ1‖C‖k logN). Suppose that EN(k) occurs. Then, for all

0 ≤ t ≤ k logN and m < N/{20k2γ 2
1Kc‖A‖ρ2(logN)2},

d
(1)
N (t,m) ≤ 8

7

{
γ1

(
|x(1)N,0 − x

(1)
0 | + t‖A‖ρ2

(
m

N

))
+ η′

N1(k)

}
.

Proof. From (3.2) and the assumptions on C and ρ2, and from the definition of EN(k), it
follows immediately that for t ≤ (τ1(m) ∧ k logN) such that

γ1Kc

∫ t

0
d
(1)
N (u,m) du ≤ 1

8
, (3.4)

we have

|x(1)N (t)− x
(1)
0 | ≤ γ1|x(1)N,0 − x

(1)
0 | + ηN1(k)

+ γ1

∫ t

0

{
‖A‖ρ2

m

N
+Kc{d(1)N (u,m)}2 + ‖C‖ηN1(k)

}
du

≤ γ1

{
|x(1)N,0 − x

(1)
0 | + t‖A‖ρ2

m

N

}
+ 1

8
d
(1)
N (t,m)+ η′

N1(k). (3.5)

Now for t ≤ (τ1(m) ∧ k logN), (3.5) implies that

γ1Kc

∫ t

0
d
(1)
N (u,m) du ≤ γ1Kc

8

7

{
γ1

(
t |x(1)N,0 − x

(1)
0 | + 1

2
t2‖A‖ρ2

(
m

N

))
+ tη′

N1(k)

}
≤ 8

7

{ 1
40 + 1

40 + 1
40

}
= 3

35

< 1
8 ,

the bound assumed in (3.4).
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Hence, since
∫ t

0 d
(1)
N (u,m) du is continuous in t , we can apply Lemma D.1 of the online

appendix (see Barbour et al. (2014)) with ϕ = 0 to show that, for all sufficiently large N , the
inequality (3.5) holds for all t ≤ (τ1(m) ∧ k logN), and the lemma is proved.

Since, in the early phase, x(2)N (t) ≈ 0 and Lemma 3.2 shows that x(1)N (t) ≈ x
(1)
0 , the pro-

cessNx(2)N can plausibly be well approximated by replacing ḡJ (xN(t))by ḡJ (x0) in its transition
rates, obtaining the Markov branching process Z. To show that this is indeed the case, we
consider a path starting in Z0, having J1, . . . , Jn as its first n transitions and t1, . . . , tn their
times. Then the probability density of this path segment is given by

n−1∏
l=0

(exp{−(tl+1 − tl)q(zl)}qJl+1(zl)),

where zl := Z0 + ∑l
i=1 J

(2)
i , t0 = 0, and the functions q and qJ are as in (3.1).

The corresponding expression for Nx(2)N is more complicated, since the process is only
Markovian if the state space is extended to include all the original coordinates. Define

qJN(x
(1), z) := ḡJ

([
x(1),

z

N

])
zs(J ), qN(x

(1), z) :=
∑
J∈J2

qJN(x
(1), z)

for x ∈ R
d+, z ∈ Z, and J ∈ J2, with [y1, y2] denoting (y

1 , y

2 )

. Writing

HJ (x(1), z, t) := E
(x(1),z)

(
exp

{
−

∫ t

0
qN(x

(1)
N (u), z) du

}
qJN(x

(1)
N (t), z)

)
,

the probability density at {(J1, t1), . . . , (Jn, tn)} is given by

E
0
(n−1∏
l=0

HJl+1(x
(1)
N (tl), zl, tl+1 − tl)

)
;

here, E
(x(1),z) denotes expectation conditional on xN(0) = (

x(1)

N−1z

)
, and E

0 as before denotes
expectation conditional on xN(0) = xN,0. Hence, the likelihood ratio, with respect to the
branching process measure, of a path successively entering the states z{1,n} := z1, z2, . . . , zn
at times t{1,n} := t1, . . . , tn is given by

