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IMPLICIT VECTOR EQUILIBRIUM PROBLEMS VIA
NONLINEAR SCALARISATION

JUN Li AND NAN-JING HUANG

The purpose of this paper is to introduce a nonlinear scalarisation function for solving
a class of implicit vector equilibrium problems. We prove a scalarisation lemma to
show the relation between the implicit vector equilibrium problem and the nonlinear
scalarisation function. Then we derive some new existence theorems for solutions of
implicit vector equilibrium problems, using the scalarisation lemma and the FKKM
theorem.

1. INTRODUCTION

Given a nonempty set A and a scalar bifunction / : A x A -> R — (-oo, oo) with
f(x, x) ^ 0 for all x £ A, the scalar equilibrium problem for / is to find x' € A such that

Equilibrium problem f(x',y)~^Q, Vy £ A.

It is well known that the equilibrium problem is closely related to variational inequal-
ities and complementarity problems, and optimisation and control problems as well as
problems arising in game theory, mechanics and physics, economics and finance, and op-
erations research, (see, for example, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23] and the references therein). Recently, many authors have
studied the equilibrium problem in the scalar case (see [5, 6, 13, 17, 19]). At the same
time, this problem has been generalised to the vector case (see [4, 13, 17]), even to the
multivalued [2, 20] and system [1] cases.

On the other hand, scalarisation plays an important role in the study of vector
equilibrium problems and vector variational inequality problems (see, for example, [9,
10, 14, 15, 16, 23] and the references therein), especially in algorithm design. In 1990,
Gerth and Weidner [12] firstly introduced the nonlinear scalarisation method with respect
to general domination sets. In 2001, Gong [15] derived the scalarisation results for vector
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equilibrium problems under an assumption of convexity. Recently, Chen and Yang [10]
introduced a nonlinear scalarisation function for a variable domination structure, and
this nonlinear scalarisation function was then applied to characterise the weakly non-
dominated solution of multicriteria decision making problems and the solution of vector
variational inequalities.

Let X be a real Hausdorff topological vector space and A" be a nonempty subset of
X. Let C : X —)• 2X be a set-valued mapping such that for each x € X, C(x) is a proper,
pointed, closed and convex cone in X. Let C = (~) C(x) with intC ^ 0. For a given

x&X

vector valued bifunction / : K x K -» X, the non-dominated vector equilibrium problem
consists of finding x* € K such that

(Non-dominated vector equilibrium problem) f(x*,y) & — intC(x*), Vy G K.

The point x* € K is called a solution of non-dominated vector equilibrium problem,
and we denote by W(f, K) the set of all solutions of non-dominated vector equilibrium
problem. In [23], Wu gave a scalarisation theorem for non-dominated vector equilibrium
problem and established existence of solutions employing the famous theorem of Fan,
Knoster, Kuratowski and Marzurkiewica (the FKKM theorem) without any assumption
of monotonicity.

Let X and Y be real Hausdorff topological vector spaces, K a nonempty subset of
X. Let C : X -> 2Y be a point-to-set mapping such that for any x € X, C(x) is a proper,
pointed, closed and convex cone in Y. Let C — f) C(x) with int C ^ 0.

xex
As is well known, properness means that C(x) ^ Y for any x € X. A nonempty

subset P of Y is called a pointed and convex cone in Y if

(i) P + P = P;

(ii) XP CP for all A > 0 and
(iii) F n {—P} = {0}. It is easy to see that C is also a proper, closed and

convex cone in Y.
In this paper, we consider the following implicit vector equilibrium problem. Given

a vector valued function g : K —> K and a vector valued bifunction / : K x K —¥ Y, find
a point x* € K such that

(Implicit vector equilibrium problem) f(g(x*),y) £ —intC(x*), Vy € K.

The point x* £ K is called a solution of implicit vector equilibrium problem, and we
denote by S(f, g, K) the set of all solutions of the implicit vector equilibrium problem. Li,
Huang and Kim [21] have studied the existence of solutions of implicit vector equilibrium
problem without monotonicity and convexity. In [18], Huang, Li and Thompson gave
characterisations of S(f, g, K) under the assumptions of non-monotonicity and weakly
C-pseudomonotonicity, respectively.
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If g : K —> K is the identity mapping, then the implicit vector equilibrium problem
reduces to the vector equilibrium problem, which has been studied by many authors
(see, for example, [13] and the references therein). We denote by S(f,K) the set of all
solutions of the vector equilibrium problem.

