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1. Introduction
Let 6 be a finite alphabet and let S be the shift on the shift space 6Z,

S((xi )i∈Z)= (xi+1)i∈Z, (xi )i∈Z ∈6
Z.

An S-invariant closed subset X of6Z is called a subshift. For an introduction to the theory
of subshifts, see [Ki] or [LM]. In [Kr2], a Property (A) of subshifts was introduced that is
an invariant of topological conjugacy. Also, in [Kr2], there was constructed for a subshift
X with Property (A) a semigroup S(X) that is invariantly attached to X . Prototypes of
subshifts with Property (A) are the Dyck shifts [Kr1]. To recall the construction of the
Dyck shifts, let N > 1 and let α−(n), α+(n), 0≤ n < N , be the generators of the Dyck
inverse monoid (the polycyclic monoid [NP]) DN that satisfy the relations

α−(n)α+(m)=

{
1 if n = m,

0 if n 6= m.
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The Dyck shifts are defined as the subshifts

DN ⊂ ({α
−(n) : 0≤ n < N } ∪ {α+(n) : 0≤ n < N })Z

with the admissible words (σi )1≤i≤I , I ∈ N, of DN , N > 1, given by the condition∏
1≤i≤I

σi 6= 0.

The semigroup S(DN ) is the Dyck inverse monoid DN , N > 1.
We denote a finite directed graph with vertex set P and edge set E by G(P, E). As

notation for the source (target) vertex of an edge or directed path in a directed graph, we
use s (t). We recall from [Kr4] the notion of an R-graph. Let there be given a finite
directed graph G(V, E). Assume also that we are given a partition

E = E− ∪ E+.

We set

E−(q, r)= {e− ∈ E− : s(e−)= q, t (e−)= r},

E+(q, r)= {e+ ∈ E+ : s(e+)= r, t (e+)= q}, q, r ∈P.

We assume that E−(q, r) 6= ∅ if and only if E+(q, r) 6= ∅, q, r ∈P, and we assume that the
directed graph G(P, E−) is strongly connected or, equivalently, that the directed graph
G(P, E+) is strongly connected. We call G(P, E− ∪ E+) a partitioned directed graph.
Let there further be given relations†

R(q, r)⊂ E−(q, r)× E+(q, r), q, r ∈P,

and set
R=

⋃
q,r∈P

R(q, r).

The resulting structure, that we call an R-graph, we denote by GR(P, E− ∪ E+). We also
recall the construction of a semigroup (with zero) S(GR(P, E− ∪ E+)) from an R-graph
GR(P, E− ∪ E+) as described in [Kr3]. The semigroup S(GR(P, E− ∪ E+)) contains
idempotents 1p, p ∈P, and has E as a generating set. Besides 12

p = 1p, p ∈P, the defining
relations are

f −g+ =


1q if f − ∈ E−(q, r), g+ ∈ E+(q, r), ( f −, g+) ∈R(q, r), q, r ∈P,
0 if f − ∈ E−(q, r), g+ ∈ E+(q, r), ( f −, g+) /∈R(q, r), q, r ∈P,
0 if f − ∈ E−(q, r), g+ ∈ E+(q′, r), q, q′, r ∈P, q 6= q′,

and

1qe− = e−1r = e−, e− ∈ E−(q, r),
1re+ = e+1q = e+, e+ ∈ E+(q, r), q, r ∈P,

and
1q1r = 0, q, r ∈P, q 6= r.

† We consider complete heterogeneous relations.
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We call S(GR(P, E− ∪ E+)) an R-graph semigroup. We write S−(GR(P, E− ∪ E+))
(S+(GR(P, E− ∪ E+))) for the set of non-zero elements of the subsemigroup of
S(GR(P, E− ∪ E+)) that is generated by E− (E+).

Special cases are the graph inverse semigroups of finite directed graphs G(P, E) (see
[AH] and [L, §18.7] and compare [CK]). With the edge set E− = {e− : e◦ ∈ E◦} of a copy
of G(P, E), and with the edge set E+ = {e+ : e ∈ E} of the reversal of G(P, E), the graph
inverse semigroup S(G(P, E)) of G(P, E) is the R-graph semigroup of the partitioned
graph G(P, E− ∪ E+) with the relations

R(q, r)= {(e−, e+) : e ∈ E, s(e)= q, t (e)= r}, q, r ∈P.

In [HI], a criterion was given for the existence of an embedding of an irreducible
subshift of finite type into a Dyck shift and this result was extended in [HIK] to a larger
class of target shifts with Property (A). These target shifts were constructed by a method
that presents the subshifts by means of a suitably structured irreducible finite labelled
directed graph with labels taken from the inverse semigroup of an irreducible finite directed
graph, in which every vertex has at least two incoming edges. This method was extended
in [Kr4] by the use of R-graph semigroups. Following [HIK, Kr4], we describe this
construction.

We denote a finite labelled directed graph with vertex set V , edge set 6 and a label map
λ by G(V, 6, λ). Let there be given an R-graph GR = GR(P, E− ∪ E+) and a finite
strongly connected labelled directed graph G(V, 6, λ) such that:
(G1) λ(σ) ∈ S−(GR) ∪ {1p : p ∈P} ∪ S+(GR), σ ∈6.

The label map λ extends to finite paths (σi )1≤i≤I in the graph G(V, 6) by

λ((σi )1≤i≤I )=
∏

1≤i≤I

λ(σi ).

Denoting for p ∈P by V(p) the set of V ∈ V such that there is a cycle (σi )1≤i≤I ,
I ∈ N, in the graph G(V, 6) from V to V such that

λ((σi )1≤i≤I )= 1p,

we require the following Conditions (G2)–(G5) to be satisfied.
(G2) V(p) 6= ∅, p ∈P.
(G3) {V(p) : p ∈P} is a partition of V .
(G4) For V ∈ V(p), p ∈P, and for all edges σ that leave V, 1pλ(σ) 6= 0, and for all edges

σ that enter V, λ(σ )1p 6= 0.
(G5) For f ∈ S(GR(P, E− ∪ E+)), q, r ∈P, such that 1q f 1r 6= 0, and for U ∈ V(q),

W ∈ V(r), there exists a path b in the labelled directed graph G(V, 6, λ) from U to
W such that λ(b)= f .

A finite labelled directed graph G(V, 6, λ) that satisfies Conditions (G1)–(G5) gives
rise to a subshift X (G(V, 6, λ)) that has as its language of admissible words the set of
finite paths b in the graph G(V, 6, λ) such that λ(b) 6= 0. We say that X (G(V, 6, λ)) is
presented by G(V, 6, λ) or that G(V, 6, λ) is an S(GR(P, E− ∪ E+))-presentation of
X (G(V, 6, λ)). From an R-graph GR(P, E− ∪ E+), by using the identity map on the
edge set E− ∪ E+ as label map, one obtains a particular case of an S(GR(P, E− ∪ E+))-
presentation of a subshift X (G(P, E− ∪ E+, idE−∪E+)) that we call the R-graph shift of
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GR(P, E− ∪ E+). In the case of the graph inverse semigroups S(G(P, E)) of strongly
connected finite directed graphs G(P, E), the subshifts X (G(P, E)) are the Markov–Dyck
shifts [M]. The Dyck shifts DN can be obtained in this way from the one-vertex directed
graph with N > 1 loops. Also, the Markov–Motzkin shifts [KM1] of strongly connected
finite directed graphs G(P, E) have S(G(P, E))-presentations.

Béal, Blockelet and Dima [BBD1, BBD2] have introduced the notions of a Dyck
automaton and of a sofic Dyck shift. Strengthening the Condition (G1) to

λ(σ) ∈ E− ∪ {1p : p ∈P} ∪ E+, (1.1)

one obtains labelled directed graphs G(V, 6, λ), that are Dyck automata, and the subshifts
X (G(V, 6, λ)) that arise from S(G(P, E− ∪ E+))-presentations G(V, 6, λ) are sofic
Dyck shifts. The alphabet of a sofic Dyck shift is partitioned into a set of call symbols,
a set of internal symbols and a set of return symbols. Under the assumption (1.1), the
corresponding partition of the alphabet of the subshift X (G(V, 6, λ)) that is given by an
S(G(P, E− ∪ E+))-presentation G(V, 6, λ) is the partition of its alphabet into the sets
E−, {1p, p ∈P}, E+. The set of matched edges that appears in the construction of a Dyck
automaton is provided by the relation R. The R-graph shifts are finite-type Dyck shifts in
the sense of [BBD3].