Rn(z{1,n}, t{1,n}) := E
0
(n−1∏
l=0

H̃ Jl+1(x
(1)
N (tl), zl, tl+1 − tl)

)
, (3.6)

where

H̃ J (x(1), z, t) := HJ (x(1), z, t)etq(z)

qJ (z)

= E
(x(1),z)

(
exp

{
−

∫ t

0
{qN(x(1)N (u), z)− q(z)} du

}
qJN(x

(1)
N (t), z)

qJ (z)

)
. (3.7)

Let τ2(n) denote the time at which x(2)N makes its nth jump. Then |x(1)N (u)− x
(1)
0 | remains

uniformly of order

O

{
(logN)5/2√

N
+N−α + n(N) logN

N

}
for 0 ≤ u ≤ (τ2(n(N)) ∧ k logN),
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except on an event of probabilityO(N−r ), for any r > 0, because of Lemma 3.2. This implies
that the rates qJN(x

(1)
N (u), z) are close to qJ (z), J ∈ J2, throughout the same u-interval. We

now use this to show that the joint distributions of the times and values of the first n(N) jumps
of the processes Z and NxN are close to one another.

Lemma 3.3. Let xN(0) be such that |x(1)N (0)− x
(1)
0 | = O(N−α) and x(2)N (0) = N−1Z0.

Then, for any fixed k > 0 and 1
3 < α < 1, the total variation distance d(N)TV between the

distributions of the paths of Nx(2)N and those of Z, restricted to the first kN1−α jumps, is such
that limN→∞ d

(N)
TV = 0.

Proof. Letting τ{1,n} denote the times of the first n jumps of Z, the main aim is to show that
the likelihood ratio Rn(Z{1,n}, τ{1,n}) defined in (3.6) is close to 1 with high probability. First,
defining

Ĥ J (x(1), z, t, y)

:= E
(x(1),z)

(
exp

{
−

∫ t

0
{qN(x(1)N (u), z)− q(z)} du

}
qJN(y, z)

qJ (z)
1{x(1)N (t)=y}

)

for y ∈ N−1
Z
d1+ , we can express the ratio

Vn+1(z{1,n+1}, t{1,n+1}) := Rn+1(z{1,n+1}, t{1,n+1})
Rn(z{1,n}, t{1,n})

as

Vn+1(z{1,n+1}, t{1,n+1}) = En{H̃ Jn+1(Y, zn+1, tn+1 − tn)}, (3.8)

where En denotes expectation with respect to the measure with probabilities pn(y) given by

E
0
(
Ĥ (x

(1)
N (tn−1), zn−1, tn − tn−1, y)

∏n−2
l=0 H̃

Jl+1(x
(1)
N (tl), zl, tl+1 − tl)

)
Rn(z{1,n}, t{1,n})

for y ∈ Z
d1+
N
.

Now, defining the σ -fields�n := σ(Z{1,n}, τ{1,n}), the process (Rn(Z{1,n}, τ{1,n}),�n, n ≥ 0),
being a likelihood ratio, is a martingale with expectation 1. We wish to show that it stays close
to its expectation with high probability.

First, we consider the process xN obtained by replacing ḡ(x) with ḡ(x0) in the transition
rates for jumps J ∈ J2, whenever |x − x0| > θN , yielding a new process xN,θ ; the quantity
θN ≤ ρ2 is yet to be determined. We then conduct the whole analysis for xN,θ . Observe that,
in (3.8), the quantity H̃ Jn+1(Y, zn+1, tn+1 − tn) is, from its definition (3.7), itself an expectation,
and that, for the process xN,θ , the quantity within the expectation is itself close to 1. To see
this, let Q∗ := maxJ∈J2{‖DḡJ ‖ρ2/b

