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Abstract
The classical credibility theory is a cornerstone of experience rating, especially in the field of property and
casualty insurance. An obstacle to putting the credibility theory into practice is the conversion of avail-
able prior information into a precise choice of crucial hyperparameters. In most real-world applications,
the information necessary to justify a precise choice is lacking, so we propose an imprecise credibility esti-
mator that honestly acknowledges the imprecision in the hyperparameter specification. This results in an
interval estimator that is doubly robust in the sense that it retains the credibility estimator’s freedom from
model specification and fast asymptotic concentration, while simultaneously being insensitive to prior
hyperparameter specification.
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1. Introduction
The distribution of insurance losses depends on risk characteristics of the policyholder, a feature
that cannot be fully known during the underwriting process. However, it is possible to learn about
the policyholders’ underlying risk characteristics from observed losses, and a Bayesian approach
is attractive to insurers for a number of reasons. In particular, this approach allows the insurer to
seamlessly incorporate any available prior information about the risk parameter into the analysis
and to construct full posterior and predictive distributions that quantify uncertainty for infer-
ence about the risk parameter and for future loss values, respectively. Beyond these foundational
advantages, Hong &Martin (2017b) show that a Bayesian posterior distribution has several desir-
able asymptotic properties, and Hong & Martin (2017a, 2018), Huang & Meng (2020), Li & Liu
(2018), and Richardson & Hartman (2018) demonstrate that a Bayesian non-parametric model
is effective in predicting mortality in life insurance as well as predicting future insurance claims
in both healthcare insurance and general insurance. However, despite its benefits, a full Bayesian
analysis also has its drawbacks. First, the actuary is obligated to specify the joint distribution –
model and prior – of losses and the risk parameter, and the quality of inferences and predic-
tions he makes depends on his model specification being sound; that is, his posited model must
closely mimic the true loss distribution, otherwise the inferences and predictions could be biased,
potentially severely. Second, unless the model is of an especially simple form, computations of the
posterior and predictive distributions will require Markov chain Monte Carlo (MCMC), which
can be expensive, especially for non-parametric models. Moreover, when MCMC is used, it is not
possible to take practical advantage of the theoretical property that the Bayesian posterior distri-
bution can be updated online as new data becomes available; but see Hahn et al. (2018) and Hong
& Martin (2019) for some recursive formulas/approximations.
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Bühlmann (1967) recognised that, if only a point prediction for a future loss is required, instead
of a full predictive distribution, then a very simple and robust approximation is available. Indeed,
what is known as Bühlmann’s credibility estimator of the predictive distributionmean corresponds
to the Bayes optimal linear estimator, and it boils down to a simple convex combination of the
prior mean of the loss distribution and the sample mean of the observed losses. Thanks to its
intuitive appeal, computational simplicity, and minimal modelling requirements, the credibility
estimator has been embraced by the actuarial community since its origin, and it is still widely used
in actuarial practice.

A non-trivial obstacle to putting the Bayesian theory into practice is the specification of a prior
distribution; the same is true for credibility theory, though to a lesser extent. Asymptotic argu-
ments suggest that the prior is largely irrelevant – and even that default or “non-informative”
priors could be used – but this should not be a fully satisfactory answer to the actuary whose
motivation to adopt a Bayesian approach in the first place was its ability to incorporate prior
information. When one is unsure about the prior, then, at least implicitly, there is a class C of
plausible prior distributions under consideration; we will refer to this class as a credal set. There
are a few options of how one can proceed with C:

• Hierarchical Bayes (Berger, 2006, section 3.6; Ghosh et al., 2006, section 9.1). Set
C = {�λ : λ ∈ �} to be indexed by a hyperparameter λ, specify a prior Q for λ, and use the
marginal prior

∫
�λ Q(dλ) for the subsequent Bayesian analysis. The upside is that the pos-

terior may be less sensitive to the choice of Q than to a direct choice of λ, but this only shifts
the actuary’s responsibility from choosing λ to choosing Q.

