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SUMMARY

The spatial distribution of human cases of tick-borne diseases is probably determined
by a combination of biological and socioeconomic factors. A zoonotic tick-borne pathogen,
Ehrlichia chaffeensis, is increasing in human incidence in the USA. In this study, the spatial
patterns of probable and confirmed E. chaffeensis-associated cases of ehrlichiosis from 2000 to
2011 were investigated at the zip-code level in Missouri. We applied spatial statistics, including
global and local regression models, to investigate the biological and socioeconomic factors
associated with human incidence. Our analysis confirms that the distribution of ehrlichiosis in
Missouri is non-random, with numerous clusters of high incidence. Furthermore, we identified
significant, but spatially variable, associations between incidence and both biological and
socioeconomic factors, including a positive association with reservoir host density and a negative
association with human population density. Improved understanding of local variation in these
spatial factors may facilitate targeted interventions by public health authorities.
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INTRODUCTION

Zoonotic pathogens transmitted by the lone star
tick (Amblyomma americanum) are rapidly emerging
throughout its range in the USA [1]. Foremost of
these is Ehrlichia chaffeensis, causative agent of
Ehrlichiosis chaffeensis infection in humans (formerly
human monocytic ehrlichiosis and hereafter referred
to as ‘ehrlichiosis’) [2]. In recent years, there have
been significant increases in the number of cases
reported from central regions of the country, with

rates in Missouri among the highest of all states [3].
Although advances in diagnostic techniques have
facilitated the recognition of E. chaffeensis infection
in humans, the rising incidence is thought to be par-
tially attributable to anthropogenic influences on the
increasing geographical range, abundance, and infec-
tion rates of A. americanum [4].

Transmission of tick-borne, zoonotic pathogens in
susceptible human populations requires the relative
proximity of vertebrate reservoir hosts, tick vectors,
and humans. Thus the mechanisms that drive tick-
borne disease risk and incidence are intrinsically
spatial [5]. Further, the spatial distribution of entomo-
logical risk (often measured as the density of infected
ticks for a given area) is dependent upon environ-
mental factors occurring at multiple spatial scales
[6]. For example, A. americanum is strongly influenced
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by local-scale factors that determine its survival
(e.g. temperature and humidity patterns) [7]. At larger
spatial scales, tick distributions and pathogen infec-
tion rates are a factor of the presence and abundance
of vertebrate host species, which are in turn influenced
by the spatial arrangement of important habitats re-
quired for forage and reproduction [8]. As white-tailed
deer (Odocoileus virginianus) are an important host
for A. americanum and zoonotic reservoir for E. chaf-
feensis [4, 9], factors that influence the spatial dis-
tribution of white-tailed deer may also influence
disease risk [10]. Finally, the presence/absence of
pathogens, ticks, and hosts is determined at even
larger spatial scales by phenomena associated with
biogeography, including habitat characteristics and
annual variation in temperature and precipitation [11].

Transmission of E. chaffeensis into human popu-
lations is probably further mediated by human socio-
economic and demographic patterns at multiple
spatial scales. Factors that are associated with risk
of exposure to E. chaffeensis include occupation
(e.g. workers in resource extraction industries such
as logging), age, sex and racial group (e.g. incidence
is highest in white males aged >40 years), and even
golf score [12–14]. Further, patterns in individual
behaviours that influence risk of exposure to tick-
borne diseases (hereafter ‘behavioural risk’) may also
vary across spatial gradients [15]. However, these
socioeconomic factors can only influence disease inci-
dence when ecological parameters are suitable for
transmission to occur.

An emerging discipline, termed ‘spatial epidemi-
ology’, has been proposed as a means of elucidating
these transmission dynamics by examining the spatial
arrangement of social and ecological factors that con-
tribute to patterns of disease risk and incidence [16].
Despite the importance of social-ecological factors
in determining the entomological risk of exposure
to E. chaffeensis or human incidence of ehrlichiosis
[17, 18], little is known about the relative role these
factors may play in determining the spatial variation
in the distribution of ehrlichiosis incidence. Using
a spatial epidemiological framework, we sought to
better understand the manifestations of E. chaffeensis
exposure within a highly endemic state to better in-
form medical surveillance efforts and guide public
health interventions. Specifically, our objectives were
to: (1) describe the spatial distribution of ehrlichiosis
incidence in Missouri, (2) identify areas of unusually
high numbers of clustered cases, and (3) quantify the
large-scale effects of epidemiologically meaningful

socioeconomic, ecological, and biogeographical fac-
tors on the spatial variability of disease incidence.