J∗ }; then

∣∣∣∣ exp

{
−

∫ t

0
{qN(xN,θ (u), z)− q(z)} du

}
qJN(xN,θ (t), z)

qJ (z)
− 1

∣∣∣∣
≤ exp{q(z)tQ∗θN }(1 +Q∗θN)− 1

≤ Q∗θN
{(

5

4

)
q(z)t exp

(
q(z)t

4

)
+ 1

}
,
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if also θN ≤ 1/{4Q∗}. Hence, for xN,θ ,

E{(Vn+1(Z{1,n+1}, τ{1,n+1})− 1)2 | �n}

≤ {Q∗θN }2
∫ ∞

0
q(zn)e

−q(zn)t
{(

5

4

)
q(zn)te

q(zn)t/4 + 1

}2

dt

≤ 27{Q∗θN }2.

Writing ψN := 27{Q∗θN }2 and Rr := Rr(Z{1,r}, τ{1,r}), we obtain

E
0{(Rn − 1)2} = E

0{(Rn − Rn−1)
2} + E

0{(Rn−1 − 1)2}
≤ ψNE

0R2
n−1 + E

0{(Rn−1 − 1)2}
= E

0{(Rn−1 − 1)2}(1 + ψN)+ ψN

≤ (1 + ψN)
n − 1.

In consequence, for the process xN,θ , if nψN ≤ 1,

E
0{(Rn(Z{1,n}, τ{1,n})− 1)2} ≤ neψN = 27ne{Q∗θN }2. (3.9)

Now the total variation distance dTV between probability measures P1 and P2 on a measurable
space (S,F ) can be expressed as

dTV(P1,P2) := sup
A∈F

|P1(A)− P2(A)| = 1

2

∫
S

|R12 − 1| dP2 = −
∫
S

min{0, R12 − 1} dP2,

whereR12 := dP1/dP2. In view of (3.9), it thus follows that for xN,θ , d
(N,θ)
TV = O(n(N)1/2θN).

By Thorisson (2000, Chapter 3, Theorem 7.3, and Equation (8.19)), this also implies that the
process NxN,θ and the branching process Z can be realized on the same probability space in
such a way that their paths coincide up to the first n(N) jumps, except on an event of probability
of order O(n(N)1/2θN).

Now fix k > 0, to be specified later, and for m(N) := |Z0| + J ∗n(N), define

θ
(1)
N := 8

7

{
γ1

{
|x(1)N (0)− x

(1)
0 | + k logN‖A‖ρ2

(
m(N)

N

)}
+ η′

N1(k)

}
and θ(2)N := N−1m(N); set θN := θ

(1)
N + θ

(2)
N . Note that withn(N) = O(N1−α) for 1

3 < α < 1,
this choice of θN satisfies θN ≤ 1/{4Q∗} for all large enough N , and that the total variation
distance d(N,θ)TV is of small orderO{n(N)1/2(N−1n(N) logN +N−α)}. Now xN and xN,θ can
be coupled by running their paths identically until τN(θN) := inf{t > 0 : |xN,θ (t)−x0| > θN }.
So, for this choice of θN , let

σ
(1)
N := inf{t > 0 : |x(1)N,θ (t)− x

(1)
0 | > θ

(1)
N }, σ

(2)
N := inf{t > 0 : |x(2)N,θ (t)| > θ

(2)
N }.

If, for n(N) := k0N
1−α , we can show that P[σ (1)N ∧ σ (2)N < τn(N) ∧ τxN(0)] is asymptotically

small as N → ∞, where τn denotes the time of the nth jump of x(2)N,θ and τxN(0), as in (1.7), its
time of first hitting 0, the lemma will be proved.