If X = Y, then the vector equilibrium problem reduces to the non-dominated vector
equilibrium problem non-dominated vector equilibrium problem, which was considered
by Wu [23].

The purpose of this paper is to introduce a nonlinear scalarisation function for solv-
ing the implicit vector equilibrium problem. We prove a scalarisation lemma showing the
relationship between the implicit vector equilibrium problem and the nonlinear scalari-
sation function and then derive some new existence theorems of solutions for the implicit
vector equilibrium problems by using the scalarisation lemma and the FKKM theorem.
This paper is organised as follows. In the next section, we recall some definitions and the
FKKM theorem, introduce a nonlinear scalarisation function which is a generalisation of
[10] or [12], and present some important properties of this nonlinear scalarisation func-
tion. In Section 3, we first prove a scalarisation lemma to show the relationship between
the implicit vector equilibrium problem and the nonlinear scalarisation function, and
then derive some new existence theorems for solutions of the implicit vector equilibrium
problems using the scalarisation lemma and the FKKM theorem.

2. PRELIMINARIES

We first recall some definitions.

DEFINITION 2.1: Let X and Y be two topological vector spaces, K a nonempty
subset of X. Let W : K —¥ 2Y be a point-to-set mapping. The graph of W, denoted by
Graph(W), is

G r a p h ( W 0 = { ( x , z ) & K x Y : x e K , z £ W { x ) } .

The point-to-set mapping W is said to have closed graph in K x Y if, for any (un,xn)
G Graph(W) with limits (u*,x*), we have {u*,x*) G Graph(W).

DEFINITION 2.2: Let X and Y be two topological vector spaces, K a nonempty
subset of X. A mapping / : K —> Y is called affine if, for any i1( x2 G K, and t G R with
tXi + (1 - t)x2 G K,

+ (1 - t)x2) = tf{Xl) + (1 - t)f(x2).

REMARK 2.1. It is easy to see that / is affine if and only if for any x< G K and U G [0,1]

(i = 1,. . . , n) with Y. U = ! a n d E UXi G K,
t=i t=i
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DEFINITION 2.3: Let A" be a nonempty subset of topological vector space X. A
point-to-set mapping G : K —> 2X is called a KKM-map if, for every finite subset

n

{xi,x2, • • • ,x n } of K, co{xi,x2, • • . ,x n } is contained in \_}G{xi), where co denotes the
convex hull. '""

In [12], Gerth and Weidner derived the nonconvex separation theorems for any
arbitrary set and any not necessarily convex set in a topological vector space. We now
introduce a nonlinear scalarisation function based on Gerth and Weidner as follows:

DEFINITION 2.4: Let X and Y be real Hausdorff topological vector spaces, C : X
—* 2Y a point-to-set mapping such that for any x £ X, C(x) is a proper, pointed, closed
and convex cone in Y. Let C = f] C(x) with int C ^ 0, and fc° € intC. We define a

xex
nonlinear scalarisation function f *<> : X x Y —* R as follows:

6bo(z,v) = inf{A G R : y € Xk° - C(x)}, V(i,») eXxY.

If X — Y, then the nonlinear scalarisation function &<> is equivalent to the nonlinear
scalarisation function introduced by Chen and Yang [10].

The following results are very important properties of the nonlinear scalarisation
function ffco, which were originally established by Gerth and Weidner in [12] for general
sets. In [10], a slight modification in the formulation was given by Chen and Yang.