Given finite sets E− and E+ and a relation R⊂ E− × E+, we set

E−(R)= {e− ∈ E− : {e−} × E+ ⊂R}, E+(R)= {e+ ∈ E+ : E− × {e+} ⊂R}.

For a partitioned directed graph G(P, E− ∪ E+), denote by P(1) the set of vertices in
P that have a single predecessor vertex in G(P, E−) or, equivalently, that have a single
successor vertex in G(P, E+). For p ∈P(1) the predecessor vertex of p in G(P, E−),
which is identical to the successor vertex of p in G(P, E+), is denoted by η(p). For an
R-graph GR(P, E− ∪ E+), we set

E−R =
⋃

p∈P(1)

E−(R(η(p), p)), E+R =
⋃

p∈P(1)

E+(R(η(p), p)),

and
P
(1)
R = {p ∈P

(1)
:R(η(p), p)= E−(η(p), p)× E+(η(p), p)}.

The subshift X (G(V, 6, λ)) that is given by the S(GR(P, E− ∪ E+))-presentation
G(V, 6, λ) is a Markov shift if and only if P=P

(1)
R . We formulate three Conditions

(I), (II) and (III) on R-graphs GR(P, E− ∪ E+) such that

P \P
(1)
R 6= ∅.

Condition (II) comes in two parts (II−) and (II+) that are symmetric to one another.
(I) For p ∈P(1)

\P
(1)
R , E−(R(η(p), p))= ∅ or E+(R(η(p), p))= ∅.

(II−) There is no cycle in the directed graph G(P(1), E−R).
(II+) There is no cycle in the directed graph G(P(1), E+R).
(III) For q(−), q(+) ∈P(1), q(−) 6= q(+), there does not simultaneously exist a path in

G(P(1), E+R) from q(−) to q(+) and a path in G(P(1), E−R) from q(−) to q(+).
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We show in §2 that the subshift X (G(V, 6, λ)) that is given by an S(GR(P, E− ∪
E+))-presentation G(V, 6, λ) has Property (A) if and only if the R-graph GR(P, E− ∪
E+) satisfies Conditions (I), (II) and (III). In particular, the R-graph shifts X (GR(P, E− ∪
E+)) have Property (A) if and only if the R-graph GR(P, E− ∪ E+) satisfies Conditions
(I), (II) and (III). This implies that Markov–Dyck shifts of strongly connected finite
directed graphs have Property (A). Also, the Markov–Motzkin shifts of strongly connected
finite directed graphs have Property (A). Property (A), and the semigroup S(X) of
subshifts X with Property (A), in particular of R-graph shifts, are invariants of flow
equivalence (see [CS, §9] and [Kr3]).

In §3, we describe how one can obtain from an R-graph GR(P, E− ∪ E+) such that
P \P

(1)
R 6= ∅ that satisfies Conditions (I), (II) and (III), an R-graph GR̂(P̂, Ê

−
∪ Ê+)

such that one has for the subshifts X (G(V, 6, λ)) that are given by an S(GR(P, E− ∪
E+))-presentation G(V, 6, λ), that

S(X (G(V, 6, λ)))= S(GR̂(P̂, Ê
−
∪ Ê+)).

To obtain the R-graph GR̂(P̂, Ê
−
∪ Ê+), we apply a procedure that extends a procedure

for Markov–Dyck shifts that was described in [HK2] and [KM2].
In §4, we consider examples. We characterize by invariants of topological conjugacy

the R-graph shifts of one-vertex R-graphs. We show how the isomorphism class of a one-
vertex R-graph can be recovered from the topological conjugacy class of its R-graph shift.
For certain R-graph semigroups of a one-vertex graph, see [HK1, §4].

We also introduce a family F of two-vertex R-graphs. We characterize by invariants
of topological conjugacy the R-graph shifts of the R-graphs in F and we show how the
isomorphism class of an R-graph in F can be recovered from the topological conjugacy
class of its R-graph shift. For other results on the reconstruction of a directed graph from
its Markov–Dyck shift, see [KM1, §3] and [HK2].

2. S(GR(P, E− ∪ E+))-presentations of subshifts
We consider an R-graph

GR = GR(P, E− ∪ E+).
The symbol ` denotes the length of a directed path. There is the one-to-one correspondence
between the non-empty directed paths in the directed graph G(P, E−) (G(P, E+)) and
the elements of S−(GR) (S+(GR)). We will use the same symbol to denote a non-
empty directed path in G(P, E−) (G(P, E+)) and the corresponding element of S−(GR)
(S+(GR)) (as we have already done for the edges in E− ∪ E+). It will be clear from the
context which one is meant. For the elements of S−(GR) (S+(GR)), the notation `, s, t
is also used. We set `(1p)= 0, p ∈P. An element g of S(GR) \ {0} determines uniquely

q(g) ∈P, u+(g) ∈ {1q(g)} ∪ S+(GR), u−(g) ∈ {1q(g)} ∪ S−(GR),

such that its normal form is given by

g = u+(g)1q(g)u−(g).

We write the normal forms of elements g− of S−(GR) and of elements g+ of S+(GR) as

g− = 1q(g−)
( ∏

1≤i(−)≤`(g−)

e−i(−)[g
−
]

)
, g+ =

( ∏
1≤i(+)≤`(g+)

e+i(+)[g
+
]

)
1q(g+).
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We denote the set of non-zero elements of the subsemigroup of S(GR) that is generated
by E−R (E+R) by S−R(GR) (S+R(GR)).

2.1. Context in S(GR(P, E− ∪ E+)). In this subsection, we consider an R-graph

GR = GR(P, E− ∪ E+)

such that
P \P

(1)
R 6= ∅, (2.1)

that satisfies Conditions (I), (II) and (III). For f ∈ S(GR), we set

0−( f )= {g ∈ S(GR) : g f 6= 0}, 0+( f )= {g ∈ S(GR) : f g 6= 0},

0( f )= {(g(−), g(+)) ∈ S(GR)
2
: g(−) f g(+) 6= 0},

and we refer to 0( f ) as the context of f .
We denote for q, r ∈P by `−(q, r) (`+(q, r)) the length of a path in G(P, E−R)

(G(P, E+R)) from q to r, provided such a path exists. By Condition (II), this notation
is meaningful.

We denote for q ∈P(1) by D+(q) the maximal length of a path in G(P, E+R) that leaves
q, and by D−(q) the maximal length of a path in G(P, E−R) that enters q. We also set

D◦(q)=

{
min{D+(q), D−(q)} if q ∈P(1),

0 if q ∈P \P(1).

We set inductively

ηk(q)= η(ηk−1(q)), 1< k <max{D−(q), D+(q)}, q ∈P(1).

We remark that a path b in G(P, E+R) that starts at q ∈P(1) and that has length less than or
equal to D◦(q) traverses the vertices ηk(q), 1≤ k < `(b), before entering its target vertex.
Similarly, a path b in G(P, E−R) that enters q ∈P(1) and that has length less than or equal
to D◦(q) traverses the vertices ηk(q), `(b) > k ≥ 1, after leaving its source vertex.

For q ∈P(1), we set η0(q)= q and

R−(q)= {η
k(q) : 0≤ k ≤ D−(q)}, R+(q)= {η

k(q) : 0≤ k ≤ D+(q)},

and, for q(−), q(+) ∈P(1), such that

q(−) 6= q(+), R+(q(−)) ∩R−(q(+)) 6= ∅,

we denote by H+(q(−), q(+)) (H−(q(−), q(+))) the minimal length of a path in
G(P, E+R) (G(P, E−R)) that has q(−) (q(+)) as source (target) vertex and a vertex in
R−(q(+)) (R+(q(−))) as target (source) vertex.

LEMMA 2.1. For q(−), q(+) ∈P(1) such that

q(−) 6= q(+), R+(q(−)) ∩R−(q(+)) 6= ∅,

one has that
ηH+(q(−),q(+))(q(−))= ηH−(q(−),q(+))(q(+)). (2.2)
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Proof. The inequality

ηH+(q(−),q(+))(q(−)) 6= ηH−(q(−),q(+))(q(+))

would imply that one has H̃+, H̃− ∈ N such that

ηH+(q(−),q(+))(q(−))= ηH̃−(q(+)), H̃− > H−(q(−), q(+)),

ηH−(q(−),q(+))(q(+))= ηH̃+(q(−)), H̃+ > H+(q(−), q(+)).

