On microfunctions at the boundary along CR manifolds

ANDREA D'AGNOLO1 and GIUSEPPE ZAMPIERI2

¹Mathématiques; Univ. Paris 6; 4, Place Jussieu; F-75252 Paris Cedex 05 ²Dip. di Matematica, Università di Padova, via Belzoni 7, I-35131 Padova, Italy

Received 16 August 1995; accepted in final form 4 December 1995

Abstract. Let X be a complex analytic manifold, $M \subset X$ a C^2 submanifold, $\Omega \subset M$ an open set with C^2 boundary $S = \partial \Omega$. Denote by $\mu_M(\mathcal{O}_X)$ (resp. $\mu_\Omega(\mathcal{O}_X)$) the microlocalization along M (resp. Ω) of the sheaf \mathcal{O}_X of holomorphic functions.

In the literature (cf. [A-G], [K-S 1,2]) one encounters two classical results concerning the vanishing of the cohomology groups $H^j\mu_M(\mathcal{O}_X)_p$ for $p\in T_M^*X$. The most general gives the vanishing outside a range of indices j whose length is equal to $s^0(M,p)$ (with $s^{+,-,0}(M,p)$ being the number of respectively positive, negative and null eigenvalues for the 'microlocal' Levi form $L_M(p)$). The sharpest result gives the concentration in a single degree, provided that the difference $s^-(M,p')-\gamma(M,p')$ is locally constant for $p'\in T_M^*X$ near p (with $\gamma(M,p)=\dim^{\mathbf{C}}(T_M^*X\cap iT_M^*X)_z$ for z the base point of p).

The first result was restated for the complex $\mu_{\Omega}(\mathcal{O}_X)$ in [D'A-Z 2], in the case codim $_MS=1$. We extend it here to any codimension and moreover we also restate for $\mu_{\Omega}(\mathcal{O}_X)$ the second vanishing theorem

We also point out that the principle of our proof, related to a criterion for constancy of sheaves due to [K-S 1], is a quite new one.

Key words: Solvability of the $\bar{\mathcal{O}}$ -complex.

Mathematics Subject Classifications (1991): 58G, 32F.

1. Notations

Let X be a complex analytic manifold and $M\subset X$ a C^2 submanifold. One denotes by $\pi\colon T^*X\to X$ and $\pi\colon T_M^*X\to M$ the cotangent bundle to X and the conormal bundle to M in X respectively. Let \dot{T}^*X be the cotangent bundle with the zero section removed, and let $\rho\colon M\times_X T^*X\to T^*M$ be the projection associated to the embedding $M\hookrightarrow X$.

For a subset $A \subset X$ one defines the strict normal cone of A in X by $N^X(A) := TX \setminus C(X \setminus A, A)$ where $C(\cdot, \cdot)$ denotes the normal Whitney cone (cf [K-S 1]). Let $z_0 \in M$, $p \in (\dot{T}_M^*X)_{z_0}$. We put $T_{z_0}^{\mathbf{C}}M = T_{z_0}M \cap iT_{z_0}M$; $\lambda_M(p) = T_pT_M^*X$; $\lambda_0(p) = T_p(\pi^{-1}\pi(p))$, $\nu(p)$ =the complex Euler radial field at p, and we set $\gamma(M,p) = \dim^{\mathbf{C}}(T_M^*X \cap iT_M^*X)_{z_0}$. If no confusion may arise, we will sometimes drop the indices z_0 or p in the above notations.

Let ϕ be a C^2 function in X with $\phi \mid_M \equiv 0$ and $p = (z_0; d\phi(z_0))$. In a local system of coordinates (z) at z_0 in X we define $L_{\phi}(z_0)$ as the Hermitian form with matrix $(\partial z_i \overline{\partial} z_j \phi)_{ij}$. Its restriction $L_M(p)$ to $T_{z_0}^{\mathbf{C}}M$ does not depend on the choice of ϕ and is called the Levi form of M at p. Let $s^{+,-,0}(M,p)$ denote the number of respectively positive, negative and null eigenvalues of $L_M(p)$.

One denotes by $D^b(X)$ the derived category of the category of bounded complexes of sheaves of **C**-vector spaces and by $D^b(X;p)$ the localization of $D^b(X)$ at $p \in T^*X$, i.e. the localization of $D^b(X)$ with respect to the null system $\{F \in D^b(X); p \notin SS(F)\}$ (here SS(F) denotes the micro-support in the sense of [K-S 2], a closed conic involutive subset of T^*X).

Remark 1.1. We recall that a complex F which verifies $SS(F) \subset T_M^*X$ in a neighborhood of $p \in T_M^*X$ is microlocally isomorphic (i.e. isomorphic in $D^b(X;p)$) to a constant sheaf on M. This criterion, stated in [K-S 1] for a C^2 manifold M, extends easily to C^1 manifolds (cf [D'A-Z 1]).