MATERIALS AND METHODS

Epidemiological data

Human ehrlichiosis was first made a nationally notifi-
able infectious disease in 1998 [19], with subsequent
case definition revisions made in 2000 and 2008
[20, 21]. We obtained a database of 1135 probable
and confirmed cases of ehrlichiosis associated with
E. chaffeensis in Missouri during 2000–2011 from
the Missouri Department of Health and Senior Ser-
vices (MDHSS). Probable and confirmed cases are
each characterized by clinically compatible illness
with evidence of elevated serological antibody titre,
with case confirmation made with evidence of: a
5fourfold increase in antibody titre, polymerase
chain reaction assay, or pathogen isolation in cellular
culture [2]. Of the cases reported during the study
period, 1062 (93·6%) contained patient address
information at the zip-code level, with ∼50% of
cases classified as confirmed (MDHSS IRB exemption
no. 71612). To obtain robust estimates of disease
distribution, probable and confirmed cases for each
zip code were combined to calculate the stan-
dardized cumulative incidence/100000 persons
using 2000 U.S. decennial census population esti-
mates [22].

Socioeconomic, environmental and biogeographical
variables

To evaluate the potential associations between human
population characteristics and the spatial distribution
of ehrlichiosis, we created socioeconomic variables
with data obtained from the 2000 U.S. census [22].
Variables were chosen to reflect either known risk
factors for ehrlichiosis or potential determinants of
disease transmission [8, 14]. These included: gender
(proportion male), age (proportion aged >64 years),
race (proportion white), occupation (proportion
working in agricultural, forestry, mining, fishing, or
hunting industries), education (proportion with
high-school-level diploma), and poverty (proportion
under federal poverty line). In addition, we included
human population density/km2 and the proportion
of vacant housing units to assess the contribution of
land-use and housing characteristics to incidence in
residentially developed regions.
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We included several environmental variables that
have been strongly associated with the presence of
E. chaffeensis-infected A. americanum: forest cover
and the density of white-tailed deer [4, 9, 18]. To
characterize the distribution of forest cover, we cal-
culated the percentage of each zip code covered by de-
ciduous forest using data obtained from the 30×30m
resolution 2006 National Land Cover Database [23].
White-tailed deer population estimates from 2000
to 2009 were obtained at the county level using
population projections calculated by the Missouri
Department of Conservation from hunter harvest suc-
cess rates. To rescale the average number of deer to
the zip-code level, we divided the number of deer in
each county by the weighted area (km2) of each zip
code that fell within a particular county.

To understand the importance of environmental
factors that vary at biogeographical scales, we in-
cluded level III ecoregions derived by the Environ-
mental Protection Agency (EPA). These ecoregions
reflect a unique set of ecological communities defined
by particular climactic and geological characteristics
[24], which include (1) location, (2) climate, (3) veg-
etation, (4) hydrology, (5) terrain, (6) wildlife, and
(7) human land-use. Level III ecoregions are derived
from data compiled from many different sources
with the intention that these offer concise and ecologi-
cally meaningful depictions of landscape-scale vari-
ation in biological and environmental variables. In
the state of Missouri there are five major ecoregions:
Central Irregular Plains, Interior River Valleys and
Hills, Ozark Highlands, Mississippi Alluvial Plain,
and Western Corn Belt Plains (Fig. 1a, Supplementary
Table S1). We aggregated the analysis by ecoregion
to identify how the effects of social-ecological factors
on disease incidence may differ across large-scale en-
vironmental gradients and to control for the presump-
tive effects of local-scale environmental effects (e.g.
microclimate) on disease distribution.