It follows then from the irreducibility assumption on G(P, E) that

P= {ηk(q(−)) : H+(q(−), q(+))≤ k < H̃+}

∪ {ηk(q(+)) : H−(q(−), q(+))≤ k < H̃−}.

Condition (III) leads to contradictions: if there is no path in G(P, E+R) from q(−) to
q(+), then

q(+) 6∈ {ηk(q(−)) : H+(q(−), q(+))≤ k < H̃+},

and, by Condition (II−),

q(+) 6∈ {ηk(q(+)) : H−(q(−), q(+))≤ k < H̃−},

and, if there is no path in G(P, E−R) from q(−) to q(+), then

q(−) 6∈ {ηk(q(+)) : H−(q(−), q(+))≤ k < H̃−},

and, by Condition (II+),

q(−) 6∈ {ηk(q(−)) : H+(q(−), q(+))≤ k < H̃+}. �

We denote the vertex that appears in (2.2) by p(q(−), q(+)).

LEMMA A. Let q ∈P(1). For

f + ∈ {1q} ∪ S+R(GR), f − ∈ {1q} ∪ S−R(GR), (2.3)

such that
s( f +)= 1q = t ( f −), t ( f +)= s( f −), (2.4)

all elements of S(GR) of the form f + f − have the same context.

Proof. One notes that
0≤ `( f +)= `( f −)≤ D◦(q).

Set

0−◦ (q)= {g(−) ∈ 0
−(q) : `(u−(g(−))≤ D◦(q)},

0+◦ (q)= {g(+) ∈ 0
+(q) : `(u+(g(+))≤ D◦(q)},

0◦(q)=

{
(g(−), g(+)) ∈ (0−(q) \ 0−◦ (q))× (0

+(q) \ 0+◦ (q)) :( ∏
1≤i(−)<`(u−(g(−)))−D◦(q)

e−i(−)[u
−(g(−))]

)
1ηD◦(q)(q)

×

( ∏
`(u+(g(+))−D◦(q)<i(+)≤`(u+(g(+))

e+i(+)[u
+(g(+))]

)
6= 0

}
.
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By Condition (II), one has for f +, f − as in (2.3) and (2.4),

0( f + f −)= (0−◦ (q)× 0
+(q)) ∪ (0−(q)× 0+◦ (q)) ∪ 0◦(q). �

LEMMA B. Let q(−), q(+) ∈P(1) be such that

q(−) 6= q(+).

(B−) Let there exist a path in S+R(GR) from q(−) to q(+). Then, for

h+ ∈ S+R(GR), f + ∈ {1q(+)} ∪ S+R(GR), f − ∈ {1q(+)} ∪ S−R(GR), (2.5)

such that
s(h+)= 1q(−), t (h+)= 1q(+), (2.6)

s( f +)= 1q(+), t ( f +)= s( f −), t ( f −)= 1q(+),

all elements of S(GR) of the form h+ f + f − have the same context.

(B+) Let there exist a path in S−R(GR) from q(+) to q(−). Then, for

f + ∈ {1q(−)} ∪ S+R(GR), f − ∈ {1q(−)} ∪ S−R(GR), h− ∈ S−R(GR),

such that

s(h−)= 1q(−), t (h−)= 1q(+),
s( f +)=1q(−), t ( f +)= s( f −), t ( f −)= 1q(−),

all elements of S(GR) of the form f + f −h− have the same context.

Proof. We prove (B−). We note that

0≤ `( f +)= `( f −)≤ D◦(q(+)).

Set

0−◦ (q(−), q(+))= {g(−) ∈ 0
−(1q(−)) : `(u+(g(−)))≤ `(q(−), q(+))+ D◦(q(+))},

0+◦ (q(+))= {g(+) ∈ 0
+(1q(+)) : `(u−(g(+)))≤ D◦(q(+))},

0◦(q(−), q(+))

= (g(−), g(+)) ∈ (0−(q(−)) \ 0−◦ (q(−), q(+))× (0
+(q(+)) \ 0+◦ (q(+))) :( ∏

1≤i(−)<`(u−(g(−)))−`+(q(−),q(+))−D◦(q(+))

e−i(−)[u
−(g(−))]

)
1ηD◦(q(+))(q(+))

×

( ∏
D◦(q(+))<i(+)≤`(u+(g(+))

e+i(+)[u
+(g(+))]

)
6= 0.

By Condition (II), one has for h+, f +, f − as in (2.5) and (2.6) that

0(h+ f + f −)

= (0−◦ (q(−), q(+))× 0
+(q(+)) ∪ (0−(q(−))× 0+◦ (q(+))) ∪ 0◦(q(−),q(+)).

The proof of (B+) is symmetric. �
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LEMMA C. Let q(−), q(+) ∈P(1) be such that

q(−) 6= q(+)

and
R+(q(−)) ∩R−(q(+)) 6= ∅, p(q(−), q(+)) /∈ {q(−), q(+)}.

Then, for
h+, f + ∈ S+R(GR), f −, h− ∈ S−R(GR), (2.7)

such that
s(h+)= 1q(−), t (h+)= 1p(q(−),q(+)), (2.8)

s( f +)= 1p(q(−),q(+)), t ( f +)= s( f −), t ( f −)= 1p(q(−),q(+)),

s(h−)= 1p(q(−),q(+)), t (h−)= 1q(+),

all elements of S(GR) of the form h+ f + f −h− have the same context.

Proof. One notes that

0≤ `( f +)= `( f −)≤ D◦(p(q(−), q(+))).

Set

0−◦ (q(−), q(+))

= {g(−) ∈ 0−(1q(−)) : `(u−(g(−)))≤ H−(q(−), q(+))+ D◦(p(q(−), q(+)))},

0−◦ (q(−), q(+))

= {g(+) ∈ 0+(1q(+)) : `(u+(g(+)))≤ H+(q(−), q(+))+ D◦(p(q(−), q(+)))},

0◦(q(−), q(+))

=

{
(g(−), g(+)) ∈ (0−(1q(−)) \ 0−◦ (q(−), q(+))× (0

+(1q(+)) \ 0+◦ (q(+), q(+))) :( ∏
1≤i(−)<`(u−(g(−)))−H+(q(−),q(+))−D◦(p(q(−),q(+))

e−i(−)[u
−(g(−))]

)
× 1ηD◦(p(q(−),q(+)))(p(q(−),q(+))

×

( ∏
`(u+(g(+)))−H−(q(−),q(+))−D◦(p(q(−))<i(+)≤`(u+(g(+))

e+i(+)[u
+(g(+)))]

)
6= 0

}
.

By Condition (II), one has for h+, f +, f −, h− as in (2.7) and (2.8) that

0(h+ f + f −h−)= (0−◦ (q(−), q(+))× 0
+(1q(+)) ∪ (0−(1q(−))

× 0+◦ (q(−), q(+))) ∪ 0◦(q(−),q(+)). �
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2.2. Property (A) and R-graph shifts. We introduce notation and terminology for
subshifts. The set of periodic points of a subshift X we denote by P(X). The smallest
period of p ∈ P(X) we denote by π(p). We denote the language of admissible words of a
subshift X ⊂6Z by L(X). The context of a word b ∈ L(X) is defined as the set

0(b)= {(c(−), c(+)) ∈ L(X)2 : c(−)bc(+) ∈ L(X)}.

Concerning the subshifts X (G(V, 6, λ)) that are given by S(G(P, E− ∪ E+))-
presentations G(V, 6, λ), we remark that

0(b)= {(c(−), c(+)) ∈ L(X (V, 6, λ)))2 : t (c(−))= s(b), t (b)= s(c(+)),

(λ(c(−)), λ(c(+))) ∈ 0(λ(b))}, b ∈ L(X (V, 6, λ)).

Given a subshift X ⊂6Z, we set

x[i,k] = (x j )i≤ j≤k, x ∈ X, i, k ∈ Z, i ≤ k,

and
X[i,k] = {x[i,k] : x ∈ X}, i, k ∈ Z, i ≤ k.

