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SUMMARY

Methods for the detection of influenza epidemics and prediction of their progress have seldom
been comparatively evaluated using prospective designs. This study aimed to perform a
prospective comparative trial of algorithms for the detection and prediction of increased local
influenza activity. Data on clinical influenza diagnoses recorded by physicians and syndromic
data from a telenursing service were used. Five detection and three prediction algorithms
previously evaluated in public health settings were calibrated and then evaluated over 3 years.
When applied on diagnostic data, only detection using the Serfling regression method and
prediction using the non-adaptive log-linear regression method showed acceptable performances
during winter influenza seasons. For the syndromic data, none of the detection algorithms
displayed a satisfactory performance, while non-adaptive log-linear regression was the best
performing prediction method. We conclude that evidence was found for that available
algorithms for influenza detection and prediction display satisfactory performance when applied
on local diagnostic data during winter influenza seasons. When applied on local syndromic data,
the evaluated algorithms did not display consistent performance. Further evaluations and
research on combination of methods of these types in public health information infrastructures
for ‘nowcasting’ (integrated detection and prediction) of influenza activity are warranted.

Key words: Algorithms, epidemiological methods, evaluation research, human influenza,
signal detection analysis.

INTRODUCTION

Recent technical developments in the area of public
health information infrastructure make it realistic to
collect, structure, and statistically analyse infectious
disease data in close to real time and in local public

health contexts [1]. Early knowledge of influenza
epidemics in the community allows local epidemic
alerts in primary care and hospital settings before
the publication of regional data and could accelerate
the implementation of preventive transmission-based
precautions both within the local health care services
and the community [2]. In the past few years, a con-
siderable amount of research has focused on develop-
ing statistical methods to identify aberrations in
disease incidence data accurately and quickly [3–5]
as well as predicting epidemic progress [6–8]. Other
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researchers have focused on the use of alternative data
sources, such as internet search engines [9,10], mini-
blogs [11,12], and records from over-the-counter
drug sales [13,14] with the goal of enhancing detection
and prediction outcomes. However, few studies have
compared the performance of different algorithms in
routine practice using prospective designs. In a meta-
narrative review of influenza detection and prediction
algorithm evaluations in public health settings [15],
only three studies covering seven detection algorithms
and five studies covering nine prediction algorithms
were found to have been performed using prospective
designs. We inferred that further research is needed
where algorithms are comparatively evaluated in par-
allel in the same setting using identical data.

The aim of this study was to perform a comparative
trial of algorithms for the detection and prediction of
influenza activity using local data from a county-wide
public health information system.

METHODS

The study applied an accuracy trial design [16] based
on two streams of data used for routine influenza sur-
veillance in a Swedish county (population 445 000):
data on clinical diagnoses recorded by physicians
and syndromic chief complaint data from a national
telenursing service. The latter source has been found
to provide indications of increased influenza activity
up to 2 weeks ahead of the former [10,17]. The pri-
mary criteria for inclusion of an influenza detection
or prediction algorithm were that it had been evalu-
ated using authentic prospective data and the report
had been published in a peer-reviewed scientific jour-
nal before 1 February 2016. The secondary criteria
were that the algorithm (1) was to be applicable in
county-level influenza surveillance, i.e. on unidimen-
sional influenza data from a population of approxi-
mately 500 000 inhabitants, (2) it was sufficiently
documented to be reproduced, (3) it could be cali-
brated using a maximum of one season of learning
data, and (4) the detailed assumptions about data
characteristics were compatible with the county-level
data used for the evaluation. The study design was
approved by the Regional Research Ethics Board in
Linköping (dnr. 2012/104-31).