Statistical analysis

We implemented an empirical Bayesian smoothing
(EBS) on the cumulative incidence data to adjust for
the random variance associated with the distribution
of small numbers of cases in relatively small popula-
tions at risk across zip codes. EBS allows for better
visualization of disease gradients, which may not
otherwise be apparent with raw case numbers [25].
Using EBS incidence, we determined if the distri-
bution of ehrlichiosis across the state exhibited spatial

dependence by calculating Moran’s I measure of
spatial autocorrelation [26]. To better delineate the
location of significantly high-incidence clusters of
ehrlichiosis, we computed a locally derived measured
of Moran’s I statistic known as the local indicator of
spatial autocorrelation (LISA) statistic [27].

Comparisons were made between high-incidence
LISA clusters and all other zip codes to determine
which social-ecological factors were associated with
elevated incidence. Values of each variable were
compared using the Wilcoxon rank-sum test. To de-
termine which factors predicted membership in a
high-incidence LISA cluster, we used binary logistic
regression with outcome of 1 for cluster vs. 0 for
no cluster. A bivariate analysis was conducted first,
with each variable included separately in the model.
Significant variables were then entered into a multi-
variate logistic regression model with backward step-
wise elimination used to fit a final set of parameters.
To measure the importance of dividing the state into
ecologically unique areas, we compared incidence,
socioeconomic, and environmental variables across
ecoregions using the Kruskal–Wallis one-way analysis
of variance. Again, we adopted bivariate and
multivariate binary logistic regression to model a
dichotomized outcome variable based on the median
incidence across all zip codes (1 for incidence
52·31×10−4 vs. 0 for incidence <2·31×10−4) to
model factors associated with elevated incidence
within each ecoregion. We selected the median as a
cut-off value to represent elevated vs. non-elevated
incidence in place of an a priori justification for
other values and to retain sufficient statistical power.
Analyses were performed using SAS v. 9.3 (SAS
Institute Inc., USA) and GeoDa [28].

Modelling spatial variation

When spatial structure exists in data, the use of global
ordinary least squares (OLS) regression can suppress
local variation in the relationships between model
parameters [29]. Therefore, we implemented geogra-
phically weighted regression (GWR) to explore the
important influence of local spatial variation on the
relationships between social-ecological factors with
smoothed ehrlichiosis incidence. GWR has been
developed as a means of accounting for the effects
of spatial non-stationarity by generating local models
and parameter estimates for every point in space [30].
We used this technique to determine the extent of
local-scale geographical variability in social-ecological
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Fig. 1. Spatial distribution of: (a) Missouri level III ecoregions, (b) cumulative incidence of probable and confirmed
E. chaffeensis infection/100000 persons, (c) empirical Bayesian smoothed (EBS) incidence, and (d) high incidence local indi-
cators of spatial autocorrelation (LISA) clusters.
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variables and disease incidence for the centroid of
each zip code, which may otherwise be obscured in
an ecoregion-scale analysis.

We first built a global OLS regression to fit a
set of social-ecological variables. Combinations of
significant covariates were retained in the final OLS
model by measuring the reduction of Akaike’s Infor-
mation Criterion (AIC), a technique that favours
parsimony over complexity [31] (Supplementary
Table S4). The model was screened for evidence of
collinearity in the variables by ensuring all variance
inflation factors remained low (<3·0). Screening the
OLS residuals for spatial heterogeneity using Moran’s
I statistic indicated that a non-random (P<0·05) spa-
tial structure was present in the variables, justifying
the inclusion of spatial weighting techniques. There-
fore, we entered variables from the global OLS
model into a GWR framework to explore the local
variability in significant model parameters and inci-
dence. Adaptive bandwidth selection was used to
minimize AIC and ensure a sufficient number of zip
codes were selected for each local model [32]. We
measured improvement in model fit between the
OLS and GWR models by comparing the corrected
AIC (AICc) and adjusted R2 values (Table 3, Sup-
plementary Fig. S1B). In addition, we tested for
spatial autocorrelation in the GWR residuals (Sup-
plementary Fig. S1C) using Moran’s I statistic as a
means of model validation and to ensure non-biased
parameter estimates. To visualize the significance of
each local parameter estimate for every zip code in
the state, we plotted absolute t values by dividing
each coefficient by its standard error and compared
it against the magnitude of the coefficient [33]. Both
OLS and GWR models were produced using ArcGIS
v. 10.0 (ESRI, USA).