We set

0(a)=
⋃

n,m∈N{(b, c) ∈ X[i−n,i] × X[k,k+m] : (b, a, c) ∈ X[i−n,k+m]},

a ∈ X[i,k], i, k ∈ Z, i ≤ k,

and call 0(a) the context of the block a. With the notation

0−n (a)= {c ∈ X[i−n,i)] : (c, a) ∈ X[i−n,k]}, n ∈ N, a ∈ X[i,k], i, k ∈ Z, i ≤ k,

we set

ω+(a)=
⋃

m∈N

⋂
n∈N

⋂
c∈0−n (a)

{b ∈ X(k,k+m] : (c, a, b) ∈ X
[i−n,k+m]},

a ∈ X[i,k], i, k ∈ Z, i ≤ k.

Given a subshift X ⊂6Z, we define a subshift of finite type (more precisely, an n-step
Markov shift) A+n (X) by

A−n (X)=
⋂
i∈Z
({x ∈ X : xi ∈ ω

+(x[i−n,i))}), n ∈ N,

and we set
A−(X)=

⋃
n∈N

A−n (X).

The symbol A+ has the time-symmetric meaning. We set

A(X)= A−(X) ∩ A+(X).

We recall from [Kr2] the definition of Property (A). For n ∈ N, a subshift X ⊂6Z has
property (a, n, H), H ∈ N, if, for h, h̃ ≥ 3H and for I−, I+, Ĩ−, Ĩ+ ∈ Z, such that

I+ − I−, Ĩ+ − Ĩ− ≥ 3H,
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and for
a ∈ An(X)(I−,I+], ã ∈ An(X)( Ĩ−, Ĩ+],

such that
a(I−,I−+H ] = ã( Ĩ−, Ĩ−+H ], a(I+−H,I+] = ã( Ĩ+−H, Ĩ+],

one has that a and ã have the same context. A subshift X ⊂6Z such that A(X) 6= ∅
has Property (A) if there are Hn, n ∈ N, such that X has the properties (a, n, Hn), n ∈ N.
Subshifts of finite type have Property (A).

THEOREM 2.2. Let
GR = GR(P, E− ∪ E+),

be an R-graph such that
P(1)
\P

(1)
R 6= ∅. (2.9)

For a subshift X (G(V, 6, λ)) that is given by an SR(P, E− ∪ E+)-presentation
G(V, 6, λ) to have Property (A), it is necessary and sufficient that GR(P, E− ∪ E+)
satisfies Conditions (I), (II) and (III).

Proof. We prove necessity. We choose vertices Vp ∈ V(p), p ∈P, and simple cycles
cp, p ∈P, in the graph G(V, 6) such that

s(cp)= t (cp)= Vp, λ(cp)= 1p, p ∈P.

For k ∈ N, we denote by ck
p the cycle that traverses k times the cycle cp. Also, we choose

for all e− ∈ E− a path ae− in the graph G(V, 6) such that

s(ae−)= Vs(e−), t (ae−)= Vt (e−), λ(ae−)= e−,

and we make similar choices for all e+ ∈ E+. For a path f − in the graph G(P, E−), we
set

a f − = (ae−l
)1≤l≤`( f +)

and we use similar notation for paths f − in the graph G(P, E+).
We set

M =max({`(ae−) : e
−
∈ E−} ∪ {`(cp) : p ∈P} ∪ {`(ae+) : e

+
∈ E+}).

One has that

ck
p ∈ L(AM (X (V, 6, λ))), k ∈ N, p ∈P.

(I) Assume that the R-graph GR(P, E− ∪ E+) does not satisfy Condition (I). Under
this assumption, we can choose a vertex p ∈P(1)

\P
(1)
R and edges

e− ∈ E−R(η(p), p), e+ ∈ E+R(η(p), p), (2.10)

together with edges
ẽ− ∈ E−(η(p), p), ẽ+ ∈ E+(η(p), p),

such that
(̃e−, ẽ+) /∈R(η(p), p). (2.11)
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By construction,

(ck
p, ae+ , ae− , ck

p) ∈ L(AM (X (V, 6, λ))), k ∈ N.

It follows from (2.10) that

(aẽ− , aẽ+) ∈ 0(c
k
p, ae+ , ae− , ck

p), k ∈ N,

and it follows from (2.11) that

(aẽ− , aẽ+) /∈ 0(c
2k
p ), k ∈ N.

We have shown that X (G(V, 6, λ)) does not have Property (A).
(II) Assume that the R-graph GR(P, E− ∪ E+) does not satisfy Condition (II−). By

(2.9), every cycle in G(P, E−) traverses at least one vertex in P(1)
\P

(1)
R . We can

therefore choose a cycle
f − = (e−l )1≤l≤`( f −)

in the graph G(P, E−R) and a vertex p ∈P(1)
\P

(1)
R such that

s( f −)= p= t ( f −),

together with edges
ẽ− ∈ E−R(η(p), p), ẽ+ ∈ E+R(η(p), p), (2.12)

such that
t (̃e−)= p= s (̃e+),

and such that
(̃e−, ẽ+) /∈R(η(p), p). (2.13)

By construction,

(ck
p, a f − , ck

p) ∈ L(AM (X (G(V, 6, λ))), k ∈ N.

It follows from (2.12) that

(aẽ− , aẽ+) ∈ 0(c
k
p, a f − , ck

p), k ∈ N,

and it follows from (2.13) that

(aẽ− , aẽ+) /∈ 0(c
2k
p ), k ∈ N.

We have shown that X (G(V, 6, λ)) does not have Property (A).
For Condition (II+) one has the symmetric argument.
(III) Assume that the R-graph GR(P, E− ∪ E+) does not satisfy Condition (III). Under

this assumption, we can choose by (2.9) vertices q(−), q(+) ∈P(1), together with a path
f + = (e+i(+))1≤i(+)≤I (+) from q(−) to q(+) in the graph G(P(1), E+R) and a path f − =
(e−i(−))1≤i(−)≤I (−) from q(−) to q(+) in the graph G(P(1), E−R), such that

{s(e+i(+)) : 1≤ i(+)≤ I (+)} \P(1)
R 6= ∅, (2.14)

or such that
{s(e+i(−)) : 1≤ i(−)≤ I (−)} \P(1)

R 6= ∅. (2.15)

https://doi.org/10.1017/etds.2019.105 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2019.105


A construction of subshifts and a class of semigroups 893

Assume (2.14). Set

g+ = (e+i )1≤i≤D◦(q(−)), p= t (e+D◦(q(−))),

and let g− be a path in G(P(1), E−R) from p to q(−). Choose a path f̃ + in the graph
G(P, E+) from q(+) to q(−) such that

f − f̃ + = 1q(−).

Also, choose
e− ∈ E−(η(p), p), e+ ∈ E+(η(p), p),

such that
(e−, e+) 6∈R(η(p), p). (2.16)

By construction,

(ck
p, ag− , a f + , a f̃ + , ag+ , ck

p), (c
k
p, ag− , a f − , a f̃ + , ag+ , ck

p) ∈ L(AM (X (V, 6, λ))),

k ∈ N.

One has that
(ae− , ae+) ∈ 0(c

k
p, ag− , a f + , a f̃ + , ag+ , ck

p), k ∈ N,

and, by (2.16), one has that

(ae− , ae+) 6∈ 0(c
k
p, ag− , a f − , a f̃ + , ag+ , ck

p), k ∈ N.

We have shown that X (G(V, 6, λ)) does not have Property (A). Under the assumption
(2.15) one has the symmetric argument.

We prove sufficiency. Let n ∈ N and let a(−), a(+) ∈ L(X (G(V, 6, λ))), `(a(−))=
`(a(+))= n. For m ∈ [1, n], denote by a(−)[1,m] (a(+)[m,n]) the prefix (suffix) of length
m (n − m + 1) of a(−) (a(+)). Set

M(−)=

{
max{m ∈ [1, n] : λ(a(−)[1,m])= u+(λ(a(−))} if u+(λ(a(−)) ∈ S+(GR),

0 if u+(λ(a(−))= 1q(λ(a(−)),

M(+)=

{
max{m ∈ [1, n] : λ(a(+)[n−m,n])= u−(λ(a(−))} if u−(λ(a(+)) ∈ S−(GR),

0 if u−(λ(a(+))= 1q(λ(a(+)).

