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DECAY RATES FOR SOME QUASI-BIRTH-AND-DEATH
PROCESSES WITH PHASE-DEPENDENT

TRANSITION RATES

BY ALLAN J. MOTYER AND PETER G. TAYLOR

Abstract

Recently, there has been considerable interest in the calculation of decay rates for models
that can be viewed as quasi-birth-and-death (QBD) processes with infinitely many phases.
In this paper we make a contribution to this endeavour by considering some classes of
models in which the transition function is not homogeneous in the phase direction. We
characterize the range of decay rates that are compatible with the dynamics of the process
away from the boundary. In many cases, these rates can be attained by changing the
transition structure of the QBD process at level 0. Our approach, which relies on the use
of orthogonal polynomials, is an extension of that in Motyer and Taylor (2006) for the
case where the generator has homogeneous blocks.

Keywords: Quasi-birth-and-death process; countable phase; decay rate; stationary
distribution
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1. Introduction

A quasi-birth-and-death (QBD) process is a two-dimensional continuous-time Markov chain
for which the generator has a block tridiagonal structure. The first variable of the QBD process
is called the level, the second variable the phase.

The properties of QBD processes with finitely many possible values of the phase variable
have been studied extensively. A comprehensive discussion can be found in the monographs
of Neuts [11] and Latouche and Ramaswami [7]. It is well known that when such a process is
positive recurrent, it possesses a stationary distribution which decays geometrically as the level
is increased. The decay parameter is given by the spectral radius of Neuts’s R-matrix, which
is strictly less than 1.

The situation is more complicated for a QBD process with countably many possible values
of the phase. The R-matrix is infinite dimensional and its spectral properties are not obvious.

When the transition structure of such a QBD process is homogeneous in both the level and
the phase, it can be regarded as a random walk in the positive orthant. In recent years, there
has been considerable interest in studying the decay properties of such models. Sufficient
conditions under which the stationary distribution for the level process of a QBD process with
countably many phases has a geometric tail were obtained by Takahashi et al. [14] and Haque
et al. [5]. Miyazawa [9] essentially provided a complete study of the exact decay behaviour
of such models in the direction of the axes. Similar conditions were obtained for specific
examples by Foley and McDonald [4], Miyazawa [8], and Adan et al. [1]. In [2], Borovkov and
Mogul´skiı̆ studied the decay behaviour in arbitrary directions of ‘N -partially homogeneous
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328 A. J. MOTYER AND P. G. TAYLOR

Markov chains’, which have a homogeneous transition structure for states that are sufficiently
far from the boundary.

In previous work [10], the authors considered a specific class of QBD processes with count-
ably many phases and a skip-free phase process. The tridiagonal blocks in the generator matrix
themselves each had a tridiagonal structure, and transition intensities were phase independent
for positive phase. It was shown that there exist simple conditions on z for there to exist a z−1-
invariant measure of Neuts’s R-matrix, which is positive and in �1. These conditions define
the set of possible decay rates for the process: the actual decay rate depends on the transition
structure at level 0. This work generalized the analysis of Kroese et al. [6] for the two-queue
tandem Jackson network.

This paper makes a contribution to the study of the behaviour of QBD processes with
countably many phases by extending the results in [10] to some further specific classes of
processes with a skip-free phase process, but where the transition intensities are now phase
dependent. As far as the authors know, this is the first time that such an analysis has been
extended to the fully nonhomogeneous case.

The rest of this paper is organized as follows. In Section 2 we summarize some general results
for QBD processes. In Section 3 we consider models which result from simple transformations
of a model with phase-homogeneous transition rates. In Section 4 we consider two specific
classes of models that cannot be written in this form; here transition intensities may vary
linearly with phase. The arguments in these sections utilize results about classes of polynomials,
specifically the Charlier and Hermite polynomials, which were not considered in [10].

2. Background

We consider a level-independent QBD process with countably many phases. This is a
continuous-time Markov chain (Yt , Jt , t ≥ 0) on the state space {0, 1, 2, . . .} × {0, 1, 2, . . .}.
The random variable Yt is called the level of the process at time t and the random variable Jt
is called the phase of the process at time t . With a lexicographical ordering of the states, the
generator Q has a block tridiagonal representation:

Q =

⎛
⎜⎜⎜⎝

Q̃1 Q0
Q2 Q1 Q0

Q2 Q1 Q0
. . .

. . .
. . .