LEMMA 2 . 1 . Let X and Y be real Hausdorff topologica] vector spaces,

C : X —» 2Y a point-to-set mapping such that for any x € X, C{x) is a proper, pointed,

closed and convex cone in Y. Let C = f] C(x) with intC ^ 0, and A;0 e intC. For each
x€X

A £ R and (x, y) 6 X x Y, we have

(i) &o(z,y)< A o y e Afc° - intC(z);

(ii) te(xty)^\*>ye\k°-C(x);

(iii) &o(x, y) > A <* y £ Xk° - intC(x);

(iv)

(v)

where dC(x) is topological boundary ofC(x).
PROOF: The proof is similar to the proof of [12] (or [10]) and so we omit it. D

In the next section, we also need the following FKKM theorem.
LEMMA 2 . 2 . [11] Let K be a nonempty subset of a Hausdorff topological vector

space X. Let G : K —> 2X be a KKM-map, such that for any y G K, G(y) is nonempty

closed and G(y*) is contained in a compact set D C X for some y* 6 K. Then there

exists x* G D such that x* € G(y) for all ye K, that is, f) G(y) ^ 0.
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3. M A I N R E S U L T S

In this section, we prove some new existence theorems for solutions of implicit vector
equilibrium problems. First we derive a scalarisation lemma via the nonlinear scalarisa-
tion function introduced in Section 2.

LEMMA 3 . 1 . (Scalarisation Lemma.) Let X and Y be real Hausdorff topological
vector spaces and K be a nonempty subset of X. Let C : X —> 2Y be a point-to-set
mapping such that for any x G X, C{x) is a proper, pointed, closed and convex cone in
Y, and C = f| C(x) with int C ^ 0. Then x* € S{f, g, K) if and only if

xex

0 = sup{Cfco(a;',0) : k° € intC} ^ mfUkO(x',f(g(x'),y)) : k° G in t c j , Vy G K.

PROOF: Necessity. Suppose that x* G S(f,g,K). Then,

f(g(x'),y)?-mtC(x'), Vt/GK

By Lemma 2.1 (iii), for each y G K,

Sko(x\f(g(x'),y))>0, V*°Ginta

Thus,

0 ^ infUko(x\f(g(x*),y)) : &° G in tc j , Vy G K.

Since ^o(x',0) = inf{A G R : 0 G Xk° - C(x')} and C{x') is a pointed cone, we know
that £ko(x\ 0) = 0 for each A;0 G intC and so

= sup{^o(x%0):A;0GintC} ^ inf|^o(x*,/(5(x*),y)) : k° G i n t c j , Vy G K.

Sufficiency. Assume that x" G K and for any y G K,

0 = sup{&o(z*,0) : fc° G intC} ^ inf|^o(x*,/(g(x*),y)) : k° G i

It follows that, for each A;0 G int C, fa (x*,f(g(x*), y)\ ^ 0 . For each k° G int C, Lemma
2.1 (iii) implies that

f(9{x'),y) & 0k° ~ intC(x') = -intC{x'), Vy G K.

Hence, x' G S{f,g,K). This completes the proof. D

REMARK 3.1. If g is the identity mapping, then Lemma 3.1 establishes necessary and
sufficient conditions for x* G S(f, K) based on the nonlinear scalarisation function.
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LEMMA 3 . 2 . If we define ip : K -> 2K such that

<p{x) = lx*EK: Zk°(x',f{g(x'),x)) > 0, Vk° G in tc j , Vx € K,

then,

PROOF: Let x* e f| <?(x). Then x" e <p(x) for all x G K. That is, x* G K and
x€K

0 for all fc° € intCand x&K. Hence,

: k° e intcj > 0, Vx e #.

Thus, Lemma 3.1 implies that x* € S{f,g,K).

Conversely, suppose that x* £ S(f,g,K). Then,

),x) £ - i n t

By Lemma 2.1 (iii), for each x £ K,

that is, x* € v(x). Hence,

This completes the proof. D

REMARK 3.2. If g is the identity mapping, then in view of Remark 3.1, we obtain from
Lemma 3.2 a characterisation of S(f, K) based on the nonlinear scalarisation function.

LEMMA 3 . 3 . Let X and Y be real Hausdorff topological vector spaces, K a
nonempty closed subset of X. Let C : X —* 2Y be a point-to-set mapping such that
for any x G X, C(x) is a proper, pointed, closed and convex cone in Y, and C — f") C(x)
with int C ^ 0. Let the following assumptions hold: xeX

(i) g and x >-» f(x, •) are continuous;

(ii) the point-to-set mapping W : K —> 2V has closed graph in K xY, where
W{x) = y \ ( - intC(x)), Vx € K.