Let
K (−), K (+), K̄ (−), K̄ (+) ∈ Z,

K (+)− K (−), K̄ (+)− K̄ (−) > 2n

and let
b ∈ An(X (G))[K (−),K (+)], b̄ ∈ An(X (G))[K̄ (−),K̄ (+)] (2.17)

be such that
b[K (−),K (−)+n] = b̄

[K̄ (−),K̄ (−)+n] = a(−),

b[K (+)−n,K (+)] = b̄
[K̄ (+)−n,K̄ (+)] = a(+).
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Set
c = b[K (−)+ M(−),K (+)− M(+)], c̄ = b̄

[K̄ (−)+ M(−),K̄ (+)− M(+)].

We consider the four cases (A), (B−), (B+) and (C).
(A) In the case that q(λ(a(−))) = q(a(−)), set

f + = u+(λ(c)), f − = u−(λ(c)), f̄ + = ū+(λ(c̄)), f̄ − = ū−(λ(c̄)).

It follows from (2.17) that

f +, f̄ + ∈ S+R(GR), f −, f̄ − ∈ S−R(GR).

By Lemma A,
0( f + f −)= 0( f̄ + f̄ −). (2.18)

(B−) In the case that

q(λ(a(−))) 6= q(λ(a(+)), q(λ(a(−)))= p(q(λ(a(−))), q(λ(a(+))),

one has
`(u+(λ(c)), `(u+(λ(c))≥ `+(q(λ(a(−)), q(λ(a(+))).

Let
h+, f +, f −, h̄+, f̄ +, f̄ −,

be given by
`(h+)= `(h̄+)= `+(q(λ(a(−)), q(λ(a(+)),

h+ = u+(λ(c)) f +, h̄+ = u+(λ(c̄)) f +.

By (2.17),
h+, h̄+, f +, f̄ + ∈ S−R(GR), f −, f̄ − ∈ S+R(GR).

By Lemma B(−),
0(h+ f + f −)= 0(h̄+ f̄ + f̄ −). (2.19)

The case B(+) is symmetric.
(C) In the case that

q(λ(a(−))) 6= q(λ(a(+)),

p(q(λ(a(−))), q(λ(a(+))) /∈ {q(λ(a(−))), q(λ(a(+)))},

let
h+h̄+, f +, f̄ + ∈ S+R(GR), f −, f̄ −, h−, h̄− ∈ S−R(GR),

be given by

`(h+)= `(h̄+)= `+(q(λ(a(−))), p(q(λ(a(−))), q(λ(a(+))))),

`(h−)= `(h̄−)= `−(p(q(λ(a(−)))), q(λ(a(+))), q(λ(a(+)))),

u+(c)= h+ f +, u+(c̄)= h̄+ f̄ +, u−(c)= h− f −, u−(c̄)= h̄− f̄ −.

By (2.17),

h+, h̄+, f +, f̄ + ∈ S−R(GR), f −, f̄ −, h+, h̄+ ∈ S+R(GR).

By Lemma C,
0(h+ f + f −h−)= 0(h̄+ f̄ + f̄ −h̄−). (2.20)

It follows from (2.18)–(2.20) that in all cases the context of b is equal to the context of
b̄. It is shown that X (G(V, 6, λ)) has properties a(n, n), n ∈ N. �
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3. The R-graph semigroup S(X (G(V, 6, λ)))
Following the terminology that was introduced in [HI], we say, given an R-graph
GR(P, E− ∪ E+) and a subshift X (G(V, 6, λ)) that is given by an S(GR(P, E−, E+))-
presentation G(V, 6, λ), that a periodic point p in X (G(V, 6, λ)) has a negative
(positive) multiplier if there exist I ∈ Z such that λ(p[I,I+π(p))) ∈ S−(P, E+ ∪ E−)
(S+(P, E+ ∪ E−)). A periodic point that has neither a negative multiplier nor a positive
multiplier is called neutral. For V ∈ Vp, p ∈P, denote by P(V ) the set of periodic points
in X (G(V, 6, λ)) that carry the bi-infinite concatenation of a cycle c at V such that
λ(c)= 1p. The set of neutral periodic points is equal to

⋃
p∈P

⋃
V∈V(p) P(V ).

LEMMA 3.1. Let GR(P, E− ∪ E+) be an R-graph such that P \P(1)
R 6= ∅ that satisfies

Conditions (II) and let G(V, 6, λ) be an S(GR(P, E−, E+))-presentation of a subshift
X (G(V, 6, λ)). Then

A(X (G(V, 6, λ)))=
⋃
p∈P

⋃
V∈V(p)

P(V ).

Proof. Let
p ∈ A(X (G(V, 6, λ)), (3.1)

and let I ∈ Z be such that

λ(p[I,I+π(p))) ∈ S−(P, E− ∪ E+) ∪ {1p : p ∈P} ∪ S+(P, E− ∪ E+).

If
λ(p[I,I+π(p))) ∈ S−R(P, E

−
∪ E+),

then it follows from (3.1) that λ(p[I,I+π(p))) is given by a cycle in the directed graph
G(P, E−R), contradicting Condition (II−). For the case that

λ(p[I,I+π(p))) ∈ S+(P, E− ∪ E+),

one has the symmetric argument.
For the converse, note that λ(p[I,I+π(p)))= 1p implies that

p ∈ Aπ(p)(X (G(V, 6, λ))). �

Given finite sets E− and E+ and a relation R⊂ E− × E+, we say that e− ∈ E− and
ẽ− ∈ E− are ∼ (R,−)-equivalent if

{ẽ+ ∈ E+ : (e−, ẽ+) ∈R} = {ẽ+ ∈ E+ : (ẽ−, ẽ+) ∈R}.

An equivalence relation ∼ (R,+) on E+ is defined symmetrically.
Given an R-graph GR(P, E− ∪ E+), we construct an R-graph GR̄(P, Ē

−
∪ Ē+) by

setting

Ē−(q, r)= [E−(q, r)]∼(R,−), Ē+(q, r)= [E−(q, r)]∼(R,+),
R̄(q, r)= {(ē−, ē+) ∈ Ē−(q, r)× Ē+(q, r) : ē− × ē+ ⊂R(q, r)}, q, r ∈P.

We denote by F̄−R̄ the set of edges in Ē− that are the single incoming edges of their

target vertices, and we denote by F̄+R̄ the set of edges in Ē+ that are the single outgoing
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edges of their source vertices. Observe that the set P(1)
R is the set of target vertices of the

edges in F̄−R̄, which is equal to the set of source vertices of the edges in F̄+R̄, and that

P \P
(1)
R is the set of vertices that have at least two incoming edges in Ē− or, equivalently,

that have at least two outgoing edges in Ē+. We set

P̂=P \P
(1)
R ,

and we denote by P̂• the set of vertices in P̂ that are source vertices of an edge in F̄−R̄
or, equivalently, that are target vertices of an edge in F̄+R̄. For r ∈ P̂•, we denote by P(r)

the set of p ∈P that are target vertices of a path in the graph G(P, F̄−R̄) that leaves r or,

equivalently, that are source vertices of a path in the graph G(P, F̄+R̄) that enters r. We
also set

F̄−R̄(r)= { f̄ − ∈ F̄−R̄ : t ( f̄ −) ∈P(r)},

F̄+R̄(r)= { f̄ + ∈ F̄+R̄ : s( f̄ +) ∈P(r)}, r ∈ P̂•.

For r ∈ P̂ \ P̂•, we set P(r)= ∅. We have obtained partitions

P=
⋃
r∈P̂

({r} ∪P(r)),

Ē− = (Ē− \ F̄−R̄) ∪
⋃
r∈P̂

F̄−R̄(r), Ē+ = (Ē− \ F̄+R̄) ∪
⋃
r∈P̂

F̄−R̄(r).