⎞
⎟⎟⎟⎠ .

The matrices Q0, Q1, Q2, and Q̃1 are square and of infinite size.
We assume that the QBD process is irreducible, aperiodic, and positive recurrent, and denote

the limiting probabilities by πkj := limt→∞ P(Yt = k, Jt = j). Let πk = (πk0, πk1, . . .) for
k = 0, 1, . . . and π = (π0,π1, . . .). Then, from [15],

πk = π0R
k, k ≥ 0,

where the infinite-dimensional square matrix R is the minimal nonnegative solution to

Q0 + RQ1 + R2Q2 = 0.

In this paper we investigate the problem of finding decay rates of the stationary distribution for
some classes of QBD processes with countably many phases. As in [10], we derive conditions
under which there exists an infinite-dimensional positive row vector w ∈ �1 and positive scalar
z < 1 such that

wR = zw. (2.1)
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That is, w is a z−1-invariant measure of R [13, p. 205]. The significance of such a vector w

and scalar z follows from Theorem 2.4 of [6], which states that if, additionally,

w(Q̃1 + RQ2) = 0 (2.2)

is satisfied then the QBD process is ergodic and has a stationary distribution given by

πk = Kzkw, k ≥ 0,

where K is a constant. That is, the stationary distribution has the level-phase independence
property and decays at rate z. In general, we find that there is a range of values of z ∈ (0, 1) for
which there exists a positive w ∈ �1 satisfying (2.1). Since (2.2) may be satisfied by altering
only Q̃1, Theorem 2.4 of [6] suggests that, by changing the transition structure of the QBD
process at level 0, the stationary distribution may be forced to possess any decay rate from
the range of z values. Furthermore, even when the process does not possess the level-phase
independence property, there are many situations where the asymptotic decay rate is one of the
values of z for which R has a z−1-invariant measure; see, for example, [9].

In order to find a vector w and scalar z satisfying (2.1), we apply Theorem 5.4 of [12], which
states that if w ∈ �1 and z ∈ (0, 1) satisfy

w(Q0 + zQ1 + z2Q2) = 0, (2.3)

with
∑∞
k=0 |wkQ1(k, k)| < ∞, then they also satisfy (2.1). This approach was used in [6] to

study the two-queue tandem Jackson network and in [10] to study random walks in the quarter-
plane. In both these cases, the matrices Q0, Q1, and Q2 are tridiagonal, allowing the use of
orthogonal polynomials to determine when a solution of (2.3) is positive.

3. Simple transformations of the homogeneous case

Consider the class of QBD processes with countably many phases and blocks of the form

Q0 =

⎛
⎜⎜⎜⎝

ã1 a0
f (1)a2 f (1)a1 f (1)a0

f (2)a2 f (2)a1 f (2)a0
. . .

. . .
. . .

⎞
⎟⎟⎟⎠ , (3.1a)

Q1 =

⎛
⎜⎜⎜⎝

b̃1 b0
f (1)b2 f (1)b1 f (1)b0

f (2)b2 f (2)b1 f (2)b0
. . .

. . .
. . .

⎞
⎟⎟⎟⎠ , (3.1b)

and Q2 =

⎛
⎜⎜⎜⎝

c̃1 c0
f (1)c2 f (1)c1 f (1)c0

f (2)c2 f (2)3c1 f (2)c0
. . .

. . .
. . .

⎞
⎟⎟⎟⎠ , (3.1c)

where f is a positive function on Z+ \ {0} such that ξ ≡ limk→∞ f (k + 1)/f (k) exists,
a0, a1, ã1, a2, b0, b2, c0, c1, c̃1, c2 ≥ 0,

b1 = −(a0 + a1 + a2 + b0 + b2 + c0 + c1 + c2)

and b̃1 = −(a0 + ã1 + b0 + c0 + c̃1).
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Let
γi(z) = ai + biz+ ciz

2 for i = 0, 1, 2, (3.2)

γ̃1(z) = ã1 + b̃1z+ c̃1z
2, (3.3)

τ(z) = γ1(z)+ 2
√
γ0(z)γ2(z), (3.4)

and χ(z) = γ̃1(z)+ γ0(z)γ2(z)

γ̃1(z)− γ1(z)
. (3.5)

To avoid some trivial cases, we assume that both γ0(z) > 0 and γ2(z) > 0 for all z > 0.