Let \mathcal{O}_X be the sheaf of germs of holomorphic functions on X and \mathbf{C}_A , $(A \subset X \text{ locally closed})$, the sheaf which is zero in $X \setminus A$ and the constant sheaf with fiber \mathbf{C} in A. We shall consider the complex $\mu_A(\mathcal{O}_X) := \mu \text{hom}(\mathbf{C}_A, \mathcal{O}_X)$ of microfunctions along A (where $\mu \text{hom}(\cdot, \cdot)$ is the bifunctor of [K-S 1]). Special interest lies in the complexes $\mu_M(\mathcal{O}_X)$ and $\mu_\Omega(\mathcal{O}_X)$ for Ω being an open subset of the manifold M (cf [S]).

2. Statement of the results

Let X be a complex analytic manifold of dimension n, $M \subset X$ a C^2 submanifold of codimension l, $\Omega \subset M$ an open set with C^2 boundary $S = \partial \Omega$, and set $r = \operatorname{codim}_M S$ (we assume Ω locally on one side of S for r = 1). Let $z_0 \in M$, $p \in (\dot{T}_M^* X)_{z_0}$. Define

$$d_M(p) = \operatorname{codim}_X M + s^-(M, p) - \gamma(M, p),$$

 $c_M(p) = n - s^+(M, p) + \gamma(M, p).$

Let us recall the following classical results concerning the cohomology of $\mu_M(\mathcal{O}_X)$.

THEOREM A. ([A-G], [K-S 1]) Assume
$$\dim^{\mathbf{R}}(\nu(p) \cap \lambda_M(p)) = 1$$
. Then

$$H^j \mu_M(\mathcal{O}_X)_p = 0$$
 for $j \notin [d_M(p), c_M(p)]$.

THEOREM B. ([H], [K-S 1]) Assume $\dim^{\mathbf{R}}(\nu(p) \cap \lambda_M(p)) = 1$ and $s^-(M, p') - \gamma(M, p') \equiv \operatorname{const} for \ p' \in T_M^*X \ close \ to \ p.$ Then

$$H^j \mu_M(\mathcal{O}_X)_p = 0$$
 for $j \neq d_M(p)$.

Dealing with $\mu_{\Omega}(\mathcal{O}_X)$ (and choosing now $p \in S \times_M \dot{T}_M^* X$), one knows that

THEOREM C. ([D'A-Z 2]) Assume codim $_{M}S=1$ and $\dim^{\mathbf{R}}(\nu(p)\cap\lambda_{M}(p))=1$. Then

$$H^j \mu_{\Omega}(\mathcal{O}_X)_p = 0$$
 for $j \notin [d_M(p), c_M(p)]$.

The aim of the present note is, on the one hand, to extend Theorem C to the case of any codimension for S in M, and, on the other hand, to state the analogue of Theorem B for the complex $\mu_{\Omega}(\mathcal{O}_X)$. We point out that the method of our proof, based on the criterion of [K-S 1, Proposition 6.2.2] (with its C^1 -variant of [D'A-Z 1]), is a quite new one.

Our results, valid for any $r = \operatorname{codim}_M S$, go as follows.

THEOREM 2.1. Assume

$$\dim^{\mathbf{R}}(\nu(p) \cap \lambda_S(p)) = 1. \tag{2.1}$$

Then

$$H^{j}\mu_{\Omega}(\mathcal{O}_{X})_{p} = 0 \text{ for } j \notin [d_{M}(p), c_{M}(p) + r - 1].$$
 (2.2)

When M is a real analytic manifold of dimension n and X a complexification of M, then Theorem 2.1 states the concentration in degree n for $\mu_{\Omega}(\mathcal{O}_X)_p$. This should be proved as well by the aid of Proposition 3.1 of [S]. In fact, since Ω has C^2 -boundary, then $M \setminus \Omega$ is C^{ω} -convex (i.e. convex in suitable real analytic coordinates at z_o).

THEOREM 2.2. Assume (2.1) and moreover

$$\begin{cases} s^{-}(M,p') - \gamma(M,p') \text{ is constant for } p' \in \overline{\Omega} \times_{M} T_{M}^{*}X \text{ near } p, \\ s^{-}(S,p') - \gamma(S,p') \text{ is constant} \\ \text{for } p' \in T_{S}^{*}X \cap \rho^{-1}(N^{M}(\Omega)^{\circ a}) \text{ near } p, \\ s^{-}(M,p) - \gamma(M,p) = s^{-}(S,p) - \gamma(S,p). \end{cases}$$
 (2.3)

Then

$$H^j\mu_{\Omega}(\mathcal{O}_X)_p = 0$$
 for $j \notin [d_M(p), d_M(p) + r - 1].$