Then for any given x G K, tp{x) is closed or empty, where

<p{x) = jx* € K : &o(x*,/(<7(x-),x)) £ 0, V*° G in tc
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PROOF: For any given x € K, if <p(x) ^ 0, then let {un} C tp(x) such that un -> u*.
Then un e K and

0, VA;0 G intC.

Since A" is closed, we know that u' € K. By Lemma 2.1 (iii), it follows that

f(g{un),x) & -intC(un),

that is,

(un,f(g(un),x)) eGraph(^).

From assumption (i), we have (un,f(g{un),x)j ->• fu*,/(5(u*),:r) J. Since

W(x) = Y\[— intC(a;)) for all x € K and W has closed graph in K xY, we obtain

(«•,/(»(«*),!)) eGraph(W),

that is,

f(g(v?)tx)t-intC(u').

Again by Lemma 2.1 (iii), we obtain

and hence u* € <p(x). Thus <p(x) is closed for any x £ K. This completes the proof.

Let g be the identity mapping in the proof of Lemma 3.3. From Remark 3.2, we
have the following conclusion. D

COROLLARY 3 . 1 . Let X and Y be real Hausdorff topological vector spaces, K a
nonempty closed subset of X. Let C : X —> 2Y be a point-to-set mapping such that for
any x € X, C(x) is a proper, pointed, closed and convex cone in Y, and C — |~| C(x)
with int C ^ 0. Let the following assumptions hold: xeX

(i) x t-t f(x, •) is continuous;

(ii) t ie point-to-set mapping W : K -¥ 2Y has closed graph in K xY, where

W(x) = y\(-intC(z)), Vx € K.

Then for any given x G K, <p(x) is closed, possibly empty, where

<p{x) = {x* G K : fa{x\f{x\x)) > 0,

Now from Lemma 3.3, we have
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where <p(x) denotes the closure of f(x). It follows from Lemma 3.2 that

R = f)<p(x)=S(f,g,K),

and so 5(/ , g, K) is closed or empty. Thus, in order to prove S(f, g, K) / 0, we only
need to show f\ ip(x) ^ 0.

THEOREM 3 . 1 . Let X and Y be real Hausdorff topological vector spaces, K a
nonempty closed convex subset of X. Let C : X —> 2Y be a point-to-set mapping such
that for any x € X, C{x) is a proper, pointed, closed and convex cone in Y. Suppose
that C = fl C(x) with int C / 0. Let the following assumptions hold:

xex
(i) f(g{x),x)#-intC{x), Vx€K;

(ii) y>-> f(-,y) is affine;

(iii) g and x >-> f(x, •) are continuous;
(iv) the point-to-set mapping W : K —> 2Y has closed graph in K xY, where

W(x) = Y\(- int C{x)),VxeK;
(v) there exist a compact subset D C K, such that 3y0 € K, Vx € K\D such

that

/(»(*),Ito)e - intC(i) . ,

Then

that is, S(f, g, K) / 0, wiere

<p{x) = lx'eK: ^o(x',/(ff(x*),x)) ^ 0,

Furthermore, S(f, g, K) is compact.

PROOF: Since f{g{x),x) $. -intC(x) for any x € K, Lemma 2.1 (iii) implies that
for any x € K, £ko(x,f(g(x),x)^ > 0, VA;0 € intC. That is, for any x € K, x € <p(x)
and so ip(x) is nonempty. By assumptions (iii) and (iv), Lemma 3.3 implies that <̂ (x)
is closed. We next show that <p is a KKM-map. Suppose that there exist a finite subset

n
{ui, u2,..., un} of K and \ ^ 0 with £) \ = 1, such that

n n

Then u ^ V ( U J ) I j ; = 1 .2 , . . • , n . By the definition of <p, there exist ft], &2, . . . , £ „ £ int C

such t h a t

, («, /(s(«),«,-)) < 0' j = 1,2,..., n.
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By Lemma 2.1 (i), we have

f{g(u), Uj) € - int C(u), j = 1 ,2 , . . . , n.