Data sources

The study data were collected from an electronic
health data repository maintained by a Swedish

county council [1]. The repository collects data from
all patient visits at health care facilities in the county
and from calls made by county residents to the nation-
wide telenursing service. For the study, influenza diag-
nosis codes (International Classification of Diseases,
10th Revision (ICD-10)/International Conference on
Drugs and Pharmacological Classification (ICDPC)
J10.0, J10.1, J10.8, J11.0, J11.1, J11.8, and J11.0-P)
and telenursing chief complaints potentially asso-
ciated with influenza, i.e. fever (adult, child), cough
(adult, child), headache (adult, child), dyspnea, sore
throat, vertigo, lethargy, and syncope were used.
Collection of learning data used to calibrate the algo-
rithms covered the winter influenza season of 2008–
2009, starting from the end of the previous winter
influenza season (4 May 2008 to 25 April 2009).
Immediately after the end of the learning period, the
evaluation period started, covering one pandemic out-
break and two winter influenza seasons (26 April 2009
to 19 May 2012) (Fig. 1). Because the evaluation per-
iod included both the pandemic outbreak and winter
influenza seasons, it was divided into two parts; one
part covered the pandemic outbreak and the other
part covered the winter influenza seasons. The epi-
demic threshold was defined as two incident influenza
diagnosis cases per 100 000 population recorded dur-
ing a 7-day period.

Evaluation procedure

For diagnostic data, the learning dataset was used to
retrospectively decide parameter settings for the differ-
ent detection and prediction methods. These para-
meters were then formatively applied in retrospective
analyses using the learning dataset. For telenursing
data, the learning set was first used to determine
which time lag and grouping of chief complaints had
the largest strength correlation with the diagnostic
data. The chief complaint grouping with the largest
correlation strength and best time lag was chosen for
the following analyses. Thereafter the learning set
was used to determine parameter settings for the dif-
ferent detection and prediction methods.

Detection performance was evaluated using mea-
surements of sensitivity (the proportion of correctly
identified weeks with increased influenza activity), spe-
cificity (the proportion of correctly identified weeks
with no increased influenza activity), and timeliness
(the time-difference between the observed and the pre-
dicted start of a period with increased influenza activ-
ity), whereas prediction performance was compared
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using Pearson correlation (r) and median absolute per-
centage error (MedAPE), both representing the asso-
ciation between predicted and observed time series
of influenza activity.

In ranking the detection algorithms, specificity was
given priority over sensitivity because a high level of
false alarms is unacceptable in public health practice.
If several algorithms performed similarly with regard
to specificity and sensitivity; timeliness was used to
decide which algorithm was superior. The calculation
for specificity was based on the 10 weeks immediately
before an epidemic and the calculation for sensitivity
was based on the first 10 weeks of an epidemic. The
reason why these measures were not based on entire
datasets was that detection methods are primarily opti-
mized to detect epidemics. The performance of an algo-
rithmwas considered acceptable if the specificity was at
least 0·85 and the sensitivity was at least 0·80.

In the evaluation of prediction algorithms, the
Pearson correlation coefficient (r) was used as the
primary measurement of the association between
observed and predicted values. The limits used to
interpret the observed values were modified from the
Cohen scale [18], in which the limits 0·10, 0·30, and
0·50 were defined as small, medium, and large
effect sizes. In this study, the limits were set at 0·70,
0·80, and 0·90 denoting acceptable, excellent, and out-
standing predictive performance. The secondary

evaluation measurement, MedAPE, is a measure of the
accuracy of statistical methods for constructing fitted
time series values [19]. For a perfect fit, MedAPE is
0; it has no restriction with regard to its upper level.
MedAPE gives an idea of the typical percentage error
and allows comparisons across different series. The com-
bination of correlation and absolute percentage error
(MedAPE before the median is calculated) has been
used previously [20].