RESULTS

Spatial distribution of incidence

The average cumulative incidence of ehrlichiosis in
Missouri was 37/100000 persons, with incidence ran-
ging from 0/100000 to 1010/100000 for the 11-year
time period (Fig. 1b). At least one human case was
reported in 423/1025 (41·3%) zip codes during this
time. The EBS analysis revealed a clearer represen-
tation of areas with elevated incidence, particularly
the Ozark Highlands ecoregion (Fig. 1c). Moran’s I
was 0·586 (P<0·001), indicating that neighbouring
zip codes have statistically more similar incidence

than would be found at random. The LISA analysis
revealed that multiple (n=80) zip codes had signifi-
cantly similar high incidence (Fig. 1d). Within these
clusters, the average cumulative incidence was 130/
100000 compared to 29/100000 for the rest of the
state.

Determinants of elevated incidence

We found significant differences in the social-
ecological characteristics between zip codes within
and outside of high-incidence clusters. In the bivar-
iate analysis, low population density, increased pro-
portion aged 565 years, increased proportion white
race, increased proportion of vacant housing units,
increased proportion working in the agriculture, for-
estry, fishing, or hunting occupational sector, in-
creased proportion with at least a high-school-level
education, increased proportion living in poverty,
increased proportion of deciduous forest cover, and
high deer density were all significantly predictive of
membership in a high-incidence cluster (Table 1,
Supplementary Table S3). Several variables remained
significant after inclusion in a multivariate model. The
odds of membership in a high-incidence zip code
decreased for every one unit increase in human popu-
lation density [adjusted odds ratio (aOR) 0·98, 95%
confidence interval (CI) 0·97–0·99], increased for
every one unit increase in deer density (aOR 1·27,
95% CI 1·08–1·50), and increased with every 1% in-
crease in vacant housing (aOR 1·04, 95% CI 1·02–
1·06) and deciduous forest cover (aOR 1·03, 95% CI
1·02–1·04) (Table 1).

Disease incidence, socioeconomic and environmen-
tal indicators all differed significantly across eco-
regions (Table 2). The Ozark Highlands contained the
largest number of high-incidence zip codes (n=55)
and the highest cumulative incidence (52·5/100000
persons). Both the Western Corn Belt and
Mississippi Alluvial Plain had no high-incidence clus-
ters and the lowest cumulative incidence (10·6 and 9·4/
100000 persons, respectively). The Ozark Highlands
had the lowest population density (60·26/km2), while
the Western Corn Belt and Interior River had the
highest (244·55/km2 and 659·24/km2, respectively).
The Central Irregular Region had the highest pro-
portion of residents aged >64 years (15·75%), largest
proportion of residents with at least a high-school edu-
cation (42·95%), highest proportion of outdoor occu-
pations (9·92%) and the greatest density of deer
(1·20/km2).
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Clear regional differences in the associations be-
tween incidence and social-ecological variables were
further explained with the ecoregion-specific multi-
variate models (Table 3). In the Ozark Highlands,
nine variables were significantly associated with

ehrlichiosis incidence in the bivariate analysis. After
entering these in the multivariate model, two re-
mained significant predictors. Ehrlichiosis incidence
was negatively associated with population density
(aOR 0·60, 95% CI 0·50–0·71) and positively

Table 1. Socioeconomic and environmental factors associated with elevated incidence clusters

Variable*

LISA cluster

P value OR (95% CI) aOR (95% CI)No cluster Cluster

Population density/km2 197·17 10·77 <0·001 0·24 (0·14–0·40) 0·98 (0·97–0·99)
Gender, male 49·76 50·27 0·06 1·04 (0·98–1·10) —

Age, >64 years 14·87 17·36 0·004 1·07 (1·02–1·11) —

Race, white 92·57 97·28 <0·001 1·58 (1·05–1·27) —

Vacant housing 13·08 21·85 <0·001 1·06 (1·04–1·08) 1·04 (1·02–1·06)
Occupation† 7·17 10·08 0·001 1·04 (1·02–1·07) —

Education‡ 39·87 43·10 0·08 1·04 (1·01–1·06) —

Poverty§ 13·93 16·18 0·001 1·03 (1·00–1·05) —

Deciduous forest 27·32 46·95 <0·001 1·04 (1·03–1·05) 1·03 (1·02–1·04)
Deer density/km2 0·87 1·47 <0·001 1·40 (1·20–1·63) 1·27 (1·08–1·50)

LISA, Local indicator of spatial autocorrelation; aOR, adjusted odds ratio; CI, confidence interval.
* Values are presented as proportions unless referring to density/km2.
† Proportion working in agriculture, forestry, mining, fishing, or hunting industries.
‡ Proportion aged >25 years with high school or equivalent-level education.
§ Proportion living under the Federal poverty line.