Theorem 3.1. For the QBD process with the blocks in the generator Q given by (3.1), the
system of equations (2.1) has positive solutions w ∈ �1 for 0 < z < 1 if and only if z is such
that

(i) if (γ̃1(z)− γ1(z))
2 ≤ γ0(z)γ2(z) then τ(z) ≤ 0, otherwise χ(z) ≤ 0; and either

(ii) τ(z) ≥ 0 and γ0(z) < κ2γ2(z); or

(iii) τ(z) < 0 and

κγ2(z) > −γ̃1(z) if χ(z) = 0, ϕ(z) > −κγ1(z) otherwise;

where κ = min(ξ, 1), τ(z) and χ(z) are given by (3.4) and (3.5), respectively, γ0(z), γ1(z),
γ2(z), and γ̃1(z) are given by (3.2) and (3.3), and

ϕ(z) = κ2γ2(z)+ min(γ0(z), κ
2γ2(z)).

These conditions are quadratic and quartic polynomial inequalities in z.

Proof of Theorem 3.1. Let Q(z) = Q0 + zQ1 + z2Q2, let w = {wk} be the solution to

wQ(z) = 0, (3.6)

and let v = {vk} be the solution to
vQ̂(z) = 0,

where

Q̂(z) =

⎛
⎜⎜⎜⎝
γ̃1(z) γ0(z)

γ2(z) γ1(z) γ0(z)

γ2(z) γ1(z) γ0(z)

. . .
. . .

. . .

⎞
⎟⎟⎟⎠ ,

as in Section 2 of [10]. Arbitrarily setting w0 = v0, it follows that wk = vk/f (k) for k =
0, 1, 2, . . .. Clearly, w is positive if and only if v is positive. Thus, we obtain condition (i),
which is the condition in Theorem 3.1 of [10] that ensures that v is positive.

Since qk = −f (k)b1 for k = 1, 2, . . ., the condition that
∑
k |wk|qk < ∞ is equivalent to

requiring that v ∈ �1. In [10], it was shown that v takes one of three possible forms depending
on the value of the discriminant

D(z) = γ 2
1 (z)− 4γ0(z)γ2(z).

If D(z) = 0 then

vk = uk(1 + Ck) with u =
√
γ0(z)

γ2(z)
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and if D(z) < 0 then

vk = (cos(kφ)+ C sin(kφ))|u|k with u =
√
γ0(z)

γ2(z)
,

where C1, C2, u1, u2, u, C, and φ are constants depending on the value of z. It follows that
if D(z) ≤ 0 then v ∈ �1 if and only if γ0(z) < γ2(z). Having observed that wk = vk/f (k), it
follows that if D(z) ≤ 0 then w ∈ �1 if and only if γ0(z) < ξ2γ2(z). Thus, both v ∈ �1 and
w ∈ �1 if and only if γ0(z) < κ2γ2(z).

If D(z) > 0 then

vk = C1u
k
1 + C2u

k
2. (3.7)

We first consider the case where either C1 or C2 is 0. This is the case if χ(z) = 0. Only one
of the u1 and u2 in (3.7) now has a nonzero coefficient, which takes the value −γ̃1(z)/γ2(z).
Thus, for both v and w to be in �1, we obtain the condition∣∣∣∣− γ̃1(z)

γ2(z)

∣∣∣∣ < κ if χ(z) = 0.

If both C1 and C2 are nonzero, then v ∈ �1 if and only if u1 and u2 are in the interval (−1, 1),
and w ∈ �1 if and only if they are in (−ξ, ξ). Thus, we require that u1 and u2 are in (−κ, κ).
The scalars u1 and u2 are roots of

g(u) = γ2(z)u
2 + γ1(z)u+ γ0(z).

Since γ2(z) > 0 for z > 0, u1 and u2 are in (−κ, κ) if and only if f (κ) > 0, f (−κ) > 0,
f ′(κ) > 0, and f ′(−κ) < 0, giving the four inequalities

κ2γ2(z)+ κγ1(z)+ γ0(z) > 0, (3.8)

κ2γ2(z)− κγ1(z)+ γ0(z) > 0, (3.9)

2κ2γ2(z)+ κγ1(z) > 0, (3.10)

2κ2γ2(z)− κγ1(z) > 0. (3.11)

If κ2γ2(z) ≥ γ0(z) then (3.10) follows from (3.8) and (3.11) follows from (3.9). Otherwise if
κ2γ2(z) < γ0(z) then (3.8) follows from (3.10) and (3.9) follows from (3.11). Thus, these four
inequalities can be written as

κ2γ2(z)+ min(γ0(z), κ
2γ2(z)) > κ|γ1(z)|.