It is immediate from the definition of θ(2)N that σ (2)N ≥ τn(N) a.s. Then, by Lemma 3.2,
P[{σ (1)N < τn(N) ∧ τxN(0)} ∩ {σ (1)N ≤ k logN}] = O(N−r ) for any k, r > 0. Finally,

P[{σ (1)N < τn(N) ∧ τxN(0)} ∩ {σ (1)N > k logN}]
≤ P[{τn(N) > k logN} ∩ {|x(2)N,θ (k logN)| > 0}]
≤ d

(N,θ)
TV + P[0 < W v(k logN) ≤ m(N) exp{−β0k logN}],
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whereW v(t) := vZ(t)e−β0t . However, choosing any k > β−1
0 (1−α), the latter probability is

asymptotically small, becausem(N) = O(N1−α) and, writing τZ(0) := inf{t > 0 : Z(t) = 0},
as in (1.7), {

lim
t→∞W

v(t) = 0
}

= {τZ(0) < ∞} a.s.

(Athreya and Ney (1972, Chapter V.7, Theorem 2, Equation (27))). This proves the lemma.

As a result of Lemma 3.3, for any fixed k, probabilities for the paths of Nx(2)N up to the
first kN1−α jumps can, with only small error, be computed using the branching process Z
instead. We complete our treatment of this phase of development by proving two further
lemmas. The first shows that the branching approximation remains accurate until t = τxN,α ,
defined in (1.9). The second shows that xN(τxN,α) is close to a point on the solution ξN of (1.3)
starting from xN,0, except on an event ÊN whose complement has asymptotically negligible
probability. The proofs are given in Section B of the online appendix; see Barbour et al. (2014).

Lemma 3.4. For τZN,α defined in (1.8), let νZN,α denote the number of jumps made byZ until time
τZN,α , infinite if τZN,α = ∞. Then, under the assumptions of Section 1.1, there are constants k0
and θ0 such that

P
0[k0N

1−α < νZN,α < ∞] ≤ e−θ0N
1−α
.

Lemma 3.5. Suppose that 1
3 < α < 1

2 . Then there is a γ > 0 and an event ÊN satisfying
limN→∞ P

0[ÊcN ∩ {τxN,α < ∞}] = 0 such that, on the event ÊN ∩ {τxN,α < ∞}, we have

|x(2)N (τ xN,α)− ξ
(2)
N (t

ξ
N,α)| = O(N−α−γ ), |x(1)N (τ xN,α)− ξ

(1)
N (t

ξ
N,α)| = O(N−α logN).

We summarize the results of this section in the following proposition. For use in the sections
to come, we specialize to α = 5

12 .

Proposition 3.1. Suppose that |x(1)N (0)− x
(1)
0 | ≤ N−5/12 and that Nx(2)N (0) = Z0 for some

fixed Z0. Define τZ(0) as in (1.7), and τZN∗, τxN∗, and tξN∗ as in (1.10). Then, under the
assumptions of Section 1.1, it is possible to couple the paths of Nx(2)N and of the branching
process Z in such a way that, except on an event of asymptotically negligible probability, they
are identical until time min {τZ(0), τZN∗}, when, in particular, τZN∗ = τxN∗. Furthermore, there
is a γ > 0 and constants k̄(1) and k̄(2) such that, if τxN∗ < ∞,

|x(1)N (τ xN∗)− ξ
(1)
N (t

ξ
N∗)| ≤ k̄(1)N−5/12 logN, |x(2)N (τ xN∗)− ξ

(2)
N (t

ξ
N∗)| ≤ k̄(2)N−5/12−γ ,

τ xN∗ = β−1
0 {(1 − α) logN − logW } +O(N−7/48),

except on an event ÊcN of negligible probability, where ξN is the solution to the deterministic
equation starting with ξN(0) = xN(0).