Table 2. EPA level III ecoregion comparison

Variable

EPA level III ecoregion

P value
Ozark
Highlands

Central
Irregular

Western
Corn Belt

Interior
River

Mississippi
Plains

Incidence
LISA clusters* 55 21 0 4 0 <0·001
EBS incidence† 4·0×10−3 3·0×10−3 0·1×10−3 0·2×10−3 0·01×10−3 <0·001
Cumulative incidence‡ 52·6 38·3 10·6 22·8 9·4 <0·001

Socioeconomic
Population density/km2 60·26 115·81 244·55 659·24 69·15 <0·001
Age 15·17 15·75 14·22 13·89 15·42 <0·001
Race 96·36 94·00 92·65 83·20 90·26 <0·001
Vacant housing 16·28 13·37 10·01 12·31 10·18 <0·001
Occupation 7·13 9·92 6·58 3·31 8·24 <0·001
Poverty 15·20 13·29 10·68 12·05 22·02 <0·001
Education 39·91 42·95 41·54 34·97 37·63 <0·001
Gender 49·99 49·80 50·41 49·19 48·74 0·001

Environmental
Deciduous forest 49·49 17·24 10·70 22·57 3·38 <0·001
Deer density/km2 0·91 1·20 0·55 0·94 0·23 <0·001

EPA, Environmental Protection Agency; LISA, local indicator of spatial autocorrelation; EBS, empirical Bayesian smoothing.
* Frequencies compared using the Fisher’s exact test.
†Empirical Bayesian smoothed incidence.
‡ Standardized cases/100000 people.
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associated with the proportion of vacant housing
units (aOR 1·03, 95% CI 1·00–1·05). In the Central
Irregular Plains, there were 10 variables significantly
associated with incidence in the bivariate analysis.
When entered into a multivariate model, four vari-
ables remained significant. Elevated incidence was
positively associated with white race (aOR 1·06, 95%
CI 1·02–1·11), proportion of vacant housing units
(aOR 1·10, 95% CI 1·05–1·16), proportion living in
poverty (aOR 1·06, 95% CI 1·02–1·11), and pro-
portion of deciduous forest cover (aOR 1·03, 95%
CI 1·00–1·06).

Evidence of spatial non-stationarity

The global OLS model revealed that incidence was
negatively associated with human population density,
and positively associated with vacant housing,

deciduous forest cover, and deer density (Table 4).
Using these variables in a local GWR model resulted
in improved overall model fit (∆AICc=8·4) and ex-
plained a larger proportion of the variance (36·1%)
compared to the global OLS model (25·4%). While
the local GWR model supported the associations
between incidence and the independent variables,
the association between these covariates showed con-
siderable differences across the state, suggesting spa-
tial non-stationarity in some of the most significant
predictors of elevated ehrlichiosis incidence (Supple-
mentary Fig. S1A).

The relationship between incidence and human
population density was generally negative across the
state; however, there were several strong positive as-
sociations in the northeast and parts of the Kansas
City and St Louis metropolitan areas (Fig. 2a). The
distribution of vacant housing units had a strong

Table 3. Ecoregion-specific logistic regression analysis

Ecoregion model Variable OR (95% CI) P value* aOR (95% CI) P value*

Ozarks Highlands Population density/km2 0·27 (0·19–0·40) <0·001 0·60 (0·50–0·71) <0·001
Gender 1·13 (1·02–1·26) 0·02 — —

Age 1·07 (1·02–1·12) 0·004 — —

Race 1·10 (1·03–1·18) 0·004 — —

Vacant housing 1·05 (1·03–1·08) 0·002 1·03 (1·00–1·05) 0·04
Occupation 1·04 (1·01–1·08) 0·02 — —