For all r ∈ P̂•, the directed graph G({r} ∪P(r), F̄−R̄(r)) is an outward directed tree, the

directed graph G({r} ∪P(r), F̄+R̄(r)) is an inward directed tree, the directed trees G({r} ∪

P(r), F̄−R̄(r)) and G({r} ∪P(r), F̄+R̄(r)) are reversals of one another, and the set L(r) of

their leaves is given by the set of vertices in P(r) that are source vertices of an edge in Ē− \
F̄− or, equivalently, that are target vertices of an edge in Ē+ \ F̄+. To a vertex r ∈P \P•

we associate the degenerate tree G({r}, ∅) with its leaf r. For r ∈ P̂, if the source (target)
vertex of an edge e− ∈ Ē− \ F̄−R̄ (e+ ∈ Ē+ \ F̄−R̄) is in P(r), then this source (target) vertex
is necessarily in L(r).

From the R-graph GR̄(P, Ē
−
∪ Ē+), we construct an R-graph GR̂(P̂, Ê

−
∪ Ê+). We

postulate that there are bijections

ē−→ ̂̄e− ∈ Ê− (ē− ∈ Ē− \ F̄−), ē+→ ̂̄e+ ∈ Ê+ (ē+ ∈ Ē+ \ F̄+).
We specify the source and target mappings of the graph GR̂(P̂, Ê

−
∪ Ê+) by setting

t (̂̄e−)= t (ē−), ē− ∈ Ē− \ F̄−,

s(̂̄e+)= s(ē+), ē+ ∈ Ē+ \ F̄+,

and by assigning for r ∈ P̂ and for ē− ∈ Ē− (ē+ ∈ Ē+) to the edge ̂̄e− (̂̄e+) the vertex r as
source (target) vertex. We set

R̂= {(̂̄e−, ̂̄e+) ∈ Ê− × Ê+ : (ē−, ē+) ∈ R̄ ∩ ((Ē− \ F̄−)× Ē+ \ F̄+)))}.

In the R-graph GR̂(P̂, Ê
−
∪ Ê+), every vertex has at least two incoming edges in Ê−,

which means that every vertex in Ê+ has at least two outgoing edges in Ê+.
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We introduce additional notation for subshifts. We denote the set of periodic points in
A(X) by P(A(X)). The subshifts X ⊂6Z that we consider in this paper are such that
P(A(X)) is dense in X . We introduce a pre-order relation & into the set P(A(X)). For
q, r ∈ P(A(X)), q & r means that there exists a point in A(X) that is left asymptotic to
the orbit of q and right asymptotic to the orbit of r . The equivalence relation on P(A(X))
that results from the pre-order relation & we denote by ≈.

LEMMA 3.2. Let GR(P, E− ∪ E+) be an R-graph such that P \P(1)
R 6= ∅ that satisfies

Conditions (II) and let G(V, 6, λ) be an S(GR(P, E−, E+))-presentation of a subshift
X (G(V, 6, λ)). For q, q′ ∈P, q 6= q′,( ⋃

V∈V(q)
P(V )

)
∩

( ⋃
V∈V(q′)

P(V )
)
= ∅.

Proof. Let p, p′ ∈P, V ∈ V(p), V ′ ∈ V(p′), q ∈ P(V ), q ′ ∈ P(V ′) and assume that
q = q ′. We show that

p= p′. (3.2)

Let c(c′) be simple cycles such that

λ(c)= 1p, λ(c′)= 1p′, (3.3)

whose bi-infinite concatenations are carried by q . Let π denote the period of q . Let I ∈ Z
be such that

q[I,I+π) = c, (3.4)

and let I ′ ∈ [I, I + π) be such that

q[I ′,I ′+π) = c′. (3.5)

In the case that I ′ = I , (3.3) implies (3.2) and in the case that I ′ > I , (3.3) together with
(3.4) and (3.5) imply that

{λ(c[I,I ′), c′
[I ′,I+π)} ∈ {1p : p ∈P} ∪ S

+(GR(P, E−, E+)),
and, more precisely, that

λ(c[I,I ′))= 1p, λ(c′
[I ′,I+π))= 1p′ ,

which gives
1p1p′ = 1p,

and (3.3) is shown. �

LEMMA 3.3. Let GR(P, E− ∪ E+) be an R-graph such that P \P(1)
R 6= ∅ that satisfies

Conditions (II) and let G(V, 6, λ) be an S(GR(P, E−, E+))-presentation of a subshift
X (G(V, 6, λ)). Let

r(−), r(+) ∈ P̂.

Let
V (−) ∈ V(r(−)), V (+) ∈ V(r(+)),

and let
p(−) ∈ P(V (−)), p(+) ∈ P(V (+)).

If p(−)& p(+) or if p(+). p(−), then r(−)= r(+).
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Proof. We derive a contradiction from the assumptions that p(−)& p(+) and that

r(−) 6= r(+). (3.6)

Let c(−) (c(+)) be the simple cycle whose bi-infinite concatenation is carried by p(−)
(p(+)). Let x ∈ A(X (G(V, 6, λ))) be left asymptotic to p(−) and right asymptotic to
p(+). By Lemma 3.2,

p(−) 6= p(+).

Let I (−) (I (+)) denote the maximal (minimal) index such that x(−∞,I (−)) (x[I (+),∞))
carries the left (right) infinite concatenation of c(−) (c(+)). From (3.6), it is seen that
I (−) < I (+). Write

u+(λ(x(I (−),I (+)))=
( ∏

0<k(+)≤K (+)

e+k(+)

)
1q(λ(x(I (−),I (+))),

u−(λ(x(I (−),I (+)))= 1q(λ(x(I (−),I (+)))
( ∏

0<k(−)≤K (−)

e−k(−)

)
.

Assume that K (+) > 0. The source vertex of e+(K (+)) is r(−), which has more
than one outgoing edge in G(P, E+), which implies that x 6∈ A−(X (G(V, 6, λ))). If
K (+)= 0, then one has by (3.6) that K (−) > 0. The target vertex of e−(K (−)) is
r(+), which has more than one incoming edge in G(P, E−), which implies that x 6∈
A+(X (G(V, 6, λ))).

The proof under the assumption that p(−). p(−) is symmetric. �

The following theorem is proved for Markov–Dyck shifts in [KM2].

THEOREM 3.4. Let GR(P, E−, E+) be an R-graph such that P \P(1)
R 6= ∅ that satisfies

Conditions (I), (II) and (III), and let G(V, 6, λ) be an S(GR(P, E−, E+))-presentation
of a subshift X (G(V, 6, λ)). Let p ∈ V(p), p ∈P, and p′ ∈ V(p′), p′ ∈P. For p and p′

to be ≈-equivalent, it is necessary and sufficient that p and p′ are in the same element of
the partition {{r} ∪P(r), r ∈ P̂}.

Proof. Choose for r ∈ P̂ a vertex Vr ∈ V(r) and a cycle cr at Vr such that λ(cr)= 1r.
Then choose a periodic point r that carries the bi-infinite concatenation of cr. Let c(p)
be the simple cycle at V (p) that has its bi-infinite concatenation carried by p. Choose a
path (e−i(−))1≤i(−)≤I (−) in G(P, E−R), with source vertex s(e−1 ) equal to r and with target
vertex t (e−I (−)) equal to p, and choose a path f (−) in G(V, 6, λ) from Vr to V (p) such
that λ( f (−))=

∏
1≤i(−)≤I (−) e−i(−). Choose also a path (e+i(+))1≤i(+)≤I (+) in G(P, E+R),

with source vertex s(e+1 ) equal to p and with target vertex t (e−I (+)) equal to r, and choose
a path f (+) in G(V, 6, λ) from V (p) to Vr such that λ( f (+))=

∏
1≤i(+)≤I (+) e+i(+).

The periodic points p and r are ≈-equivalent: points in A(X (G(V, 6, λ))) that are
left asymptotic to p and right asymptotic to r are given by the points that carry a left
infinite concatenation of c(p), followed by the path f (+), followed by the right infinite
concatenation of cr, and points in A(X (G(V, 6, λ))) that are left asymptotic to r and
right asymptotic to p are given by the points that carry a left infinite concatenation of cr,
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followed by the path f (−), followed by the right infinite concatenation of c(p). This
proves sufficiency.