Remark 2.3. We notice that the sets appearing in (2.3) are very natural in this context; one has in fact

$$\left\{ \begin{array}{l} T_M^*X\cap \mathrm{SS}(\mathbf{C}_\Omega) = \overline{\Omega} \times_M T_M^*X, \\ T_S^*X\cap \mathrm{SS}(\mathbf{C}_\Omega) = T_S^*X\cap \rho^{-1}(N^M(\Omega)^{\circ a}). \end{array} \right.$$

3. Proofs of the results

Proof of Theorem 2.1. We set $\Omega^- = M \setminus \overline{\Omega}$ and use the distinguished triangle

$$\mu_S(\mathcal{O}_X) \to \mu_M(\mathcal{O}_X) \to \mu_\Omega(\mathcal{O}_X) \oplus \mu_{\Omega^-}(\mathcal{O}_X) \xrightarrow{+1}.$$
 (3.4)

We remark that by its own definition: $L_S(p) = L_M(p)|_{T_{z_o}^{\mathbf{C}}S}, \ (p \in S \times_M \dot{T}_M^*X).$ This gives:

$$s^{+,-}(S,p) \leqslant s^{+,-}(M,p) \leqslant s^{+,-}(S,p) + (\dim T_{z_o}^{\mathbf{C}}M - \dim T_{z_o}^{\mathbf{C}}S)$$

= $s^{+,-}(S,p) + (r + \gamma(M,p) - \gamma(S,p)).$

Thus if the integers $c_M(p)$, $d_M(p)$ and $c_S(p)$, $d_S(p)$ are defined as in Section 2, we have at once

$$c_M(p) \leqslant c_S(p) \leqslant c_M(p) + r,$$

$$d_M(p) \leqslant d_S(p) \leqslant d_M(p) + r.$$
(3.5)

The vanishing of (2.2) for $j > c_M(p) + r - 1$ then follows by applying Theorem A to M and S.

The vanishing of (2.2) for $j < d_M(p)$ is immediate for $d_S(p) > d_M(p)$ due to Theorem A and (3.1).

When $d_S(p) = d_M(p)$ it remains to be proven that

$$H^{d_M(p)}\mu_S(\mathcal{O}_X)_p \to H^{d_M(p)}\mu_M(\mathcal{O}_X)_p$$
 is injective. (3.6)

To this end we perform a contact transformation χ near p which interchanges (setting $q=\chi(p)$)

$$\begin{cases} T_M^*X \to T_{\widetilde{M}}^*X & \operatorname{codim} \widetilde{M} = 1, s^-(\widetilde{M}, q) = 0, \\ T_S^*X \to T_{\widetilde{S}}^*X & \operatorname{codim} \widetilde{S} = 1, \end{cases}$$
(3.7)

(cf. [D'A-Z 3]). Let \widetilde{M}^+ and \widetilde{S}^+ be the closed half spaces with boundary \widetilde{M} and \widetilde{S} and inner conormal g. We have

PROPOSITION 3.1. Let $d_S = d_M$. Then in the above situation

$$\begin{cases} s^{-}(\widetilde{S}, q) = 0, \\ \widetilde{S}^{+} \subset \widetilde{M}^{+}. \end{cases}$$
 (3.8)

Proof. Quantizing χ by a kernel $K \in \mathsf{Ob}(\mathsf{D}^b(X \times X))$ we get by [K-S 1, Proposition 11.2.8]

$$\begin{cases} \phi_K(\mathbf{C}_M) \cong \mathbf{C}_{\widetilde{M}^+}[d_M(p) - 1] & \text{in } \mathbf{D}^b(X;q), \\ \phi_K(\mathbf{C}_S) \cong \mathbf{C}_{\widetilde{S}^+}[d_S(p) - s^-(\widetilde{S},q) - 1] & \text{in } \mathbf{D}^b(X;q). \end{cases}$$

Moreover the natural morphism $\mathbf{C}_M \to \mathbf{C}_S$ is transformed via ϕ_K to a non null morphism $\mathbf{C}_{\widetilde{M}^+}[d_M(p)-1] \to \mathbf{C}_{\widetilde{S}^+}[d_S(p)-s^-(\widetilde{S},q)-1]$. Thus

$$\begin{aligned} &\operatorname{Hom}_{\mathsf{D}^{b}(X;q)}(\mathbf{C}_{\widetilde{M}^{+}}[d_{M}(p)-1],\mathbf{C}_{\widetilde{S}^{+}}[d_{S}(p)-s^{-}(\widetilde{S},q)-1]) \\ &=H^{0}(\mathsf{R}\Gamma_{\widetilde{M}^{+}}(\mathbf{C}_{\widetilde{S}^{+}})_{y}[d_{S}(p)-d_{M}(p)-s^{-}(\widetilde{S},q)]) \\ &\neq 0, \end{aligned}$$

where $y = \pi(q)$. Since we are assuming $d_M(p) = d_S(p)$, (3.5) follows.