Detection algorithms

Influenza detection was defined as indicating the initi-
ation of a prolonged period on increased influenza
activity in the population under surveillance. At the
time of algorithm selection, seven influenza detection
algorithms were found to have been evaluated using
authentic prospective data. Four of these methods
did not meet the secondary inclusion criteria. The
algorithm based on the Kolmogorov–Smirnov test
evaluated by Closas et al. [21] was excluded because
it was not applicable on streams of county-level
influenza diagnosis data. This test assumes that the
rate of influenza diagnosis cases in non-epidemic per-
iods can be represented by a random variable (y) that
is exponentially distributed. However, influenza diag-
nosis case rate data in local settings are in general
represented by small integers during non-epidemic
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Fig. 1. Weekly rates of influenza diagnosis cases (a) and telenursing calls for fever (child, adult) (b) in Östergötland
County, Sweden, during the retrospective learning period from May 2008 to April 2009 (the gray marked area) and the
prospective evaluation period from April 2009 to May 2012.
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periods. Therefore, it is more reasonable to assume
that the observations are Poisson distributed. The
time series method based on a dynamic model [22],
was excluded for similar reasons, i.e. it requires that
data follow a normal distribution. Finally, the two
hidden Markov models evaluated by Martínez–
Beneito et al. [23] were excluded because the algo-
rithms partly relied on simulated data.

The three detection algorithms meeting the study cri-
teria were Serfling regression [23,24], ‘simple regression’
[22,25], and cumulative sum (CUSUM) [22,23]. Serfling
regression [23,24] monitors the period when there is no
increased influenza activity to determine a baseline
defined by a fixed threshold. Defining Ŷt as the number
of influenza diagnosis cases (or telenursing calls), the
model is defined as

Ŷt = b0 + b1t+ b2(t) cos(kt) + b3(t)sin(kt) ,
where b0 is a constant intercept, b1 is the slope of a long-
term trend, and b2(t), b3(t) are coefficients for continuous
harmonic terms representing seasonal trends, with k=
(2π/(365 · 25/7)) to give a 1-year sinusoidal period of
these terms. Using only the non-epidemic phases of the
learning set, we first determined the coefficients men-
tioned above. Using these on the learning set, we
searched for the optimal threshold α (the threshold that
generates the highest sensitivity and specificity) which
is based on the normal distribution, investigating α=
0 · 005, 0 · 010, . . . , 0 · 500.

Simple regression [22,25] raises an alarm if data from
the current week fall outside a 100(1− α)% forecast
interval from a normal distribution with running mean
ỹ(m) and running sample variance s̃(m)2 calculated from
the precedingmweeks.The forecast interval is calculated
as ỹ(m) + tm−1, 1−α/2s̃(m)

������������
1+ (1/m)√

, where tm−1,1−α/2 is
the 100(1− α)th percentile of the Student t-distribution
with m− 1 degrees of freedom. Using the learning set,
we searched for the parameter combination that resulted
in the highest sensitivity and specificity for this
algorithm, investigating all possible combinations of
α= 0 · 005, 0 · 010, . . . , 0 · 500 and m= 3, 4, . . . , 10.

Using the CUSUM method [22,23], an alarm is
raised if the upper CUSUMC+

t exceeds a pre-specified
threshold g. For the series of observations yt, t= 1,
2, . . . , the d-week upper CUSUM at time t, C+

t is
defined as

C+
t = max 0,

yt − ỹ(7)
s̃(7)

− k + C+
t−1

( )
,

withC+
t−d = 0 [26]. The running mean ỹ(7) and running

variance s̃(7)2 are calculated from the series of 7 weeks,

yi−d−7 , . . . , yi−d−1 preceding the most recent d weeks.
The d denotes the number of weeks excluded from the
running mean and variance immediately before the
index week. This is done in order to avoid contamin-
ation with the upswing of an epidemic [27]. The par-
ameter k represents the minimum standardized
difference from the running mean, which is not
ignored by the CUSUM calculation.

