J. Austral. Math. Soc. (Series A) 26 (1978), 383-384

ON THE FIXED POINTS OF SYLOW SUBGROUPS OF TRANSITIVE PERMUTATION GROUPS: CORRIGENDUM

MARCEL HERZOG and CHERYL E. PRAEGER

(Received 30 August 1977)

Abstract

The proof of Theorem 5 in a paper with the same title is incorrect. In this note weaker versions of that theorem are proved.

Subject classification (Amer. Math. Soc. (MOS) 1970): 20 B 05.

In Herzog and Praeger (1976) we stated Theorem 5 which is incorrect for p>2. Theorem 1 and Corollaries 2-4 are unaffected, as well as Lemmas 2.1 and 2.2. It follows from Praeger (1978b) and Theorem 1 that Corollary 7 is true.

Using the results of Praeger (1978b) we shall prove the following weaker version of Theorem 5.

THEOREM 5'. Let G be a transitive permutation group on a set Ω of n points, and let P be a Sylow p-subgroup of G for some prime p dividing |G|. Suppose that P has t long orbits and f fixed points in Ω , and suppose that f = tp-1. If P has an orbit of length p, then t = 1, n = 2p-1 and $G \supseteq A_n$.

PROOF. By Praeger (1978a) it follows that all long orbits of P have the same length, namely p. Hence $f = tp-1 = \frac{1}{2}(n-1)$, and by Praeger (1978b) t = 1, n = 2p-1 and $G \supseteq A_n$.

Finally we shall show that Theorem 5 holds for p = 2 and f > 0.

THEOREM 5". Let G be a transitive permutation group on a set Ω of n points, and let S be a nontrivial Sylow 2-subgroup of G. Suppose that S has t long orbits and f fixed points in Ω , and suppose that $f = 2t - i_2(n) > 0$. Then $t = f = i_2(n) = 1$ and G is 2-transitive. If the long S-orbit has length 2, then n = 3 and $G \cong S_3$.

383

PROOF. If $n \leq 3$, then Theorem 5" clearly holds. Assume, by induction, that the result is true for transitive groups of degree less than *n*. By Wielandt (1964) 3.7, |N(S):S| is divisible by $f = 2t - i_2(n)$. Since |N(S):S| is odd, *f* is odd, and hence $i_2(n) = 1$.

Let $\Sigma = \{B_1, ..., B_r\}$ be a set of blocks of imprimitivity for G in Ω . Since f > 0and since S fixes setwise any block containing a point of $fix_{\Omega}S$, it follows that $fix_{\Sigma}S$ is non-empty. Let $B \in fix_{\Sigma}S$ and set $f_B = |fix_BS|, f_{\Sigma} = |fix_{\Sigma}S|$. Denote by t_B and t_{Σ} the number of long S-orbits in B and Σ , respectively. Suppose first that S acts nontrivially on B. Then by Herzog and Praeger (1976) Theorem 1, $f_B = 2t_B - d$ for some $d \ge 1$. Hence by Herzog and Praeger (1976), Lemma 1.2,

$$2t-1 = f = f_{\Sigma}f_B = 2f_{\Sigma}t_B - f_{\Sigma}d \leq 2t - f_{\Sigma}d$$

as $f_{\Sigma}t_B$ is the number of long S-orbits in $U\{B | B \in fix_{\Sigma}S\}$. Therefore $f_{\Sigma} = d = 1$ and $t_B = f_{\Sigma}t_B = t$, from which we conclude that $|\Sigma| = 1$. On the other hand, if S acts trivially on B, then by Herzog and Praeger (1976), Lemma 1.2 and Theorem 1,

$$f = |B|f_{\Sigma}, \quad t = |B|t_{\Sigma} \text{ and } f_{\Sigma} = 2t_{\Sigma} - d$$

for some $d \ge 1$. Hence 2t - 1 = f = 2t - |B| d and so |B| = 1. Thus G is primitive on Ω .

Let $\alpha \in \operatorname{fix}_{\Omega} S$ and let $\Gamma_1, \ldots, \Gamma_r, r \ge 1$, be the orbits of G_{α} on $\Omega - \{\alpha\}$. By Wielandt (1964), 18.4, S acts nontrivially on each Γ_i . Let S have f_i fixed points and t_i long orbits in Γ_i for $1 \le i \le r$. Then by Herzog and Praeger (1976), Theorem $1, f_i = 2t_i - d_i$ for some $d_i \ge 1, 1 \le i \le r$, and so

$$2t - 1 = f = 1 + \sum f_i = 1 + \sum (2t_i - d_i) = 2t + 1 - \sum d_i,$$

that is, $\sum d_i = 2$. If r > 1, then r = 2 and $d_1 = d_2 = 1$. By induction G_{α} is 2-transitive on Γ_1 and Γ_2 , a contradiction to Wielandt (1964), 17.7. Hence r = 1, that is G is 2-transitive. If f > 1, then by Wielandt (1964), 3.7 applied to G and to G_{α} , |N(S) : S|is divisible by the even integer f(f-1), a contradiction. Hence f = 1 and so t = 1. Finally, if S has an orbit of length 2, then n = 3 and $G \cong S_3$.

References

- M. Herzog and C. E. Praeger (1976), 'On the fixed points of Sylow subgroups of transitive permutation groups', J. Austral. Math. Soc. (Ser. A) 21, 428-437.
- C. E. Praeger (1978a), 'Sylow subgroups of transitive permutation groups, II' (to appear).
- C. E. Praeger (1978b), 'On transitive permutation groups with a subgroup satisfying a certain conjugacy condition' (submitted).
- H. Wielandt (1964), Finite permutation groups (New York-London, Academic Press, 1964).

Department of Mathematics Institute of Advanced Studies Australian National University Canberra, Australia 2600 Department of Mathematics University of Western Australia Nedlands, WA, Australia