Finally, we note that γ1(z) < 0 and γ̃1(z) < 0, and that D(z) > 0 if τ(z) < 0, D(z) = 0 if
τ(z) = 0, and D(z) < 0 if τ(z) > 0.

4. Constant rates of phase increase, linearly increasing rates of phase decrease

Here we consider a class of QBD processes where the rate of phase decrease is linearly
related to the phase variable. The other transition intensities are phase independent.
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Theorem 4.1. For the QBD process with the blocks in the generator Q given by

Q0 =

⎛
⎜⎜⎜⎜⎜⎝

a1 a0
a2 a1 a0

2a2 a1 a0
3a2 a1 a0

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎠ ,

Q1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

b
(0)
1 b0

b2 b
(1)
1 b0

2b2 b
(2)
1 b0

3b2 b
(3)
1 b0
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,

and Q2 =

⎛
⎜⎜⎜⎜⎜⎝

c1 c0
c2 c1 c0

2c2 c1 c0
3c2 c1 c0

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎠ ,

where

b
(i)
1 = −(a0 + a1 + ia2 + b0 + ib2 + c0 + c1 + ic2)

= b1 − (i − 1)(a2 + b2 + c2)

= b1 − (i − 1)γ2(1) for i = 0, 1, 2, . . . ,

the system of equations (2.1) has positive solutions w ∈ �1 for 0 < z < 1 if and only if z is
such that either

(i) (zγ2(1))2 + zγ2(1)γ1(z)+ γ0(z)γ2(z) = 0; or

(ii) (zγ2(1))2 + zγ2(1)γ1(z)+ γ0(z)γ2(z) < 0 and 0 < z < min(a2/c2, 1).

Note that the phase process away from the level boundary, that is, the process with generator
Q0 + Q1 + Q2, behaves as an M/M/∞ queue. With z fixed such that 0 < |z| < 1, the system
of equations (3.6) reduces to

w0(γ1(z)+ zγ2(1))+ w1γ2(z) = 0, (4.1)

wnγ0(z)+ wn+1(γ1(z)− nzγ2(1))+ (n+ 2)wn+2γ2(z) = 0, n ≥ 0. (4.2)

Consider the equations

P0(x; z) = 1,

γ2(z)P1(x; z) = x − γ1(z)− zγ2(1),

(n+ 1)γ2(z)Pn+1(x; z) = (x − γ1(z)+ (n− 1)zγ2(1))Pn(x; z)− γ0(z)Pn−1(x; z)
for n ≥ 1. For any given real and positive value of z, these equations define a sequence of
orthogonal polynomials Pn(x; z). Arbitrarily setting w0 = 1, it is clear that wn = Pn(0; z).
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The Pn(0; z) are positive for all n if and only if the zeros of all the Pn(x; z) are less than 0.
This enables us to study conditions for the positivity of w via the properties of the polynomials
Pn(0; z).
Lemma 4.1. For z > 0, the sequence {Pn(x; z)} satisfies the orthogonality relationship

∫ b(z)

−∞
Pn(x; z)Pm(x; z) dφ(a)(x) = 1

n!
(
γ0(z)

γ2(z)

)n
δn,m,

where δn,m = 1 if n = m and 0 otherwise, and φ(a) is the step function whose jumps are

dφ(a)(x) = e−aaj

j !
when x = b(z)− jzγ2(1), j ∈ Z+, a = γ0(z)γ2(z)/(zγ2(1))2, and

b(z) = γ1(z)+ zγ2(1)+ γ0(z)
γ2(z)

zγ2(1)
. (4.3)

Proof. For fixed z > 0, let

C(a)n (x) =
(

− γ2(z)

zγ2(1)

)n
n!Pn(b(z)− zγ2(1)x; z). (4.4)

It follows that

C
(a)
0 (x) = 1 and C

(a)
n+1(x) = (x − n− a)C(a)n (x)− anC

(a)
n−1(x), n ≥ 0.

The C(a)n s are Charlier polynomials, for which the orthogonalizing relationship is given (see
[3, pp. 170–172]) by ∫ ∞

0
C(a)m (x)C(a)n (x) dψ(a)(x) = ann! δm,n, (4.5)

where ψ(a) is the step function whose jumps are

dψ(a)(j) = e−aaj

j ! at j = 0, 1, 2, . . . .