4. Intermediate growth

In the previous section, it has been shown that, on {τxN∗ < ∞} ∩ ÊN , the point xN(τxN∗) is
close to ξN(t

ξ
N∗), where ξN is the solution to (1.3) with initial condition ξN(0) = xN,0, and tξN∗

is a nonrandom time defined in (1.10). We now show that xN(τxN∗ + t) stays uniformly close
to ξN(t

ξ
N∗ + t) for all 0 ≤ t ≤ t0(δ

′, εN), for a suitably chosen δ′ > 0, not depending on N ;
here, and throughout the section, we define

εN := |x(2)N (τ xN∗)| � N−5/12, (4.1)
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with the last relation and the inequality εN ≥ N−5/12/|v| justified in view of the definition (1.10)
of τxN∗. We also show that δ′ can be chosen so that all the components of ξN(t

ξ
N∗ + t0(δ

′, εN))
are bounded away from 0. Hence, after this time Kurtz (1970, Theorem (3.1)) can be used to
continue the approximation of xN by ξN along a nondegenerate path, as stated in Theorem 1.1.

We start by using the Markov property to continue from τxN∗. Let x1 := xN(τ
x
N∗), i.e.

x
(1)
1 = x

(1)
N (τ xN∗), x

(2)
1 = x

(2)
N (τ xN∗), and define x̃N (t) := xN(τ

x
N∗ + t). Note that, from Lemma

2.1,

|ξ (1)N (t
ξ
N∗)− x

(1)
0 | ≤ k(1)

{
|x(1)N,0 − x

(1)
0 | +

( |Z0|
vZ0

)
N−5/12

}
≤ k̄(3)N−5/12

with k̄(3) := k(1)(1 + max1≤i≤d{1/vi}). Then we can write

x̃
(1)
N (t) = x

(1)
1 +

∫ t

0
{A(x̃N(u))x̃(2)N (u)+ c(x̃

(1)
N (u))} du+ m̃

(1)
N (t),

x̃
(2)
N (t) = x

(2)
1 +

∫ t

0
B(x̃N(u))x̃

(2)
N (u) du+ m̃

(2)
N (t),

or, using variation of constants

x̃
(1)
N (t) = x

(1)
0 + eCt (x(1)1 − x

(1)
0 )+

∫ t

0
eC(t−u){A(x̃N(u))x̃(2)N (u)+ c̃(x̃

(1)
N (u))} du

+ m̃
(1)
N (t)+ C

∫ t

0
eC(t−u)m̃(1)N (u) du, (4.2)

x̃
(2)
N (t) = x

(2)
1 +

∫ t

0
B(x̃N(u))x̃

(2)
N (u) du+ m̃

(2)
N (t)

= eB0t x
(2)
1 +

∫ t

0
eB0(t−u){B(x̃N(u)− B0}x̃(2)N (u) du

+ m̃
(2)
N (t)+ B0

∫ t

0
eB0(t−u)m̃(1)N (u) du, (4.3)

where m̃N(t) := mN(τ
x
N∗+ t)−mN(τxN∗) andmN is as in (1.2). The deterministic counterparts

of (4.2) and (4.3) have been given previously in (2.1) and (2.2). We first use the comparison
between these pairs of equations to show that x̃N stays close to ξ̃N , where ξ̃N solves (1.3) with
ξ̃N (0) = x̃N (0) = x1. Afterwards, we can use Lemma 2.1 to show that ξ̃N (·) stays uniformly
close to ξN(t

ξ
N∗ + ·) in the appropriate time interval, and that, at the end of this interval, ξN is

away from the boundary. In preparation for the next result, taking δ0 as in Lemma 2.1, note that
0 < t0(δ0, εN) = β−1

0 log(δ0/εN) ≤ k1 logN for a suitable choice of k1 and for all sufficiently
large N .

Lemma 4.1. There exist δ1 > 0 and an event EN with P[EcN ] = O(N−r ) for any r > 0 such
that, on EN , for all δ ≤ δ1,

sup
0≤t≤t0(δ0,εN )

|x̃(1)N (t)− ξ̃
(1)
N (t)| ≤ k(1)(δ1)N

−1/12+χ(δ),

sup
0≤t≤t0(δ0,εN )

{ |x̃(2)N (t)− ξ̃
(2)
N (t)|

|ξ̃ (2)N (t)|

}
≤ k(2)(δ1)N

−1/12+χ(δ)

for some k(1)(δ1), k
(2)(δ1), and χ(δ) > 0, where limδ→0 χ(δ) = 0.
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Proof. Define the (random) time