The CUSUM algorithm was evaluated in its ori-
ginal form and in two modified versions based on
that the observations y follow a Poisson distribution.
In the first modified version the variance is estimated
by the sample mean, since the variance equals the
expected value in a Poisson distribution. In the second
modified version CUSUM at time t (Ct ) is expressed
in terms of accumulated probability, namely Ct =
max(0; Ct−1 + P(Y ≤ y|E = ỹ(7)) − k) where P is
the Poisson probability function. The second suggested
modification is an adaption to Poisson distributed data
with so low expected values that normal approximation
is inappropriate. In this case, the pre-specified alarm
threshold (g) cannot bebasedon thenormaldistribution.
Using the learning set, we searched for the parameter
combination that generated the highest sensitivity
and specificity forall threeCUSUMmethods, investigat-
ing all possible combinations of g = 0 · 00, 0 · 01, . . . ,
20 · 00, k= 0 · 00, 0 · 01, . . . , 3 · 00 (k= 0 · 00− 1 · 00
for the third method) and d= 0, 1, . . . , 4 for diagnostic
data; and g= 0 · 00, 0 · 01, . . . , 100 · 00, k= 0 · 00, 0 ·
01, . . . , 4 · 00 (k= 0 · 00− 1 · 00 for the third method)
and d= 0, 1, . . . , 4 for telenursing data.

Prediction algorithms

Influenza prediction was defined as foretelling the
amplitude and time span of a detected increase in
influenza activity in a specified population. Nine
influenza prediction algorithms were found to have
been evaluated using authentic prospective data. Six
of these did not meet the secondary inclusion criteria
for this comparative trial. The Holt–Winters method
(generalized exponential smoothing) [19] and the
method of analogs [28] were excluded because they
required collection of learning data from more than
one influenza season. The autoregressive model [28]
was excluded because the evaluation data did not
comply with its detailed assumptions. A Bayesian net-
work model [20], a Shewhart-type algorithm [17], and
a multiple linear regression algorithm [29]
were excluded due to that they required access to
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multidimensional data, i.e. a syndromic data source to
predict influenza case rates.

The first algorithm meeting the study criteria, non-
adaptive log-linear regression, fits an ordinary least
squares, log-linear model to a learning set to obtain
regression coefficients [30]. These coefficients are
then used to forecast values beyond the learning
data without adjusting for subsequent changes in
time series behavior. Modified for weekly data, the
model reads as follows:

log(Yt + 1) = b0 + b1t+ b2 cos(kt) + b3sin(kt),

where Yt is the number of influenza diagnosis cases or
telenursing calls on week t, b0 is a constant intercept,
b1 is the slope of a long-term trend and b2 and b3 are
coefficients for continuous harmonic terms represent-
ing seasonal trends, with

k = 2π
(365 · 25/7)

to give a 1-year sinusoidal period of these terms. The
reason for transforming the original weekly counts
into log scale is to capture a multiplicative nature of
the effects of the trend and seasonal components.

The second algorithm, adaptive log-linear regres-
sion with a sliding 8-week baseline interval, recom-
putes the regression coefficients for each forecast
using only the series values from the 8 weeks before
the forecast week [31]. The short baseline is intended
to capture recent seasonal and trend patterns [19].
Modified for weekly data the model is described as
follows:

log(Yt + 1) = b0 + b1t,

where Yt is the number of influenza diagnosis cases or
telenursing calls in week t, b0 is a constant intercept,
and b1 is the slope of a long-term trend. In Burkom
et al. [19] a holiday indicator was added to avoid exag-
gerated holidays occurring in the short baseline inter-
val; however, because weekly counts are used, the
holiday effect are considered to be low or non-
existing. Adjustments to the suggested models were
made to fit weekly counts, due to that daily counts
were used in Burkom et al. [19].

The final algorithm, the so-called naive method,
predicts that a future incidence F is equal to a current
incidence I, hence F(T + h) = I(T), where h5 1 and t is
the current week number.