Poverty 1·04 (1·01–1·06) 0·01 — —

Deciduous forest 1·03 (1·02–1·04) <0·001 — —

Deer density/km2 1·49 (1·14–1·95) 0·004 — —

Central Irregular Population density/km2 0·27 (0·17–0·41) <0·001 — —

Age 1·12 (1·10–1·18) <0·001 — —

Race 1·10 (1·04–1·16) 0·001 1·06 (1·02–1·11) 0·004
Vacant housing 1·15 (1·10–1·20) <0·001 1·10 (1·05–1·16) <0·001
Occupation 1·11 (1·07–1·15) <0·001 — —

Education 1·06 (1·04–1·09) <0·001 — —

Poverty 1·06 (1·02–1·10) 0·002 1·06 (1·02–1·11) 0·008
Deciduous forest 1·04 (1·02–1·07) 0·001 1·03 (1·00–1·06) 0·04
Deer density/km2 1·40 (1·12–1·76) 0·004 — —

Western Corn Belt Race 1·33 (1·02–1·73) 0·04 1·44 (1·05–1·98) 0·02
Poverty 0·81 (0·69–0·95) 0·01 0·77 (0·64–0·93) 0·005

Interior River Valley Population density/km2 0·24 (0·15–0·38) <0·001 — —

Gender 1·26 (1·08–1·47) 0·003 — —

Race 1·07 (1·03–1·12) 0·002 — —

Vacant housing 1·04 (1·01–1·08) 0·03 — —

Occupation 1·37 (1·21–1·55) <0·001 1·25 (1·10–1·43) 0·009
Education 1·11 (1·06–1·16) <0·001 1·06 (1·03–1·10) <0·001
Deciduous forest 1·08 (1·05–1·11) <0·001 2·13 (1·23–3·69) 0·007
Deer density/km2 4·64 (2·51–8·57) <0·001 — —

Mississippi Poverty 1·06 (1·00–1·14) 0·04 1·06 (1·00–1·14) 0·04

aOR, Adjusted odds ratio; CI, confidence interval.
*Wald χ2 statistic.
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positive relationship in the northwestern and north-
eastern portions of the state, as well as many parts
of the Ozark Highlands (Fig. 2b). The proportion of
deciduous forest cover was significantly positively
associated with increased incidence in the Mississippi
Alluvial Plains, the St Louis metropolitan region,
and portions of the Ozark Highlands and Central
Irregular Plains (Fig. 2c). Deer density was generally
positively associated with incidence; however, there
were multiple regions where this relationship was
significantly inversed, including the south-central
portion of the state and the Western Corn Belt
(Fig. 2d).

DISCUSSION

Understanding spatial heterogeneity in environmen-
tally transmitted infectious diseases, particularly zoo-
noses, is inherently challenging due to the numerous
spatial scales at which interactions between hosts, vec-
tors, pathogens and their environment occur. Further
complicating these efforts is that human socioeco-
nomic factors and behaviours relevant to disease risk
may also vary across gradients in human land-use
[15, 34], requiring a synthesis of both ecological and
social factors to fully understand the causes of disease.
Here, we demonstrate how a spatial epidemiological
approach can both refine estimates of disease distri-
bution and offer an improved understanding of the
factors associated with transmission dynamics of
an emerging vector-borne disease within a highly en-
demic sate. To our knowledge, this study is the first
to demonstrate a subcounty-level analysis of the dis-
tribution of human ehrlichiosis in Missouri. Unlike

metrics of risk based on entomological modelling,
the use of incidence data decidedly demonstrates
human contact with pathogen-infected vectors. This
has allowed for the exploration of associations of epi-
demiologically important social-ecological factors
that constrain human tick exposure.

Spatially explicit statistical analysis revealed that
there were non-random patterns in the distribution
of cases, including significantly high clustering of
cases in the Ozark Highlands and Central Irregular
Plains ecoregions. Identification of high-incidence
clusters could prove invaluable for public health
officials tasked with implementing disease surveillance
and control programmes. We also identified social-
ecological variables associated with incidence, includ-
ing a generally positive association with an increased
proportion of forest cover, increased proportion of
vacant housing units, an increased density of white-
tailed deer, and a generally negative association with
human population density. This information may be
used by public health agencies to develop integrated
vector-borne disease mitigation programmes to in-
clude both environmental (e.g. deer population man-
agement) and social (e.g. awareness campaigns in
rural communities) interventions.