Since K is convex. C(u) is a convex cone and y »-> / ( - , y) is afBne, then

n

f(g(u),u) =^2Xjf(g{u),Uj) € -intC(u),

which is a contradiction. So <£ is a KKM-map. By the assumption (v), there exist a
compact subset D C K, such that 3y0 € K, Vx € /f\.D such that

(*). vo) e - i n t c ( x ) .

Again by Lemma 2.1 (i), we can deduce that for any x € K\D,

Hence for any a; £ if\-f> a; ̂  v(j/o)- Then, one has ip(yo) C D. Since £> is compact and
•~p(x) is closed for any x € K, we know that <̂ (y0) is closed and compact. It follows from
Lemma 2.2 that f| <p(z) ^ 0 and so S(/, g, K) ^ 0.

From assumption (v), any element outside the set D cannot be a solution of im-
plicit vector equilibrium problem. Therefore, S(f, g, K) must be contained in D. Since
S(f,g,K) is closed, D is compact and we know that S(f,g,K) is compact. This com-
pletes the proof. D

EXAMPLE 3.1. Let X = Y = R2, K = [0,1] x [0,1] and C(x) = R\ = [0, oo) x [0,oo)
for all i e X. Let g : K -> K and / : K x K ->• Y with g(x) = (x2,xl) and
f{x,y) - (x2 - yi,xi - y2), where x - {xux2) and y = (2/1,2/2)- It is easy to see that
f{g{x),y) = ( i! - yux2 - y2) for all x = (i1,x2)!y = (2/1,1/2) G ̂ , and assumptions
(i)—(iv) hold. If we set D = AT\{[0,l/2) x [0,1/2)} and y0 = (1,1), then for all
x = (xux2) 6 K\D = [0,1/2) x [0,1/2),

f{9(x),Vo) = {xi - l.ia - 1) 6 (-oo,0) x (-00,0),

that is, assumption (v) also holds. By Lemma 2.1 (iii), we have

<p(x) = {*' = (x\,x*2) € K : f{g{x*),x) = {x\-xux'2 - x2) ? (-00,0) x (-00,0)}

= K\{[0,Xl) x [0,i2)}, Vs = (zx,x2) e K.

Obviously, for any given x — (11,12) 6 K, tp(x) is closed, and

f| ^ ) = Pi ^(x) = It1 ' Z2l = 2̂ € [0,1]} U {[zi, 1] : zt G [0,1]} ? 0.
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Thus, S{f, g, K) ± 0. Furthermore,

S{f,g,K) =f)'tfx) = {[l,z2] : z2 G [0,1]} U {[zu 1] : Z! G [0,1]}

is closed and compact.

REMARK 3.3. If g is the identity mapping, then using Corollary 3.1, Theorem 3.1 gives
existence of solutions for vector equilibrium problem based on the nonlinear scalarisation
function.

If g is the identity mapping and X = Y in Theorem 3.1, then we obtain an existence
Theorem for non-dominated vectorequilibrium problem.

COROLLARY 3 . 2 . Let X be a real Hausdorff topological vector space, K a
nonempty closed convex subset of X. Let C : X —>• 2X be a point-to-set mapping such
that for any x G X, C(x) is a proper, pointed, closed and convex cone in X. Suppose
that C — p | C{X) with int C ^ 0. Let the following assumptions hold:

x&X

(i) /(*,*) g - i n t C(ar), Vz 6 K;

(ii) 2/H-> f{-,y) isaBne;

(iii) x t-¥ f(x, •) is continuous;

(iv) the point-to-set mapping W : K —> 2Y has closed graph in K x Y, where
W{x) = y\(-intC(z)), Vie K;

(v) there exist a compact subset D C K, such that 3yQ G K, Vi G K\D such
that

f{x,yo)€-intC(x).

Then

that is, W{f, K) ^ 0, where

(p{x) = {x* GK: bfl(x',f{x*,x)) > 0, Vifc0 G i

Furthermore, W(f, K) is compact.
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