To prove necessity, apply Lemma 3.3. �

We recall at this point from [Kr1] the construction of the semigroup S(X) for a subshift
X with Property (A). Given a subshift X ⊂6Z with Property (A), we denote by Y (X) the
set of points in X that are left asymptotic to a point in P(A(X)) and also right asymptotic
to a point in P(A(X)). Let y, ỹ ∈ Y (X), let y be left asymptotic to q ∈ P(A(X)) and
right asymptotic to r ∈ P(A(X)) and let ỹ be left asymptotic to q̃ ∈ P(A(X)) and right
asymptotic to r̃ ∈ P(A(X)). Given that X has the properties (a, n, Hn), n ∈ N,we say that
y and ỹ are equivalent, y ≈ ỹ, if q ≈ q̃ and r ≈ r̃ and, if for n ∈ N such that q, r, q̃, r̃ ∈
P(An(X)) and for I, J, Ĩ , J̃ ∈ Z, I < J, Ĩ < J̃ such that

y(−∞,I ] = q(−∞,0], y(J,∞) = r(0,∞),

ỹ
(−∞, Ĩ ] = q̃(−∞,0], ỹ

( J̃ ,∞) = r̃(0,∞),

one has for h ≥ 3Hn and for

a ∈ X(I−h,J+h], ã ∈ X
( Ĩ−h, J̃+h],

such that

a(I−Hn ,J+Hn ] = y(I−Hn ,J+Hn ], ã
( Ĩ−Hn , J̃+Hn ]

= ỹ
( Ĩ−Hn , J̃+Hn ]

,

a(I−h,I−h+Hn) = ã
( Ĩ−h, Ĩ−h+Hn)

,

a(J+h−Hn ,J+h] = ã
( J̃+h−Hn , J̃+h],

and such that

a(I−h,I ] ∈ An(X)(I−h,I ], ã
( J̃−h, Ĩ ] ∈ An(X)( J̃−h, Ĩ ],

a(J,J+h] ∈ An(X)(J,J+h], ã
( J̃ , J̃+h] ∈ An(X)( J̃ , J̃+h],

that a and ã have the same context. To give [Y (X)]≈ the structure of a semigroup, let
u, v ∈ Y (X), let u be right asymptotic to q ∈ P(A(X)) and let v be left asymptotic to
r ∈ P(A(X)). If here q & r , then [u]≈[v]≈ is set equal to [y]≈, where y is any point in Y
such that there are n ∈ N, I, J, Î , Ĵ ∈ Z, I < J, Î < Ĵ , such that q, r ∈ An(X), and such
that

u(I,∞) = q(I,∞), v(−∞,J ] = r(−∞,J ],

y
(−∞, Î+Hn ]

= u(−∞,I+Hn ], y
( Ĵ−Hn ,∞)

= v(J−Hn ,∞),

and
y
( Î , Ĵ ] ∈ An(X)( Î , Ĵ ],

provided that such a point y exists. If such a point y does not exist, [u]≈[v]≈ is set equal
to zero. Also, in the case that one does not have q & r , [u]≈[v]≈ is set equal to zero.

THEOREM 3.5. Let GR(P, E− ∪ E+) be an R-graph such that

P \P
(1)
R 6= ∅,
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that satisfies Conditions (I), (II) and (III), and let a subshift X (G(V, 6, λ)) be given by
an S(GR(P, E+ ∪ E−))-presentation G(V, 6, λ). Then

S(X (G(V, 6, λ)))= S(GR̂(P̂, Ê
−
∪ Ê+)),

and X (GR(P, E+ ∪ E−)) is given by an S(GR̂(P̂, Ê
+
∪ Ê−))-presentation.

Proof. We choose for r ∈ R̂ a periodic point y◦(r) ∈ X (P, 6, λ) such that

λ([0,π(y◦(r)))= 1r.

By Lemma 3.1 and by Theorem 3.2, we can choose a system of representatives Y ◦ of the
equivalence relation ≈ such that Y ◦ ⊃ {y◦(r) : r ∈RR̂}, and such that every point in Y ◦

is left asymptotic to a point in {y◦(r) : r ∈RR̂} and also right asymptotic to a point in
{y◦(r) : r ∈RR̂}.

We set

ϕ(e−)= ̂[e−]∼(R,−), e− ∈ E−,
ϕ( f −)= 1r, [ f −]∼(R,−) ∈ F̄−R̄(r), r ∈ R̂,

ϕ(1p)= 1r, p ∈Pr, r ∈ R̂,

ϕ( f +)= 1r, [ f +]∼(R,+) ∈ F̄+R̄(r), r ∈ R̂,

ϕ(e+)= ̂[e+]∼(R,+) e+ ∈ E+,

and, for

g(−) ∈ S−(GR(P, E− ∪ E+)), g(+) ∈ S+(GR(P, E− ∪ E+)),

we set

ϕ(g−)=
∏

1≤i(−)≤`(g(−))

ϕ(ei(−)[g(−)]), ϕ(g+)=
∏

1≤i(+)≤`(g(+))

ϕ(ei(+)[g(+)]).

We set
λ̂(σ )= ϕ(λ(σ )), σ ∈6,

and

J−(y◦)=max{J < 0 : y◦(−∞,J ] ∈ {y
◦(r)(−∞,J ] : r ∈ R̂}},

J−(y◦)=min {J > 0 : y◦
[J,−∞) ∈ {y

◦(r)[J,−∞) : r ∈ R̂}}, y◦ ∈ Y ◦.

An isomorphism 9 of S(X (V, 6, λ) onto (S(GR̂(P̂, Ê
+
∪ Ê−))) is given by

9([(y◦)]≈)=
∏

J−(y◦)< j<J+(y◦)

λ̂(y◦j ), y◦ ∈ Y ◦. �
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4. Examples
Consider an R-graph GR(P, E− ∪ E+) such that

P \P
(1)
R 6= ∅

that satisfies Conditions (I), (II) and (III). We say that a periodic point

p ∈ X (GR(P, E− ∪ E+))

has multiplier ê − ∈ Ê− (̂e + ∈ Ê+) if there is an I ∈ Z such that
∏

I≤i<I+π(p) p̂i is equal
to a power of ê − (̂e +). For ê − ∈ Ê− (̂e + ∈ Ê+), we denote by 3(̂e −) (3(̂e +)) the
minimal period π such that X (GR(P, E− ∪ E+)) has a periodic point of period π with
multiplier ê − (̂e +). The mappings ê −→3(̂e −) (̂e − ∈ Ê−) and ê +→3(̂e +) (̂e + ∈
Ê+) are invariantly associated to X (GR(P, E− ∪ E+)) [HIK, §4].

4.1. 0ne-vertex R-graphs. In this subsection, we consider one-vertex R-graphs

G = GR({p}, E− ∪ E+)

that satisfy Conditions (I), (II) and (III) such that X (G) is not of finite type. Given the
graph G, we denote the set of fixed points of X (G) with negative (positive) multiplier by
P−1 (X (G)) (P+1 (X (G))) and we define a relation

Q1(X (G))⊂ P−1 (X (G))× P+1 (X (G))

as the relation that contains the pairs

(p(−), p(+)) ∈ P−1 (X (G))× P−1 (X (G))

such that X (G) has a point that is negatively asymptotic to p(−) and positively asymptotic
to p(+).

THEOREM 4.1. Let
G = GR({p}, E− ∪ E+)

be an R-graph that satisfies Conditions (I), (II) and (III) such that X (G) is not of finite
type and let

G̃ = GR̃(P̃, Ẽ
−
∪ Ẽ+)

be an R-graph such that the subshift X (G̃) is topologically conjugate to the subshift X (G).
Then the R-graphs G̃ and G are isomorphic.

Proof. The hypothesis that the subshifts X (G̃) and X (G) are topologically conjugate
implies that

3(̃e−)= 1, ẽ− ∈ Ẽ−,

3(̃e+)= 1, ẽ+ ∈ Ẽ+.

This means that G̃ is a one-vertex R-graph. This hypothesis also implies that G̃
satisfies Conditions (I), (II) and (III), and that the relations Q1(X (G̃)) and Q1(X (G))
are isomorphic. The relations R̃ and Q1(X (G̃)) are isomorphic and so are the relations R̃
and Q1(X (G̃)). �
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4.2. A family of two-vertex R-graphs. In this subsection, we consider two-vertex
R-graphs

G = GR({P}, E− ∪ E+), P= {p, q},

that satisfy Conditions (I), (II) and (III) such that

P
(1)
R = {q}.

Given the R-graph G, we set

Ĝ = GR̂({̂p}, Ê
−
∪ Ê+),

and we set

Ê−1 = {̂e
−
∈ Ê− :3(̂e −)= 1}, Ê+1 = {̂e

+
∈ Ê+ :3(̂e +)= 1}.