• Empirical Bayes (Berger, 2006, section 4.5; Ghosh et al., 2006, section 9.2). For C indexed by
a hyperparameter λ as above, let the data assist with the selection of a single prior from C by
letting λ̂ be the maximum marginal likelihood estimator of λ, and then use prior �

λ̂
for the

subsequent Bayesian analysis. The upside is that a data-assisted choice of prior is an attractive
option, but it is ignoring the uncertainty in the prior that originally motivated this discussion,
drastically exaggerating the precision.

• Robust Bayes (Berger, 2006, section 4.7; Ghosh et al., 2006, section 3.8). Rather than averaging
over C or selecting and individual prior in C, a third option is there to treat the entire credal
set as the prior, i.e., to construct a posterior distribution for θ based on every prior in C.
The upside is that the uncertainty about the prior is acknowledged in the formulation and
preserved in the posterior updates, but returning a range of answers to every question – in
particular, an interval of predictive distribution means – can be computationally demanding
and difficult to interpret.

The first two methods above are standard and have been widely used in the actuarial science liter-
ature and beyond. The third approach is more obscure, but it too has received some attention in
the actuarial science literature; see section 2.2. Note, however, that robust Bayes is robust only with
respect to priors in the credal set. In order to put the theory into practice, very specific assump-
tions about the model and/or credal set are needed, so the robust Bayes solution would still be
sensitive to departures from these assumptions.

Our overall assessment of what is available in the literature is as follows. The classical Bayes
solution is optimal, but puts a burden on the actuary to specify a sound model and precise prior;
the robust Bayes solution relieves some of this burden by requiring only an imprecise prior but
retains sensitivity to the model and increases the computational costs; and the credibility theory
almost completely relieves the model specification and computational burdens but retains sensi-
tivity to the prior. The question posed in the present paper is if the prior robustness afforded by the
use of a credal set could be incorporated with the simplicity and model robustness of Bühlmann’s
credibility framework. (Loss robustness is irrelevant in credibility theory where the squared-
error loss is the standard loss function.) Indeed, the credibility estimator depends on the prior
distribution through a small number of interpretable quantities, so specification of a credal set is
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relatively straightforward. Moreover, the credibility estimator’s simplicity makes its computation
over the entire credal set almost trivial. Therefore, since there is inherent imprecision in the prior
formulation – a consequence of having only limited a priori information about the phenomenon
under investigation – we propose to directly acknowledge the imprecision via a suitable credal
set, and return what we call the imprecise credibility estimator, which is an interval of credibility
estimators corresponding to each prior in the credal set. We claim that the proposed imprecise
credibility estimator is doubly robust in the sense that its performance is not affected by the actu-
ary’s choice of model or prior, in large part because the actuary is not required to make such
specifications. Therefore, our imprecise credibility estimator gives the actuary the best of both
worlds: an easy-to-compute estimator of the predictive mean that flexibly and honestly accounts
for available prior information and is robust to biases resulting from model misspecification.

It is important to emphasise that, in our context, the word “imprecise” is not synonymous with
“inaccurate,” “rough,” “unscientific,” etc. Instead, our proposed solution is imprecise in the sense
that the actuary carefully considered the available a priori information and what assumptions he
was willing to make, encoded all this in a well-defined credal set, and preserved that uncertainty
all the way through his analysis.

The remainder of this article is organised as follows. In section 2 we give a brief review of
Bayesian decision theory, imprecise probability and robust Bayes, and Bühlmann’s credibility
formula. Next, in section 3, we propose our imprecise credibility estimator and show several desir-
able properties to justify our “double-robustness” claims. In section 4, we give a brief numerical
illustration to show how the level of imprecision can affect the imprecise credibility estimator
compared to a typical robust Bayes solution. Section 5 describes some extensions of and alternative
perspectives on the proposed imprecise credibility theory, and section 6 gives some concluding
remarks.

