Accretion dynamics and star-disk interaction in NCG 2264

Silvia H. P. Alencar¹, Jérôme Bouvier², Claude Catala³, Matilde Fernandez⁴, Jorge Filipe Gameiro⁵, Nathalia Fonseca¹, Marcelo Medeiros Guimarães¹, Jane Gregorio Hetem⁶, Pauline Telles McGinnis¹, Estelle Moraux² and Paula Teixeira⁷

¹Departmento de Física, ICEx, UFMG, Belo Horizonte, MG, 31270-901, Brazil email: silvia@fisica.ufmg.br

²Laboratoire d'Astrophysique de Grenoble, BP 53, F-38041 Grenoble, France

³Observatoire de Paris-Meudon, 61 Av. de l'Observatoire, 75014 Paris, France

⁴Instituto de Astrofisica de Andalucia, Apartado 3004, 18080 Granada, Spain

⁵Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal

⁶Universidade de São Paulo, IAG/USP, São Paulo, SP, 05508-090, Brazil ⁷ESO, Karl-Schwarzschild-Strasse 2, D-85748 Garching, Germany

NGC 2264 is a well studied young stellar cluster and we were therefore able to obtain a good estimate of cluster membership among the observed stars. We could also separate accreting from non-accreting systems, using indicators such as H α equivalent width, H α width at 10% intensity and U - V excess. A total of 97 CTTS that belong to the cluster were observed by Corot. Among those, 26 were classified as possible AA Tau-like systems, which we defined as systems that present periodical light curve variability with an almost constant maximum interrupted by minima that can vary both in depth and width from one rotational cycle to the other. This type of light curve is believed to be due mostly to obscuration by material from the inner disk region. The data analysis shows that the AA Tau-type of light curve appears to be quite common among CTTS, which opens a good perspective to study the interaction between the stellar magnetic field and the inner disk region.

Corot and Spitzer IRAC data of 56 CTTSs were compared and it was shown that both datasets give coherent information about the evolution of the inner circumstellar disk. We used the $\alpha_{\rm IRAC}$ index, the inclination of the spectral energy distribution between 3.6 μ m and 8 μ m, to classify the inner disk region. CTTS that present $\alpha_{\rm IRAC} < -2.56$, naked photosphere systems, also presented spot-like light curves with no hint of obscuration by circumstellar material. As the $\alpha_{\rm IRAC}$ index increases, corresponding to systems with anemic and thick disks, the percentage of spot-like light curves decreases rapidly and most of the Corot light curves present clear signs of obscuration by circumstellar material.