RESULTS

Retrospective algorithm calibration

When re-applied on the retrospective diagnostic data,
four of the detections algorithms (Serfling regression
and the three CUSUM methods) displayed a perfect
performance (i.e. specificity and sensitivity 1·00 and
timeliness 0 week) (Table 1), whereas the simple
model performed weakly (specificity 0·90, sensitivity
0·70, and timeliness 23 weeks). Regarding the telenur-
sing data, the grouping of telenursing chief complaints
with the largest correlation strength on a weekly basis
(r = 0·91; P < 0·001) and longest lead time (2 weeks) to
diagnostic data in the retrospective dataset was fever
(child, adult). Based on these observations, fever
(child, adult) was chosen as the complaint grouping
for use in the evaluations. The detection algorithms
performing best on telenursing data were Serfling
regression and the three CUSUM methods, although
all displayed less accurate performance than for diag-
nostic data (specificity 1·00, sensitivity 0·80, and time-
liness −2 weeks) (Table 1). The simple model also
performed poorly for the telenursing data (specificity
0·90, sensitivity 0·50, and timeliness 12 weeks).

The prediction algorithm that performed best on
the retrospective diagnostic dataset was non-adaptive
log-linear regression (r= 0·72 for 2-week-ahead pre-
dictions and r = 0·57 for 4-week-ahead predictions)
followed by the naive method (r= 0·62 for 2-week-
ahead predictions and r= 0·29 for 4-week-ahead
predictions) (Table 2). However, MedAPE for the
non-adaptive log-linear regression was the poorest of
the methods (0·92 for 2-week predictions and 1·00
for 4-week predictions). For the telenursing data, the
algorithm with the notably best predictive perform-
ance was non-adaptive log-linear regression (r = 0·72
for 2-week predictions to r= 0·66 for 4-week predic-
tions and MedAPE 0·15 for 2-week predictions and
0·16 for 4-week predictions) (Table 2).

Prospective evaluations of detection algorithms

In the comparative evaluation using diagnostic data,
the best performing detection algorithms were
Serfling regression for the winter influenza seasons
(specificity 1·00, sensitivity 0·80, and timeliness −2
weeks) and the CUSUM Poisson (alternative 2) for
the pandemic outbreak in 2009 (specificity 0·80, sensi-
tivity 1·00, and timeliness 1 week) (Table 3).

In the corresponding evaluation using the syn-
dromic telenursing data, none of algorithms displayed
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a satisfactory performance. The algorithm performing
best was Serfling regression with specificity 1·00, sensi-
tivity 0·55, and timeliness −4 weeks for the winter
influenza seasons and specificity 1·00, sensitivity
0·70, and timeliness −2 weeks for the pandemic out-
break (Table 3).

Prospective evaluations of prediction algorithms

The best performing prediction algorithm based on
diagnostic data for the winter influenza seasons was
non-adaptive log-linear regression (r= 0·77 for
2-week-ahead predictions, r= 0·76 for 4-week-ahead
predictions, and MedAPE varying from 0·75 for

Table 1. Performance of influenza detection algorithms when retrospectively applied on the learning set of influenza
diagnosis data and syndromic telenursing data

Algorithm Parameter combination Specificity Sensitivity Timelinessa

Influenza diagnosis data
Serfling regression α= 0·035 1·00 1·00 0
Simple regression m= 9 weeks, α= 0·075 0·90 0·70 23b

CUSUM alt1 d= 2, k= 0·25, g= 18·49 1·00 1·00 0
CUSUM alt2 d= 2, k= 0·25, g= 20·73 1·00 1·00 0
CUSUM alt3 d= 2, k= 0·60, g= 4·55 1·00 1·00 0

Telenursing data
Serfling regression α= 0·135 1·00 0·80 −2
Simple regression m= 9 weeks, α= 0·075 1·00 0·50 12
CUSUM alt1 d= 2, k= 0·13, g= 15·16 1·00 0·80 −2
CUSUM alt2 d= 2, k= 0·13, g= 25·07 1·00 0·80 −2
CUSUM alt3 d= 2, k= 0·55, g= 3·93 1·00 0·80 −2

a Positive timeliness means that the alarm is raised before the epidemic has started (i.e. the alarm is raised too early) and nega-
tive timeliness means that the alarm is raised after the epidemic has started (i.e. the alarm is raised too late).
b One value stands out, otherwise the timelines would have been 0.