2. Background
2.1 Bayesian decision theory
Let Xn = (X1, . . . , Xn) be the observable loss data where X1, . . . , Xn are independent and identi-
cally distributed (iid) according to a true distribution P�. In the Bayesian approach, the actuary
starts by postulating a model P = {Pθ : θ ∈ �} where � is the parameter space and assumes that
losses are conditionally iid given θ , i.e.,

(X1, . . . , Xn | θ) iid∼ Pθ

Of course, it is possible that P� �∈P , this is out of the actuary’s control. Next, the actuary accounts
for uncertainty about the value of θ by assigning it a prior distribution �. Let

μ(θ)= Eθ (X) and σ 2(θ)= Vθ (X)
be the mean and variance of Pθ , respectively. Then, define

m1(�)= E� {μ(θ)} , m2(�)= V� {μ(θ)} , and v(�)= E�

{
σ 2(θ)

}
where expectation and variance are taken with respect to the prior distribution�. In the insurance
literature, μ(θ), σ 2(θ), m1(�), m2(�), and v(�) are often referred to as the hypothetical mean,
the process variance, the collective premium, the variance of hypothetical mean, and the mean of
the process variance, respectively. Throughout, we assume that � is such thatm1(�),m2(�), and
v(�) exist and are finite.

The usual goal of the actuary is to obtain a point prediction for the next loss Xn+1. In
the Bayesian decision theory, this is often formulated as an optimisation problem: to find the
estimator δ that minimises the expected squared error loss

E
{
Xn+1 − δ

(
Xn)}2
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where the expectation is taken with respect to the joint distribution of (Xn, Xn+1) under the afore-
mentioned model. Once the optimal function δopt is obtained, and loss data Xn = xn are observed,
then δopt(xn) will be used to predict Xn+1. So the problem boils down to finding δopt. To this end,
we apply the iterated expectation formula and Jensen’s inequality for conditional expectations to
obtain

E
{
Xn+1 − δ

(
Xn)}2 = E

(
E
[{
Xn+1 − δ

(
Xn)}2 | Xn, θ

])
≥ E

(
E
[{
Xn+1 − δ

(
Xn)} | Xn, θ

])2
= r(�, δ)

where

r(�, δ)= E
[{

μ(θ)− δ
(
Xn)}2] (1)

and the expectation is taken with respect to the joint distribution of (θ , Xn). The quantity r(�, δ)
is called the Bayes risk of the estimator δ under the prior � relative to squared-error loss. On the
other hand, the projection theory in the Hilbert space L2 (e.g. Shiryaev, 1996, section II.11 or van
der Vaart, 1998, section 11.2) implies that

r(�, δ)= E
[{

μ(θ)− δ
(
Xn)}2] ≥ E

[{
μ(θ)− E

{
μ(θ) | Xn}}2]

where equality holds if and only if δ(Xn)= E{μ(θ) | Xn}. It follows that
δopt

(
Xn) = E

{
μ(θ) | Xn} (2)

Then δopt is the Bayes rule, the estimator that is optimal in the sense that it minimises the Bayes
risk relative to the assumed prior �.

2.2 Robustness to the prior: imprecise probability
An important point is that, in most cases, the unknown parameter θ is determined by the model
specified P . Therefore, questions about which priors for θ generally can be entertained only come
after the model has been specified. For the present discussion, we assume that the model P and
correspondingmodel parameter have been determined, but we revisit this subtle point in section 3
below.

As discussed in section 1, if the application at hand lacks sufficient information to completely
determine a (model and) prior distribution for the risk parameter, then there is a credal set con-
sisting of candidate prior distributions. Of course, the credal set can take all sorts of forms. Two
extreme cases are as follows:

• Complete knowledge: C = {�};
• Complete ignorance: C = {all probability distributions � on �}.

Most real-world applications are somewhere between these two extremes. For example, it is not
unreasonable that the actuary could specify ranges Aj for a few functionals fj, j= 1, . . . , J, of the
prior and, in that case, the credal set would be given by

C = {
� : fj(�) ∈Aj, j= 1, . . . , J

}
These functionals could be moments, quantiles, or some other summaries; note that, especially in
cases where θ is multidimensional, the summaries might be moments or quantiles associated with
a scalar function of θ , e.g., the mean μ(θ) under distribution Pθ .