τN := inf{t > 0 : |x̃N (t)− x0| > ρ2},
and let EN denote the event

{
max
J∈J

sup
0≤t≤t0(δ0,εN )∧τN

∣∣∣∣PJ (NGJN(t))N
−GJN(t)

∣∣∣∣ ≤ 2

√
k1(logN)3/2√

N

}

for k1 as defined above. Then, by Lemma 3.1, P[EcN ] = O(N−r ) for any r > 0 and, on the
event EN ,

sup
0≤t≤t0(δ0,εN )∧τN

|m̃N(t)| ≤ ηN1 := ηN1(k1) = O

(
(logN)3/2√

N

)
.

The remaining argument involves careful use of the Gronwall inequality on the event EN , to
translate the smallness of sup0≤t≤t0(δ0,εN )∧τN |m̃N(t)| into a corresponding closeness of x̃N
and ξ̃N over a large part of this time interval. The main difficulty is that the length of the
interval tends to ∞ with N .

Taking the difference of (4.2) and (2.1), we find that, on EN ,

|x̃(1)N (t)− ξ̃
(1)
N (t)|

≤
∫ t

0
|eC(t−u){A(x̃N(u))x̃(2)N (u)− A(ξ̃N(u))ξ̃

(2)
N (u)}| du

+
∫ t

0
|eC(t−u){c̃(x̃(1)N (u))− c̃(ξ̃

(1)
N (u))}| du+ η′

N1

≤ ‖A‖ρ2γ1

∫ t

0
|x̃(2)N (u)− ξ̃

(2)
N (u)| du

+ γ1

∫ t

0
|ξ̃ (2)N (u)|‖DA‖ρ2 |x̃N (u)− ξ̃N (u)| du

+ γ1Kc

∫ t

0
|x̃(1)N (u)− ξ̃

(1)
N (u)|{|x̃(1)N (u)− ξ̃

(1)
N (u)| + |ξ̃ (1)N (u)− x

(1)
0 |} du+ η′

N1

for 0 ≤ t ≤ t0(δ0, εN) ∧ τN , where η′
N1 := (1 + γ1‖C‖k1 logN)ηN1. Writing

d
(1)
N (t) := sup

0≤u≤t∧τN
|x̃(1)N (u)− ξ̃

(1)
N (u)|, d

(2)
N (t) := sup

0≤u≤t∧τN
e−β0u|x̃(2)N (u)− ξ̃

(2)
N (u)|

it thus follows, for t ≤ t0(δ0, εN) ∧ τN and on EN , that

d
(1)
N (t) ≤ γ1

∫ t

0
eβ0ud

(2)
N (u)‖A‖ρ2 du

+ γ1‖DA‖ρ2

∫ t

0
eβ0u�

(2)
N (u)(d

(1)
N (u)+ eβ0ud

(2)
N (u)) du

+ γ1Kcd
(1)
N (t)

∫ t

0
{d(1)N (u)+ |ξ̃ (1)N (u)− x

(1)
0 |} du+ η′

N1.
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Use Lemma 2.1 to bound �(2)N (t) := sup0≤u≤t e−β0u|ξ̃ (2)N (u)|. Here, we can take ε(2) = εN

and ε(1) = (k̄(1) + k̄(3))N−5/12 logN for ξ̃N (0) = xN(τ
x
N∗), in view of Proposition 3.1, (4.1),

and (4.2). This gives

d
(1)
N (t) ≤ γ1β

−1
0 eβ0t {d(2)N (t)‖A‖ρ2 + k(2)εN‖DA‖ρ2(d

(1)
N (t)+ eβ0t d

(2)
N (t))}

+ 1
4d

(1)
N (t)+ η′

N1, (4.4)

for all t such that

γ1Kc

∫ t

0
d
(1)
N (u) du ≤ 1

8
, γ1Kc

∫ t

0
|ξ̃ (1)N (u)− x

(1)
0 | du ≤ 1

8
. (4.5)