Table 2. Performance of influenza prediction algorithms when retrospectively applied on the learning set of influenza
diagnosis data and syndromic telenursing data

Prediction k weeks ahead 2 weeks 3 weeks 4 weeks

Influenza diagnosis data
Correlation (r)a Non-adaptive log-linear regression 0·72 0·65 0·57

Adaptive log-linear regressionb 0·47 0·26 0·12
The naive methodc 0·62 0·45 0·29

MedAPEa Non-adaptive log-linear regression 0·92 1·00 1·00
Adaptive log-linear regressionb 0·76 0·86 0·98
The naive methodc 0·74 0·77 1·00

Telenursing data
Correlation (r)a Non-adaptive log-linear regression 0·72 0·69 0·66

Adaptive log-linear regressionb 0·45 0·27 0·14
The naive methodc 0·64 0·49 0·34

MedAPEa Non-adaptive log-linear regression 0·15 0·16 0·16
Adaptive log-linear regressionb 0·28 0·34 0·40
The naive methodc 0·14 0·20 0·20

a The correlation coefficient (r) ranks the algorithms from highest (best) to lowest (worst) values, while MedAPE ranks them
from lowest (best) to highest (worst) values.
b The method does not have the same learning set because it is adaptive, which means that the parameters are updated every
week.
c The method has no learning set. The predicted value k weeks ahead is the same as the true value k weeks before.
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2-week predictions to 0·77 for 4-week predictions)
(Table 4). For the pandemic outbreak in 2009, none
of the algorithms provided satisfactory evaluation
outcomes.

For the syndromic telenursing data, the best pre-
diction algorithm for the winter influenza seasons
was non-adaptive log-linear regression (r= 0·77 for
2-week predictions, r= 0·69 for 4-week predictions,

Table 3. Performance of influenza detection algorithms when applied prospectively on influenza diagnosis data and
syndromic telenursing data, respectively

Algorithm Parameter combination

Winter influenza seasons Pandemic

Specificity Sensitivity Timelinessa Specificity Sensitivity Timeliness

Influenza diagnosis data
Serfling regression α= 0·035 1·00 0·80 −2 0·60 0·90 4
Simple regression m = 9 weeks, α= 0·075 0·70 0·75 20 0·57 0·30 4
CUSUM alt1 d= 2, k= 0·25, g= 18·49 0·65 1·00 3 0·60 1·00 2
CUSUM alt2 d= 2, k= 0·25, g= 20·73 0·65 0·95 4b 0·80 1·00 1
CUSUM alt3 d= 2, k= 0·60, g= 4·55 0·85 0·70 5b 1·00 0 –c

Telenursing data
Serfling regression α= 0·135 1·00 0·55 −4 1·00 0·70 −2
Simple regression m = 9 weeks, α= 0·075 0·80 0·45 19 0·86 0·30 5
CUSUM alt1 d= 2, k= 0·13, g= 15·16 0·20 1·00 9 1·00 0·50 −5
CUSUM alt2 d= 2, k= 0·13, g= 25·07 0·25 0·95 7 1·00 0·40 −6
CUSUM alt3 d= 2, k= 0·55, g= 3·93 0·40 0·80 7 1·00 0 −c

a Positive timeliness means that the alarm is raised before the epidemic has started (i.e. the alarm is raised too early) and nega-
tive timeliness means that the alarm is raised after the epidemic has started (i.e. the alarm is raised too late).
b The mean of the absolute values.
c An alarm is never raised.