To understand the role played by the credal set, and how it relates to the notions of precision
and imprecision, a very brief jaunt into imprecise probability territory is necessary. Given a credal
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set C, whose generic element � is a probability measure on �, we define the corresponding lower
and upper probabilities:

�(A)= inf
�∈C

�(A) and �(A)= sup
�∈C

�(A), A⊆ � (3)

It should be immediately clear that the interpretation and mathematical properties of � are very
different from those of the individual � ∈ C. Indeed, there is a lot that can be said about this
definition and the subsequent developments. Here, we will only mention what is essential for
our present purposes; for more details, we refer the interested reader to the general introduction
to imprecise probability in Augustin et al. (2014) and to the more comprehensive and techni-
cal works of Walley (1991) and Troffaes & de Cooman (2014). An obvious consequence of (3)
is that

�(A)≤ �(A), A⊆ �

Then the notion of (im)precision can be understood by looking at the gap between the lower and
upper probabilities. In the “complete knowledge” extreme, the lower and upper probabilities are
the same, hence gap is 0. This means there is no uncertainty about how to assign probability to
A, so we say that the prior is precise. In the “complete ignorance” extreme, the lower probability
for every A (except �) is 0 and the upper probability is 1. This means there is uncertainty about
how to assign probability to A, so we say that the prior is imprecise. Most real-world examples
fall somewhere in between these two extremes, i.e., where the difference �(A)− �(A) is strictly
between 0 and 1 for some A.

When an imprecise prior is specified, through a credal set C, the posterior updates are based on
the generalised Bayes rule (e.g. Walley, 1991, section 6.4), which boils down to applying the usual
Bayes update to each � ∈ C, resulting in a posterior credal set

C
(
Xn) = {

�
(· | Xn) :� ∈ C

}
Since all the distributions contained in C(Xn) are plausible solutions, the most natural strategy is,
for any relevant posterior summary, to return the range of that summary over C(Xn). For exam-
ple, in insurance applications, the prior-� posterior mean δ�

opt(Xn)= E{μ(θ) | Xn} is a relevant
quantity, and the actuary could report the interval[

inf
�∈C

δ�
opt

(
Xn) , sup

�∈C
δ�
opt

(
Xn)]

of plausible posterior mean values, given the assumed model and observed data Xn, which hon-
estly accounts for the inherent imprecision in the prior specification. Computing the endpoints of
this interval is non-trivial, but some general formulas and approximations are available for spe-
cific prior classes; see, e.g., Wasserman (1990), Berger (2006, section 4.7), and Ghosh et al. (2006,
section 3.8).

Depending on the application, it may be necessary to report a single answer, rather than a range
of answers. For such cases, a standard robust Bayes solution is the 
-minimax rule (e.g. Berger,
2006; Vidakovic, 2000), where
 the set of priors, what we are calling the credal setC. The idea is to
define the Bayes risk, r(�, δ), for a given prior� and decision rule δ. When the prior is uncertain,
a robust solution is to use a rule that is “good” for all � ∈ C, so the 
-minimax proposal is to find
δ = δC

opt thatminimises themaximum risk, i.e.,

sup
�∈C

r
(
�, δC

opt

)
= inf

δ
sup
�∈C

r(�, δ)

As one might expect, solving this optimisation problem is a practical challenge, and the avail-
able solutions make very specific assumptions about the model and prior; in the actuarial science
literature, see Young (1998), Gómez-Déniz et al. (2006), and Gómez-Déniz (2009).
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2.3 Robustness to the model: credibility theory
Despite the theoretical optimality of the Bayes rule δopt in (2), there are several disadvantages.
First, it is rare that the Bayes rule would be available in closed-form; typically, MCMC would be
required. Second, and perhaps more importantly, δopt depends heavily on the choice of model and
the assumed prior distribution. If it happens that the model is misspecified, or if the prior distri-
bution fails to adequately represent the a priori uncertainty, then the Bayes rule would be afflicted
by model misspecification bias, rendering those theoretical optimality properties virtually mean-
ingless. Bühlmann (1967) proposed a simple linear approximation to δopt that simultaneously
overcomes both of these challenges.