Substituting (4.4) into (4.5) yields the result.

Lemma 4.2. For each value of z > 0, Pn(x; z) has n distinct real zeros xn,1 < · · · < xn,n and
these zeros interlace. That is, for all n ≥ 2 and i = 1, . . . , n− 1,

xn,i < xn−1,i < xn,i+1.

Proof. The lemma follows from a well-known result for orthogonal polynomial sequences;
see Theorem I.5.3 of [3].

The support of the measure φ(a) and the limiting behaviour of the zeros of the Pn(x; z) are
related. Some useful results are stated in the following lemma.
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Lemma 4.3. The sequences of smallest and largest zeros of the Pn(x; z) possess the following
properties:

• {xn,1}∞n=1 is an unbounded strictly decreasing sequence;

• {xn,n}∞n=1 is a strictly increasing sequence with limit b(z).

Proof. See Section II.4 of [3].

Lemma 4.4. Let z > 0. Then Pn(x; z) is positive for all n if and only if x ≥ b(z).

Proof. The leading coefficient of Pn(x; z) is positive for all n (since γ2(z) > 0 for z > 0).
This implies thatPn(x; z) is positive for x > xn,n. Since xn,n is strictly increasing, we know that
Pn(x; z) is positive for all n if x ≥ b(z). Conversely, Pk(x; z) is negative for x ∈ (xk−1,k, xk,k)

and so the interleaving property given in Lemma 4.2 implies that, for every x < xn,n, Pk(x; z)
is less than 0 for at least one k ∈ {1, . . . , n}. Thus, if x < b(z), Pk(x; z) is less than 0 for at
least one k ∈ Z+.

We are now in a position to say when the vector w which solves (4.1) and (4.2) is positive.

Lemma 4.5. The vector w is positive if and only if b(z) ≤ 0.

Proof. This follows immediately from Lemma 4.4 and the fact that, for a given z, wn =
Pn(0; z).

We now consider whether w ∈ �1. There is an explicit formula for the Charlier polynomials:

C(a)n (x) =
n∑
k=0

(
n

k

)(
x

k

)
k! (−a)n−k.

By (4.4), we have, for z > 0,

wn = 1

n!
(−zγ2(1)

γ2(z)

)n
C(a)n

(
b(z)

zγ2(1)

)

=
n∑
k=0

1

(n− k)! k!
(
γ0(z)

zγ2(1)

)n−k( 1

γ2(z)

)k

× (−b(z))(−b(z)+ zγ2(1)) · · · (−b(z)+ (k − 1)zγ2(1)). (4.6)

If the positivity condition b(z) ≤ 0 is satisfied then all terms in the above summation are easily
seen to be positive, which confirms the ‘if’ part of Lemma 4.5.

Lemma 4.6. If z > 0 and b(z) = 0, then w ∈ �1.

Proof. If b(z) = 0 then (4.6) reduces to

wn = 1

n!
(
γ0(z)

zγ2(1)

)n
,

so clearly w ∈ �1.

Lemma 4.7. If z > 0 and b(z) < 0, then w ∈ �1 if and only if z < min(a2/c2, 1) or
z > max(a2/c2, 1).
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Proof. From (4.6) we have

∞∑
n=0

|wn| =
∞∑
n=0

n∑
k=0

1

(n− k)! k!
(
γ0(z)

zγ2(1)

)n−k( 1

γ2(z)

)k

× (−b(z))(−b(z)+ zγ2(1)) · · · (−b(z)+ (k − 1)zγ2(1))

=
∞∑
k=0

∞∑
n=0

1

n! k!
(
γ0(z)

zγ2(1)

)n( 1

γ2(z)

)k

× (−b(z))(−b(z)+ zγ2(1)) · · · (−b(z)+ (k − 1)zγ2(1))

= exp

(
γ0(z)

zγ2(1)

)

×
∞∑
k=0

1

k!
(

1

γ2(z)

)k
(−b(z))(−b(z)+ zγ2(1)) · · · (−b(z)+ (k − 1)zγ2(1)).