Table 4. Performance of influenza prediction algorithms when applied prospectively on influenza diagnosis data and
syndromic telenursing data, respectively

Prediction k weeks ahead

Winter influenza seasons Pandemic

2 weeks 3 weeks 4 weeks 2 weeks 3 weeks 4 weeks

Influenza diagnosis data
Correlation (r)a Non-adaptive log-linear regression 0·77 0·77 0·76 −0·27 −0·30 −0·33

Adaptive log-linear regressionb 0·52 0·35 0·22 0·09 0·01 0·02
The naive methodc 0·62 0·44 0·28 0·38 0·18 0·07

MedAPEa Non-adaptive log-linear regression 0·75 0·77 0·77 1·00 0·97 0·97
Adaptive log-linear regressionb 1·00 1·00 1·00 0·96 1·00 1·21
The naive methodc 0·80 0·90 0·98 0·70 0·77 0·81

Telenursing data
Correlation (r)a Non-adaptive log-linear regression 0·77 0·73 0·69 −0·20 −0·27 −0·34

Adaptive log-linear regressionb 0·67 0·55 0·42 0·37 0·24 0·18
The naive methodc 0·74 0·64 0·51 0·52 0·37 0·22

MedAPEa Non-adaptive log-linear regression 0·17 0·19 0·20 0·31 0·29 0·28
Adaptive log-linear regressionb 0·19 0·23 0·33 0·34 0·37 0·39
The naive methodc 0·17 0·19 0·23 0·19 0·21 0·26

a The correlation coefficient (r) ranks the algorithms from highest (best) to lowest (worst) values, while MedAPE ranks them
from lowest (best) to highest (worst) values.
b The method does not have the same learning set because it is adaptive, which means that the parameters are updated every
week.
c The method has no learning set. The predicted value k weeks ahead is the same as the true value k weeks before.
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and MedAPE varying from 0·17 for 2-week-ahead
predictions to 0·20 for 4-week-ahead predictions)
(Table 4). Acceptable performance was also displayed
for 2-week-ahead predictions for the naive method
(r = 0·74 and MedAPE = 0·17). For the pandemic out-
break in 2009, the algorithms produced lower correla-
tions; the highest correlation was r= 0·52 for the naive
method for 2-week-ahead predictions.

DISCUSSION

The aim of this study was to perform a comparative
trial of algorithms for the detection and prediction
of increases in local influenza activity using data
streams from a county-wide health information sys-
tem. Among the detection algorithms evaluated, we
found that only the Serfling regression displayed
satisfactory performance when applied to influenza
diagnosis data during winter influenza seasons.
Concerning the evaluated prediction algorithms, the
non-adaptive log-linear regression showed acceptable
performance when applied both to influenza diagnosis
data as well as to syndromic telenursing data. Among
the remaining two algorithms, acceptable perform-
ance was only displayed for 2-week-ahead predictions
for the naive method when applied to syndromic data.
It has been pointed out that parametric methods are
not suitable when the parameters describing the inci-
dence curve vary considerably from year to year
[32–34], as is the case with winter influenza seasons
[35]. However, the results of this study show that
Serfling regression, a parametric detection method,
and non-adaptive log-linear regression, a parametric
prediction method, displayed satisfying performance
when applied to local influenza diagnosis data.
These observations suggest that parametric methods
may be considered, although carefully, when develop-
ing methods for use in influenza epidemic detection
and prediction at local level.

Several factors could explain some of the poor per-
formances of the algorithms observed in this study.
One reason for the poor performance of the detection
algorithms when applied to the syndromic telenursing
data is that most of the evaluated algorithms were
threshold based, whereas the baseline of the telenur-
sing data had an increasing trend. For instance, the
average number of calls to the telenursing service dur-
ing the intermittent period before the winter influenza
season in 2011–2012 had increased by nearly 18%
compared with the corresponding number of calls dur-
ing the intermittent period before the winter influenza