Incidence significantly differed across ecoregions,
suggesting that biogeographical-scale ecological fac-
tors may determine where humans are at greatest risk
of exposure to ehrlichiosis. There was a significantly
high clustering of cases in the Ozark Highlands and
Central Irregular Plains, and environmental features
of these two ecoregions that may facilitate high ento-
mological risk include forest type (primarily oak-
hickory woodlands, compared to bottomland

Table 4. Global OLS and local GWR model summary

Variable

OLS model GWR model†

β (S.E.)* t statistic P value βmin βmedian βmax

Intercept 1·7×10−4 (0·27×10−4) 6·41 <0·001 −1·68×10−4 2·14×10−4 6·88×10−4

Population density/km2 −0·3×10−4 (0·05×10−4) −6·06 <0·001 −2·14×10−4 0·02×10−4 0·25×10−4

Vacant 0·06×10−4 (0·01×10−4) 6·96 <0·001 −0·08×10−4 0·02×10−4 0·25×10−4

Deciduous forest 0·04×10−4 (0·00×10−4) 9·22 <0·001 −0·11×10−4 0·02×10−4 0·15×10−4

Deer density/km2 0·2×10−4 (0·08×10−4) 2·61 0·009 −1·01×10−4 −0·01×10−4 0·92×10−4

Model fit
AICc −1399·1 −1407·5
Adjusted R2 0·254 0·002 0·361 0·607

OLS, Ordinary least squares; GWR, geographically weighted regression.
* Beta coefficient (standard error).
†Beta coefficients presented as the range of values across all zip codes, with median value derived from the interquartile range.
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Fig. 2. For legend see next page
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(c) Strength of relationship
Local t value
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Fig. 2. [colour online]. Geographically weighted regression models predicting incidence of ehrlichiosis for the four variables
selected from the global ordinary least squares analysis. Panels depict the local parameter beta coefficients (darker shades
indicate a positive relationship while lighter shades indicate a negative relationship) and absolute value of the local t value
(larger dots indicate a stronger statistical relationship) for: (a) human population density, (b) proportion of vacant housing
units, (c) proportion of deciduous forest cover, and (d) white-tailed deer density.
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deciduous forest, swamp forest and/or landscapes his-
torically dominated by prairie grasslands converted
into agricultural land in the otherMissouri ecoregions),
a relatively long frost-free period (140–230 and 165–235
days, respectively, potentially increasing over-winter
survival forA. americanum) and occurring on a bound-
ary between a humid continental climate and a humid
subtropical climate [24]. Recent studies concerning
A. americanum and other tick species have shown
support for biogeographical-scale determinants of
tick-borne disease risk and incidence [35]. A statewide
survey in Tennessee determined that E. chaffeensis-
infected A. americanum were only present in two of
the seven ecoregions [36], while a field survey in south-
ern Missouri found the presence and abundance of
A. americanum to be positively associated with forest
cover and increasing relative humidity during June
[17]. A constellation of biogeographical factors may
ultimately determine disease risk at these large spatial
scales, but empirical support has been demonstrated
for factors such as elevation, vapour pressure deficit,
and forest area [11].

Results from the multivariate analysis predicting
membership of a LISA cluster revealed that lower
population density, higher deer density, and greater
proportions of vacant houses and deciduous forest
cover were associated with elevated incidence. These
factors taken together may be indicative of forces
that drive higher incidence in rural portions of the
state, where a convergence of demographic and en-
vironmental characteristics across different spatial
scales may be occurring. The overlap between these
factors suggests that, within biogeographical regions
that support deciduous forest growth and mainten-
ance of large deer populations, the risk of disease
transmission may be higher where population density
is low and the proportion of vacant houses is high.
However, we found further regional differences in
many of the factors significantly associated with
LISA clusters (Table 3), suggesting that the strength
of these relationships vary with changes in biological
and socioeconomic conditions. Identifying these clus-
ters may provide public health officials with a new set
of metrics to implement proactive, early detection and
control initiatives.