Applying the ratio test for convergence gives the condition ρ = zγ2(1)/γ2(z) < 1. In the case
where ρ = 1,

∞∑
n=0

|wn| = exp

(
γ0(z)

zγ2(1)

) ∞∑
k=0

(−1)k
(
b(z)/γ2(z)

k

)
,

which does not converge (by the generalized version of the binomial theorem). Thus, for z > 0
and b(z) < 0, w ∈ �1 if and only if zγ2(1) < γ2(z). This is satisfied for 0 < z < min(a2/c2, 1)
and z > max(a2/c2, 1).

The final condition of Theorem 5.4 of [12] for w to satisfy wR = zw is
∑∞
k=0 |wk|qk < ∞.

Since qk = −Q1(k, k) = −b1 + (k − 1)γ2(1), we require that both
∑∞
k=0 |wk| < ∞ and∑∞

k=0 k|wk| < ∞.

Lemma 4.8. If z > 0, b(z) ≤ 0, and w ∈ �1, then
∑∞
n=0 n|wn| < ∞.

Proof. This is clear by inspection of the expressions obtained for wn.

Proof of Theorem 4.1. This follows from the combination of the conditions of Lemmas 4.5–
4.8 and Theorem 5.4 of [12], using the definition of b(z) in (4.3).

Now we consider a variation on the class of QBD processes studied above. The intensity
of transitions where the phase variable remains the same is now linearly related to the value of
the phase variable.

Theorem 4.2. For the QBD process with the blocks in the generator Q given by

Q0 =

⎛
⎜⎜⎜⎜⎜⎝

a1 a0
a2 2a1 a0

2a2 3a1 a0
3a2 4a1 a0

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎠ ,
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Q1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

b
(0)
1 b0

b2 b
(1)
1 b0

2b2 b
(2)
1 b0

3b2 b
(3)
1 b0
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎠
,

and Q2 =

⎛
⎜⎜⎜⎜⎜⎝

c1 c0
c2 2c1 c0

2c2 3c1 c0
3c2 4c1 c0

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎠ ,

where

b
(i)
1 = −(a0 + b0 + c0 + (i + 1)(a1 + c1)+ i(a2 + b2 + c2))

= (i + 1)b1 + (i − 1)γ0(1)− γ1(1) for i = 0, 1, 2, . . . ,

the system of equations (2.1) has positive solutions w ∈ �1 for 0 < z < 1 if and only if z is
such that

(i) γ1(z)+ zγ0(1) < 0; and either

(ii) γ1(z)− z(γ0(1)+ γ1(1))− γ0(z)γ2(z)/(γ1(z)+ zγ0(1)) = 0; or

(iii) γ1(z) − z(γ0(1) + γ1(1)) − γ0(z)γ2(z)/(γ1(z) + zγ0(1)) < 0 and zγ0(1) + γ1(z) +
γ2(z) > 0.

Theorem 4.2 will be proved using a series of lemmas. For fixed z such that 0 < |z| < 1, the
system of equations (3.6) reduces to

w0(γ1(z)− z(γ0(1)+ γ1(1)))+ w1γ2(z) = 0,

wk−1γ0(z)+ wk((k + 1)γ1(z)+ z((k − 1)γ0(1)− γ1(1)))+ (k + 1)wk+1γ2(z) = 0

for k ≥ 1. Again, we generalize these equations to

P0(x; z) = 1, (4.7)

γ2(z)P1(x; z) = x − γ1(z)+ z(γ0(1)+ γ1(1)), (4.8)

(n+ 1)γ2(z)Pn+1(x; z) = (x − (n+ 1)γ1(z)− z((n− 1)γ0(1)− γ1(1)))Pn(x; z)
− γ0(z)Pn−1(x; z), n ≥ 1. (4.9)

Lemma 4.9. For z > 0 and γ1(z) + zγ0(1) �= 0, the sequence {Pn(x; z)} satisfies the
orthogonality relationship∫

supp(φ(a)(x))
Pn(x; z)Pm(x; z) dφ(a)(x) = 1

n!
(
γ0(z)

γ2(z)

)n
δn,m,

where φ(a) is the step function whose jumps are

dφ(a)(x) = e−aa(x−b(z))/(γ1(z)+zγ0(1))

((x − b(z))/(γ1(z)+ zγ0(1)))!
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at x = b(z)+ k(γ1(z)+ zγ0(1)) for k = 0, 1, 2, . . ., a = γ0(z)γ2(z)/(γ1(z)+ zγ0(1))2, and

b(z) = γ1(z)− z(γ0(1)+ γ1(1))− γ0(z)γ2(z)

γ1(z)+ zγ0(1)
. (4.10)

Proof. For fixed z > 0, let

C(a)n (x) =
(

γ2(z)

γ1(z)+ zγ0(1)

)n
n!Pn((γ1(z)+ zγ0(1))x + b(z); z). (4.11)

We find that the C(a)n (x) are Charlier polynomials. Substituting (4.11) into (4.5) yields the
result.