season in 2010–2011 (Fig. 1). When using the learning
set of telenursing data to calibrate the algorithms, the
thresholds were set lower than would have been opti-
mal for the algorithms to perform well during the
evaluation period. In particular, this was reflected in
the sensitivity outcomes because low thresholds that
lack empirical foundation make the calibrated algo-
rithms excessively sensitive for raising alarms. The
need for regular pre-processing of syndromic data,
correcting for issues such as daily autocorrelations,
seasonal trends and day-of-the-week effects, has previ-
ously been emphasized [36]. For instance, in Timpka
et al. [17], a baseline temporal trend of telenursing
calls was estimated in the retrospective data using lin-
ear regression (y= b0 + b1t (where y is the incidence, b0
is the intercept, b1 is the slope, and t the time unit))
and corrected for. It has also been shown that algo-
rithms applied to syndromic data demonstrate the
best performance in specific settings, for example,
depending on the shapes of the epidemic signal [37].
These experiences indicate that application of detec-
tion algorithms prospectively on syndromic data is a
complex enterprise that requires consideration of pre-
processing the data streams and combining detection
approaches, rather than aspiring to apply one best
algorithm on unprocessed unidimensional data [38].
However, it should be taken into account that com-
bined detection approaches may lead to a decreased
specificity for the system as a whole [39].

This study has both strengths and limitations that
need to be taken into account when interpreting
the results. It is one of the first studies to use real
empirical data for side-by-side evaluation of influenza
detection and prediction algorithms in a prospective
setting. Use of real data for algorithm evaluations
has been recommended, because the characteristics
of baseline conditions in public health practice,
such as temporal patterns and noise, are likely to
have an influence on algorithm performance [40].
Regarding the limitations of the study, it should be
taken into consideration that although some consen-
sus regarding measurements to be used in the evalu-
ation of detection algorithms exists [41], this is not
the case for the evaluation of prediction algorithms.
For the evaluation of prediction algorithms, we
chose the combination of the Pearson correlation
coefficient (r) and MedAPE, where the correlation
measure estimated how well the predicted time series
followed the observed time series and the MedAPE
measure estimated the deviance of the level of the pre-
dicted time series on the y-axis from the observed
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level. Alternative or additional measurements include
the median absolute deviation and root-mean-squared
error [19], but we believe that the two measurements
used in this study provide a sufficiently valid and
accurate description of prediction performance.
Moreover, because long-term data series of constant
quality are seldom available at present at local public
health levels, only data from one season were used for
algorithm learning. Several interesting algorithms
were therefore excluded, and some of the algorithms
would probably show a better performance with a
longer time period for collection of learning data.
This scarcity of longitudinal data is a recognized
problem in the evaluation of influenza detection sys-
tems [42]. Data simulation has been used to solve
this data shortage problem; the main remaining chal-
lenge is replicating the complexity of both baseline
and epidemic data streams [43,44]. Similarly, algo-
rithms reported only from theoretical settings were
excluded, with corresponding implications. In add-
ition, the calculation of specificity was based on the
10 weeks immediately before an observed epidemic
and the calculation of sensitivity was based on the
first 10 weeks of an observed epidemic. The reason
why these measures were not based on entire datasets
was that detection methods are primarily optimized
to detect epidemics. Evidently, including longer time
periods before and during influenza epidemics
would have generated higher evaluation values.
Although other selections and computation methods
could have generated dissimilar results, we believe
that the definitions using fixed time periods are
valid for the comparative analyses performed in the
present study.

We conclude that among the algorithms evaluated,
Serfling regression as detection algorithm and non-
adaptive log-linear regression as prediction algorithm
displayed satisfactory performance when applied on
diagnostic data during winter influenza seasons in
a local public health setting. When applied on
syndromic data, satisfactory performance was shown
only for the non-adaptive log-linear regression
method among the prediction algorithms evaluated,
while all of the detection algorithms evaluated showed
poor performance. During the 2009 pandemic out-
break, the evaluated algorithms generally displayed
poor performance. Both further evaluation research
and research on combination of methods of these
types in public health information infrastructures for
‘nowcasting’ (integrated detection and prediction) of
influenza activity is warranted.
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