Observe also that, from Lemma 2.1,

γ1Kc

∫ t

0
|ξ̃ (1)N (u)− x

(1)
0 | du ≤ γ1Kck

(1)β−1
0

{
ε(1) log

(
1

εN

)
+ δ

}

for t ≤ t0(δ, εN) and for any δ ≤ δ0, where δ0 is as in Lemma 2.1. With the above choice
of ε(1) and for any δ = δ′ chosen small enough, smaller than δ0 if necessary, the right-hand
side is smaller than 1

8 for all large enough N .
Now choose 0 < δ1 ≤ min{δ0, δ

′} such that γ1k
(2)δ1β

−1
0 ‖DA‖ρ2 ≤ 1

4 and δ1 ≤ ρ2/2, and
consider t ≤ t0(δ1, εN) such that (4.5) is satisfied, and also such that

max{d(1)N (t), eβ0t d
(2)
N (t)} ≤ δ1 (4.6)

for which, immediately, t ≤ τN and eβ0t εN ≤ δ1. Then, from (4.4), it follows that, for such t
and on EN ,

d
(1)
N (t) ≤ 2γ1β

−1
0 eβ0t d

(2)
N (t){‖A‖ρ2 + k(2)δ1‖DA‖ρ2} + 2η′

N1. (4.7)

We now take the difference of (4.3) and (2.2), from which it follows that, for t as above and
on EN ,

|x̃(2)N (t)− ξ̃
(2)
N (t)| ≤

∫ t

0
|eB0(t−u)(B(x̃N (u))− B(ξ̃N(u)))x̃

(2)
N (u)| du

+
∫ t

0
|eB0(t−u)(B(ξ̃N (u))− B0)(x̃

(2)
N (u)− ξ̃

(2)
N (u))| du

+
∣∣∣∣m̃(2)N (t)+ B0

∫ t

0
eB0(t−u)m̃(1)N (u) du

∣∣∣∣,
giving, with η∗

N1 := (1 + γ2‖B0‖/β0)ηN1, and from Lemma 2.1 and (4.6),

d
(2)
N (t) ≤ γ2

∫ t

0
d
(2)
N (u)‖B(x̃N(u))− B(ξ̃N(u))‖ du

+ γ2

∫ t

0
k(2)εN‖B(x̃N(u))− B(ξ̃N(u))‖ du

+ γ2

∫ t

0
d
(2)
N (u)‖B(ξ̃N(u))− B0‖ du+ η∗

N1

≤ k2

{
(δ1 + |x(1)1N − x

(1)
0 |)

∫ t

0
d
(2)
N (u) du+ εN

∫ t

0
d
(1)
N (u) du

}
+ η∗

N1 (4.8)
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for a suitable constant k2. From (4.7), we have∫ t

0
d
(1)
N (u) du ≤ k3eβ0t

∫ t

0
d
(2)
N (u) du+ 2tη′

N1

and, substituting this into (4.8), we obtain

d
(2)
N (t) ≤ k4(δ1 + |x(1)1N − x

(1)
0 |)

∫ t

0
d
(2)
N (u) du+ η∗

N1 + k5εN log

(
1

εN

)
η′
N1

for constants k4, k5, and for t ≤ t0(δ1, εN). Gronwall’s inequality now yields

d
(2)
N (t) ≤ k6ηN1 exp{k4t (δ1 + |x(1)1N − x

(1)
0 |)}

for suitable k6. For t = t0(δ1, εN), the right-hand side can be made to be of orderO(N−1/2+χ )
for any χ > 0 by choosing δ1 = δ1(χ) small enough. In particular, choosing t = t0(δ1(χ), εN)

and recalling (4.1), we have

sup
0≤u≤t

|x̃(2)N (u)− ξ̃
(2)
N (u)| ≤ eβ0t d

(2)
N (t) = O(ε−1

N N−1/2+χ ) = O(N−1/12+χ ) (4.9)

on the event EN , and also, in view of (1.4) and the third inequality in Lemma 2.1,

sup
0≤u≤t

{ |x̃(2)N (u)− ξ̃
(2)
N (u)|

|ξ̃ (2)N (u)|

}
≤ ε−1

N d
(2)
N (t) = O(N−1/12+χ ).