Lemma 4.10. The sequence of the largest zeros, {xn,n}∞n=1, of the Pn(x; z) is a strictly in-
creasing sequence. The sequence is unbounded if γ1(z) + zγ0(1) > 0, and has limit b(z) if
γ1(z)+ zγ0(1) < 0.

Proof. The limiting value of xn,n is given by the supremum of the support of the measure
φ(a)(x), if it exists. Then, by Lemma 4.9, when γ1(z)+ zγ0(1) > 0, there is no limiting value
of xn,n, and when γ1(z)+ zγ0(1) < 0, the limiting value is b(z).

If γ1(z)+ zγ0(1) = 0 then (4.7)–(4.9) become

P0(x; z) = 1,

γ2(z)P1(x; z) = x − 2γ1(z)+ zγ1(1),

(n+ 1)γ2(z)Pn+1(x; z) = (x − 2γ1(z)+ zγ1(1))Pn(x; z)− γ0(z)Pn−1(x; z), n ≥ 1.

Note that there is one value of z ∈ (0, 1) for which this is the case.

Lemma 4.11. When z > 0 and γ1(z) + zγ0(1) = 0, the sequence {Pn(x; z)} satisfies the
orthogonality relationship

∫ ∞

−∞
Pm(x)Pn(x) exp

(
− (x − 2γ1(z)+ zγ1(1))2

γ0(z)γ2(z)

)
dx =

√
π

n!
(
γ0(z)

γ2(z)

)n
δm,n.

Proof. For fixed z > 0, let

Hn(x) =
(

2γ2(z)

γ0(z)

)n/2
n!Pn(x

√
2γ0(z)γ2(z)+ 2γ1(z)− zγ1(1); z). (4.12)

It follows that Hn(x) is a Hermite polynomial, satisfying the recurrence relation

Hn+1(x) = 2xHn(x)− 2nHn−1(x), n ≥ 0,

with H0(x) = 1, and the orthogonality relationship∫ ∞

−∞
Hm(x)Hn(x)e

−x2
dx = √

π2nn! δm,n. (4.13)

Substitution of (4.12) into (4.13) yields the result.

We have the following as a consequence.
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Lemma 4.12. For γ1(z) + zγ0(1) = 0, the sequence of the largest zeros, {xn,n}∞n=1, of the
Pn(x; z) is an unbounded strictly increasing sequence.

Proof. This follows from the fact that the support of the orthogonalizing measure of the
Pn(x; z) is the real line.

Combining Lemmas 4.9–4.12 and following reasoning similar to that in Lemma 4.4 we get
the following.

Lemma 4.13. For z > 0, the vector w is positive if and only if γ1(z)+zγ0(1) < 0 and b(z) ≤ 0.

We now consider whether w ∈ �1. For z > 0 and γ1(z)+ zγ0(1) �= 0, we have, by (4.11),

wn = 1

n!
(
γ1(z)+ zγ0(1)

γ2(z)

)n
C(a)n

(
− b(z)

γ1(z)+ zγ0(1)

)
. (4.14)

Lemma 4.14. For z > 0, if b(z) = 0 and γ1(z)+ zγ0(1) �= 0, then w ∈ �1.

Proof. From (4.14) we get

wn = 1

n!
( −γ0(z)

γ1(z)+ zγ0(1)

)n
,

so clearly w ∈ �1.

Lemma 4.15. If z > 0, b(z) < 0, and γ1(z) + zγ0(1) < 0, then w ∈ �1 if and only if
zγ0(1)+ γ1(z)+ γ2(z) > 0.

Proof. From (4.14) we get

∞∑
n=0

|wn| = exp

( −γ0(z)

γ1(z)+ zγ0(1)

) ∞∑
k=0

1

k!
(

1

γ2(z)

)k
(−b(z))(−b(z)− γ1(z)− zγ0(1)) · · ·

× (−b(z)− (k − 1)(γ1(z)+ zγ0(1))).