One notes that

Ê−1 = {ê− : e
−
∈ E−(p, p)}, Ê+1 = {ê+ : e

+
∈ E+(p, p)}.

We denote by P−1 (X (G)) (P+1 (X (G))) the set of fixed points of X that have a multiplier
in Ê−1 (Ê+1 ) and we define a relation

Q1(X (G))⊂ P−1 (X (G))× P+1 (X (G))

as the set of pairs
(p(−), p(+)) ∈ P−1 (X (G))× P+1 (X (G))

such that X has a point that is left asymptotic to p(−) and right asymptotic to p(+). This
relation Q1(X (G)) is an invariant of topological conjugacy. We set

Ê−2 (X (G))= {̂e
−
∈ Ê− :3(̂e −)= 2}, Ê+2 (X (G))= {̂e

+
∈ Ê+ :3(̂e +)= 2}.

One notes that

Ê−2 (X (G))= {ê− : e
−
∈ E−(q, p)}, Ê+2 (X (G))= {ê+ : e

+
∈ E+(q, p)}.

For ê− ∈ Ê−2 ( ê− ∈ Ê+2 ), we denote by O(̂e−)
2 ( O(̂e+)

2 ) the set of orbits of length two in
X (G) with multiplier ê− (̂e+). We set

ρ−(X (G))= gcd{ card(O(̂e−)
2 ) : ê− ∈ Ê−2 },

ρ+(X (G))= gcd{ card(O(̂e+)
2 ) : ê+ ∈ Ê+2 },

and
O−2 (X (G))=

⋃
ê−∈O(̂e−)

2

O(̂e−)
2 , O+2 (X (G))=

⋃
ê+∈O(̂e+)

2

O(̂e+)
2 .

We define a relation

Q2(X (G))⊂O−2 (X (G))×O+2 (X (G))

as the relation that contains the pairs

(o(−), o(+)) ∈O−2 (X (G))×O+2 (X (G))
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such that X has an orbit that is left asymptotic to o(−) and right asymptotic to o(+). This
relation Q2(X (G)) is an invariant of topological conjugacy.

We set

α(X (G))= 1
2 (I

(0)
2 (X (G))− card(Q1(X (G))),

β(X (G))= card(Q2(X (G))),

1(X (G))= α2(X (G))− 4β(X (G)).

We introduce a condition

gcd{α(X (G))−
√
1(X (G)), α(X (G))+

√
1(X (G))} = 1. (?)

Condition (?) is an invariant of topological conjugacy.

LEMMA 4.2. Let
G = GR({P}, E− ∪ E+), P= {p, q},

be an R-graph that satisfies Conditions (I), (II) and (III) such that

P
(1)
R = {q},

and that also satisfies Condition (?).
Then either α(X (G))−

√
1(X (G)) or α(X (G))+

√
1(X (G)) is a divisor of

ρ−(X (G))ρ+(X (G)).

Proof. One has that

α(X (G))= card(E−(p, q)) card(E+(p, q))+
∑

(̂e − ,̂e +)∈R̂

card(̂e −) card(̂e +)), (4.1)

β(X (G))= card(E−(p, q)) card(E+(p, q))
( ∑
(̂e − ,̂e +)∈R̂

card(̂e −) card(̂e +)
)

≥ ρ−(X (G))ρ+(X (G)) card(R̂) > ρ−(X (G))ρ+(X (G)). (4.2)

One sees that card(E−(p, q)) card(E+(p, q)) is a root of the equation z2
− α(X (G))z +

β(X (G))= 0, which does divide ρ−(X (G))ρ+(X (G)). It also follows from (?) that
ρ−(X (G))ρ+(X (G))

(α(X (G))−
√
1(X (G)))(α(X (G))+

√
1(X (G)))

=
ρ−(X (G))ρ+(X (G))

4 card(Q2(X (G)))
<

1
4
.

�

For R-graphs G that satisfy the hypothesis of Lemma 4.2, we set

γ (X (G))

=

{
α(X (G))−

√
1(X (G)) if α(X (G))−

√
1(X (G))|ρ−(X (G))ρ+(X (G)),

α(X (G))+
√
1(X (G)) if α(X (G))+

√
1(X (G))|ρ−(X (G))ρ+(X (G)).

We say that a relation is indecomposable if it is not isomorphic to a direct sum of relations.
We define a family F of R-graphs G as the family of R-graphs that satisfy the hypothesis
of Lemma 4.2 that are such that the relation Q2(X (G)) is indecomposable and that also
satisfy the following condition:

γ (X (G))= ρ−(X (G))ρ+(X (G)). (??)

Condition (??) is an invariant of topological conjugacy.
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LEMMA 4.3. For R-graphs G = GR({p, q}, E− ∪ E+) in the family F, one has that

card(E−(p, q))= ρ−(X (G)), card(E+(p, q))= ρ+(X (G)).

Proof. One has that

ρ−(X (G))= card(E−(p, q)) gcd{ card(̂e−) : ê− ∈ Ê−},
ρ+(X (G))= card(E+(p, q)) gcd{ card(̂e+) : ê+ ∈ Ê+}

and therefore

γ (X (G))

= card(E−(p, q)) card(E+(p, q)) gcd{ card(̂e−) : ê− ∈ Ê−} gcd{ card(̂e−) : ê+ ∈ Ê+}.

By Lemma 4.2, γ (X (G)) is equal to the root of the equation z2
− α(X (G))z +

β(X (G))= 0 that divides ρ−(X (G))ρ+(X (G)). One has that this root is equal to
card(E−(p, q)) card(E+(p, q)) and it follows that

gcd{ card(̂e−) : ê− ∈ Ê−} = gcd{ card(̂e+) : ê+ ∈ Ê+} = 1. �

THEOREM 4.4. Let
G = GR({p, q}, E− ∪ E+)

be an R-graph that belongs to the family F and let G̃ be an R-graph such that the subshifts
X (G) and X (G̃) are topologically conjugate. Then the R-graphs G̃ and G are isomorphic.

Proof. From the hypothesis that the subshifts X (G) and X (G̃) are topologically conjugate,
it follows by Theorem 2.2 that G̃ satisfies Conditions (I), (I) and (III). It also follows that

{3(̂e −) : ê − ∈ Ê−} ⊂ {1, 2}

and that
{̂e − ∈ Ê− :3(̂e −)= 2} 6= ∅.

At this stage one sees that there is a K ∈ Z+ such that G̃ appears as an R-graph

G̃ = GR̃(P̃, Ẽ
−
∪ Ẽ+), P̃= { p̃, q̃} ∪ {q̃k : 1≤ k ≤ K },

such that
P̃
(1)
R̃
= {̃q} ∪ {̃qk : 1≤ k ≤ K }.

One notes that the relation Q2(X (G̃)) is indecomposable precisely if K = 0 and the
relation R̃(̃q, p̃) is indecomposable. It follows that G̃ belongs to the family F.

From the hypothesis that the subshifts X (G) and X (G̃) are topologically conjugate, it
follows by [Kr4, Theorem 2.1] that the R-graphs ̂̃G and Ĝ are isomorphic. It also follows
that

ρ−(X (G̃))= ρ−(X (G)), ρ+(X (G̃))= ρ+(X (G))

and, by Lemma 4.3, one has that

card(E−(̃p, q̃))= card(E−(p, q)), card(E+(̃p, q̃))= card(E+(p, q)).
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The proof is completed by observing that, for the R-graphs G in the family F, the relation
R(p, p) is isomorphic to the relation Q1(X (G)), and the relation R(q, p) can be obtained
from the the triple that consists of the relation R̂ and the pair of mappings

ê−→ card(̂e−)=
card(P (̂e

−)
2 )

card(E−(p, q))
(̂e− ∈ Ê−),

ê−→ card(̂e−)=
card(P (̂e

+)
2 )

card(E+(p, q))
(̂e+ ∈ Ê+)

and by noting that this triple is also an invariant of the topological conjugacy of X (G). �

Acknowledgement. Thanks go to the referee for valuable critical remarks.
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[BBD1] M.-P. Béal, M. Blockelet and C. Dima. Finite-type-Dyck shift spaces. Preprint, 2013.

arXiv:1311.4223.
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