In addition, from (4.7) and (4.9), it follows that on the event EN ,

sup
0≤u≤t

|x̃(1)N (u)− ξ̃
(1)
N (u)| =: d(1)N (t) ≤ k7{eβ0t d

(2)
N (t)+ η′

N1} = O(N−1/12+χ ). (4.10)

We now compare the assumed conditions (4.5) and (4.6), involving bounds on increasing
processes with jumps bounded by ϕ = N−1 maxJ∈J |J | with the resulting estimates (4.9)
and (4.10). It then follows immediately from Lemma D.1 of the online appendix (see Barbour
et al. (2014)) that both (4.9) and (4.10) hold on EN for all t ≤ t0(δ1(χ), εN) and for all
sufficiently large N , provided that χ < 1

12 .

It remains to observe that the solution ξ̃N of the deterministic equations starting from
ξ̃0 := x1 = xN(τ

x
N∗) is close to the solution ξ̂N starting from ξ̂N (0) = ξN(t

ξ
N∗), up to the time

t0(δ1, εN), because their starting points are close enough on ÊN , as was shown in Propo-
sition 3.1. From the final statements of Lemma 2.1, taking ε(1) = k̄(1)N−5/12 logN and
ε(2) = k̄(2)N−5/12, it follows that, for some γ > 0,

sup
0≤u≤t0(δ1,ε(2))

|ξ̂ (1)N (u)−ξ̃ (1)N (u)| = O(N−γ ), sup
0≤u≤t0(δ1,ε(2))

|ξ̂ (2)N (u)−ξ̃ (2)N (u)| = O(N−γ ).

One final result is needed, to show that continuation using Kurtz (1970, Theorem (3.1))
represents following the deterministic path along an asymptotically nondegenerate path. The
proof is given in Section C of the online appendix; see Barbour et al. (2014).
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Lemma 4.2. Define

t̂N := t
ξ
N∗ + t0(δ

′, εN) = β−1
0

{
logN + log

(
δ′

vZ0

)}
.

Then, for suitably chosen δ′ ≤ δ1, all the components of ξ̃N (t0(δ′, ε(2))) = ξN(t̂N ) are uniformly
bounded away from 0 for all large enough N .

We summarize the results of this section in the following proposition, which, with Proposi-
tion 3.1, completes the proof of Theorem 1.1. Theorem 1.2 is proved in Section A of the online
appendix; see Barbour et al. (2014).

Proposition 4.1. Let ξN denote the solution to the deterministic equation starting with ξN(0) =
xN,0 satisfying |x(1)N,0 − x

(1)
0 | ≤ N−5/12 and x(2)N,0 = N−1Z0. Let εN � N−5/12 be as defined

in (4.1), t0(δ, ε) as in (2.3), and τxN∗ and t ξN∗ as in (1.10). Then there exist δ′ > 0 and an
event EN , whose complement has asymptotically negligible probability, such that, on EN ∩
{τxN∗ < ∞} and for all large enough N ,

sup
0≤t≤t0(δ′,εN )

|xN(τxN∗ + t)− ξN(t
ξ
N∗ + t)| ≤ k(δ′)N−γ

for some γ > 0 and 0 < k(δ′) < ∞, and that all components of ξN(t
ξ
N∗ + t0(δ

′, εN)) are
bounded uniformly away from 0. Note also that

t
ξ
N∗ + t0(δ

′, εN) = β−1
0 { 7

12 logN − log(vZ0)+ log δ′ − log εN } = β−1
0 logN +O(1).
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