A novel finding of this analysis was that an
increased proportion of vacant housing units per zip
code was consistently associated with elevated inci-
dence of ehrlichiosis. This factor may serve as a
proxy for anthropogenic influences contributing to
focal points for high transmission risk in the

peridomestic environment. Previous studies on the
socioeconomic risk factors associated with risk for
other vector-borne diseases have suggested that poor
maintenance associated with these housing character-
istics may result in higher levels of established veg-
etation cover, resulting in micro-level vector
propagation or host aggregation [37]. Therefore,
vacant housing units may represent a new measure
for identifying regions where socioeconomic con-
ditions result in high-risk land-use practices. This
finding may be used to direct future entomological
sampling efforts and serve as a beacon for targeted,
active surveillance efforts in areas that may now be
considered focal points for high vector–human con-
tact.

A negative correlation between tick-borne disease
incidence and human population density has been
observed previously for ehrlichiosis [38]. However,
this association is often attributed to environmental
factors such as increased host–vector habitat or den-
sity. Here, we control for the contributions of several
social-ecological factors and still find a widespread
negative association with human population density.
This may be indicative of behavioural factors that as-
sociate with low population density, such as an in-
crease in behaviours that contribute to risk of
exposure. To wit, a survey of human behaviours span-
ning an urban–rural human land-use gradient in
Missouri found respondents from rural areas signifi-
cantly less likely to engage in tick-borne disease pre-
vention behaviours [15]. Our results may therefore
be of use to public health agencies tasked with prom-
ulgating disease prevention messages in areas we now
show to be epidemiologically important.

Using global and locally varying regression meth-
ods, we provide a framework for identifying factors
that contribute to elevated risk for disease in suscep-
tible human populations spanning numerous biologi-
cal and socioeconomic gradients. Multiple factors
proved to be important in determining human inci-
dence of ehrlichiosis in Missouri, and for several of
these factors management would fall outside the tra-
ditional institutional boundaries of public health
agencies (e.g. density of white-tailed deer). Therefore,
our results may be of interest to multiple stakeholders
with a vested interest in enhanced spatial understand-
ing of the transmission dynamics of ehrlichiosis in
this region. Based on these results, we propose an
integrated approach to reducing ehrlichiosis emerg-
ence in Missouri by refining wildlife management pro-
grammes, improving vector and medical surveillance
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efforts, and targeting health education campaigns
to high-risk areas based upon the combination of fac-
tors that associate with high human incidence. Our
findings may also be used to increase physician aware-
ness in specific areas, which may improve rates of true
positive diagnoses, ultimately resulting in more precise
surveillance estimates and timelier administration of
antibiotic therapies to those most at risk of serious dis-
ease complications (e.g. the elderly or immunocom-
promised) [13, 14].

It is important to note potential sources of bias in
the data used for these analyses. For example, inci-
dence data are subject to surveillance bias due to
underreporting or misdiagnoses of cases, particularly
for newly emerging diseases. A prospective study in
rural southeastern Missouri suggested that cases may
be significantly underreported in this region [39]. Fur-
ther, geographical estimates of incidence are based
on the residence of each individual, rather than knowl-
edge of the location where disease transmission
occurred. However, studies have suggested that trans-
mission risk for tick-borne diseases may be highest in
the peridomestic environment [40]. Finally, estimates
of spatial variation in the abundance of A. ameri-
canum may have improved our model estimates of
key environmental factors that drive ehrlichiosis inci-
dence. However, as no statewide survey data currently
exist, and tick abundance has been shown to correlate
with broad-scale biogeographical factors in numerous
recent studies [17, 18], we instead utilized available
environmental data in place of estimates of tick
abundance.

Our findings illustrate the value of synthesizing
social-ecological factors to understand spatial varia-
bility in the incidence of a vector-borne, zoonotic
disease. The manifestation of this disease in human
populations is a product of both ecological factors
that drive pathogen amplification within the enzootic
transmission cycle, and the socioeconomic and demo-
graphic conditions that influence which human popu-
lations are at greatest risk of exposure. These results
provide an increased knowledge base of the spatial
distribution of ehrlichiosis in Missouri, and represent
several opportunities for greatly improved surveillance
and targeted health interventions.
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