Applying the ratio test for convergence gives the conditionρ= (−γ1(z)−zγ0(1))/γ2(z) < 1.
In the case where ρ = 1,

∞∑
n=0

|wn| = exp

( −γ0(z)

γ1(z)+ zγ0(1)

) ∞∑
k=0

(−1)k
(
b(z)/γ2(z)

k

)
,

which does not converge. Rearranging the expression for ρ < 1 gives the result.

Again, to satisfy the final condition of Theorem 5.4 of [12], we require that both

∞∑
k=0

|wk| < ∞ and
∞∑
k=0

k|wk| < ∞.

The following result is obtained by inspection of the expressions for wk .

Lemma 4.16. For z > 0, b(z) ≤ 0, and γ1(z)+zγ0(1) < 0, if w ∈ �1 then
∑∞
n=0 n|wn| < ∞.

Finally, we are in a position to prove Theorem 4.2.

Proof of Theorem 4.2. The proof follows from the combination of the conditions of Lem-
mas 4.13–4.16 and Theorem 5.4 of [12], using the definition of b(z) in (4.10).

https://doi.org/10.1239/jap/1318940475 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1318940475


Decay rates for QBD processes 339

References

[1] Adan, I., Foley, R. D. and McDonald, D. R. (2009). Exact asymptotics for the stationary distribution of a
Markov chain: a production model. Queueing Systems 62, 311–344.

[2] Borovkov, A. A. and Mogul´skiı̆, A. A. (2001). Large deviations for Markov chains in the positive quadrant.
Russian Math. Surveys 56, 803–916.

[3] Chihara, T. S. (1978). An Introduction to Orthogonal Polynomials. Gordon and Breach, New York.
[4] Foley, R. D. and McDonald, D. R. (2001). Join the shortest queue: stability and exact asymptotics. Ann. Appl.

Prob. 11, 569–607.
[5] Haque, L., Zhao, Y. Q. and Liu, L. (2004). Sufficient conditions for a geometric tail in a QBD process with

many countable levels and phases. Stoch. Models 21, 77–99.
[6] Kroese, D. P., Scheinhardt, W. R. W. and Taylor, P. G. (2004). Spectral properties of the tandem Jackson

network, seen as a quasi-birth-and-death process. Ann. Appl. Prob. 14, 2057–2089.
[7] Latouche, G. and Ramaswami, V. (1999). Introduction to Matrix Analytic Methods in Stochastic Modeling.

Society for Industrial and Applied Mathematics, Philadelphia, PA.
[8] Miyazawa, M. (2002). A Markov renewal approach to the asymptotic decay of the tail probabilities in risk and

queuing processes. Prob. Eng. Inf. Sci. 16, 139–150.
[9] Miyazawa, M. (2009). Tail decay rates in double QBD processes and related reflected random walks. Math.

Operat. Res. 34, 547–575.
[10] Motyer, A. J. and Taylor, P. G. (2006). Decay rates for quasi-birth-and-death processes with countably many

phases and tridiagonal block generators. Adv. Appl. Prob. 38, 522–544.
[11] Neuts, M. F. (1981). Matrix-Geometric Solutions in Stochastic Models. The Johns Hopkins University Press,

Baltimore, MD.
[12] Ramaswami, V. and Taylor, P. G. (1996). Some properties of the rate operators in level dependent quasi-birth-

and-death processes with a countable number of phases. Stoch. Models 12, 143–164.
[13] Seneta, E. (1981). Nonnegative Matrices and Markov Chains, 2nd edn. Springer, New York.
[14] Takahashi, Y., Fujimoto, K. and Makimoto, N. (2001). Geometric decay of the steady-state probabilities in

a quasi-birth-and-death process with a countable number of phases. Stoch. Models 17, 1–24.
[15] Tweedie, R. L. (1982). Operator-geometric stationary distributions for Markov chains, with applications to

queueing models. Adv. Appl. Prob. 14, 368–391.

ALLAN J. MOTYER, University of Melbourne

Department of Mathematics and Statistics, University of Melbourne, VIC 3010, Australia.
Email address: a.motyer@ms.unimelb.edu.au

PETER G. TAYLOR, University of Melbourne

Department of Mathematics and Statistics, University of Melbourne, VIC 3010, Australia.
Email address: p.taylor@ms.unimelb.edu.au

https://doi.org/10.1239/jap/1318940475 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1318940475

	1 Introduction
	2 Background
	3 Simple transformations of the homogeneous case
	4 Constant rates of phase increase, linearly increasing rates of phase decrease
	References