End of the proof of Theorem 2.1. From the proof of Proposition 3.1 it follows that ϕ_K transforms the morphism (3.3) in

$$\mathcal{H}^{1}_{\widetilde{S}^{+}}(\mathcal{O}_{X})_{y} \to \mathcal{H}^{1}_{\widetilde{M}^{+}}(\mathcal{O}_{X})_{y},\tag{3.9}$$

where $y=\pi(q)$, which is clearly injective. The proof of Theorem 2.1 is now complete. \Box

Proof of Theorem 2.2. From now on we will drop p in our notations, due to the constancy assumptions (2.3).

If r > 1 one has $\overline{\Omega} = M$ and $N^M(\Omega)^{\circ a} = T^*M$. Thus, by (2.3), we enter the hypotheses of Theorem B for both M and S. The claim follows in this case from (3.1), (3.3) and from the inequalities (3.2).

We may then assume r=1. The problem in this case is that (2.3) holds only along $SS(\mathbb{C}_{\Omega})$.

Let $\chi: T^*X \to T^*X$ be a contact transformation from a neighborhood of p to a neighborhood of $q = \chi(p)$, such that

$$\left\{ \begin{array}{ll} T_M^*X \to T_{\widetilde{M}}^*X & \operatorname{codim} \widetilde{M} = 1, \\ T_S^*X \to T_{\widetilde{S}}^*X & \operatorname{codim} \widetilde{S} = 1, s^-(\widetilde{S}, q') \equiv 0. \end{array} \right.$$

Notice that, for $y=\pi(q)$, $T_y\widetilde{M}=T_y\widetilde{S}$. Quantizing χ by a kernel K, we thus have that either $\phi_K(\mathbf{C}_{\overline{\Omega}})$ or $\phi_K(\mathbf{C}_{\Omega})$ is a simple sheaf along the conormal bundle to a C^1 submanifold $Y\subset X$. Since $d_M=d_S-1$, then $s^-(\widetilde{M},q)=0$, $\widetilde{M}^+\subset \widetilde{S}^+$ and $\phi_K(\mathbf{C}_{\Omega})=\mathbf{C}_Y[d_M-1]$. Denoting by W the open domain with boundary Y and

exterior conormal q, we have by Lemma 3.3 of [Z] that W is pseudoconvex at y, and one concludes since

$$\chi_*\mu_{\Omega}(\mathcal{O}_X)_q[-d_M] \cong \mathcal{H}^1_{X\backslash W}(\mathcal{O}_X)_y,$$

References

- [A-G] Andreotti, A. and Grauert, H.: Théorèmes de finitude pour la cohomologie des espaces complexes *Bull. Soc. Math. France* 90 (1962), 193–259.
- [D'A-Z 1] D'Agnolo, A. and Zampieri, G.: A propagation theorem for a class of sheaves of microfunctions, Rend. Mat. Acc. Lincei, s.9 1 (1990), 53–58.
- [D'A-Z 2] D'Agnolo, A. and Zampieri, G.: Vanishing theorem for sheaves of microfunctions at the boundary on CR-manifolds, *Commun. in P.D.E.* 17 (1992), no. 5 and 6, 989–999.
- [D'A-Z 3] D'Agnolo, A. and Zampier, G.: Generalized Levi forms for microdifferential systems (M. Kashiwara, T. Monteiro Fernandes, P. Schapira, eds.), D-modules and microlocal geometry, Walter de Gruyter and Co., 1992.
- [D'A-Z 4] D'Agnolo, A. and Zampieri, G.: Levi's forms of higher codimensional submanifolds, Rend. Mat. Acc. Lincei, s. 9, 2 (1991), 29–33.
- [H] Hörmander, L.: An introduction to complex analysis in several complex variables, Van Norstrand. Princeton (1966).
- [K-S 1] Kashiwara, M. and Schapira, P.: Microlocal study of sheaves, Astérisque 128 (1985).
- [K-S 2] Kashiwara, M. and Schapira, P.: Sheaves on manifolds, Springer-Verlag, 292 (1990).
- [S] Schapira, P.: Front d'onde analytique au bord II, Sem. E.D.P. Ecole Polyt., Exp. XIII (1986).
- [S-K-K] Sato, M., Kawai, T. and Kashiwara, M.: Hyperfunctions and pseudo-differential equations, *Lecture Notes in Math.*, Springer-Verlag, 287 (1973), 265–529.
- [Z] Zampieri, G.: The Andreotti-Grauert vanishing theorem for polyhedrons of Cⁿ *Journal* of Math. Sci. Univ. Tokyo 2(1) (1995), 233–246.