Specifically, restrict attention in (1) to linear estimators of μ(θ), i.e.,

δ̂(Xn)= a0 + a1X1 + . . . anXn

where a0, a1, . . . , an are real numbers. Since the Bayes model assumes Xn are conditionally iid, de
Finetti’s theorem (e.g. Kallenberg, 2002, Theorem 11.10) implies that X1, . . . , Xn are exchange-
able, i.e., the distributions of (X1, . . . , Xn) and (Xk1 , . . . , Xkn) are the same for any permutation
(k1, . . . , kn) of (1, . . . , n). It follows that the optimal δ̂ will have a1 = · · · = an, so it suffices to con-
sider a linear estimator of the form δ̂(Xn)= α + βX̄n where X̄n is the sample mean. Substituting
δ̂(Xn) for δ(Xn) in (1), breaking down the corresponding Bayes risk, and using the familiar mean
and variance formulas for X̄n, we obtain

r
(
�, δ̂

)
= β2n−1v(�)+ (β − 1)2m2(�)+ {α + (β − 1)m1(�)}2

It follows from routine calculus that
δ̂opt(Xn)= αn + βn X̄n (4)

where

αn = αn(�)= v(�)m1(�)
nm2(�)+ v(�)

and βn = βn(�)= nm2(�)
nm2(�)+ v(�)

In the insurance literature, (4) is called the (Bühlmann) credibility formula and δ̂opt is referred
to as the (Bühlmann) credibility estimator. The credibility estimator has a number of appealing
properties: first, it is easy to implement numerically, no sophisticatedMonte Carlo calculations are
required; second, it has a nice interpretation as a weighted average of the individual risk and the
group risk in the experience rating context (e.g. Bühlmann & Gisler, 2005, section 3.1; Klugman
et al., 2008, section 16.4.4); third, it depends only on a few low-dimensional features of the prior
distribution � for the full model parameter θ ; and, fourth, as n→ ∞, it is a strongly consistent
estimator of the true mean, μ�, independent of the model and prior (e.g. Hong & Martin, 2020).
In view of the third and fourth properties, the credibility estimator can be applied without too
much concern about the model misspecification risk, at least in cases where the sample size n is
reasonably large.

3. Imprecise Credibility Estimation
Despite its flexibility, the credibility estimator does still depend, to a certain extent, on the posited
model P and the prior distribution �. Indeed, the model defines the unknown model parameter
θ in � and, in turn, the mean and variance functions μ(θ) and σ 2(θ) under model Pθ . Then the
prior �, together with the model P , determine the three key quantities,

Q(�)= {m1(�), m2(�), v(�)}
that appear in the credibility formula (4). An important observation is that the required prior
information is in terms of the mean and variance functions, quantities directly related to the
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observables. This simplifies the elicitation of meaningful prior information, either from experts,
prior experience, of the observed data. Three things, however, are clear: first, there will be uncer-
tainty about the choice of Q(�) in every practical application; second, the credibility formula
requires these values to be specified; and third, the quality of the estimate depends, to some extent,
on those specified values. How can the choice of these values be made in a principled way, one that
reduces the burden on the actuary?

Because the quantities in Q(�) are directly related to information contained in the observ-
ables, it would be tempting to use the actual observed data to help guide the choice of Q(�) in an
application. This boils down to an empirical credibility estimator as in, e.g., Klugman et al. (2008,
section 20.4). There are advantages to letting the data assist with the choice of these prior features,
resulting in an estimate Q̂(�), directly plugging these values into the credibility formula amounts
to ignoring the uncertainty in the choice of Q(�). To see this, suppose that Actuary A is uncer-
tain about Q(�) and uses the data to obtain a plug-in estimator Q̂(�)= (7, 2, 18). Now suppose
that Actuary B has very detailed prior information at his disposal and is certain about the choice
Q(�)= (7, 2, 18). The two actuaries would produce exactly the same credibility estimator despite
having very different information and levels of certainty a priori. This issue is not the use of data
to guide the choice of Q(�) – see section 5.1 below – but rather that the use of a plug-in estimator
amounts to manufacturing precision/certainty when there is none.

To avoid manufacturing precision in the credibility estimator, we propose a variation on the
robust Bayesian approach. Consider a credal set determined by a specified range for each of the
three quantities in Q(�), i.e.,

C = {
� :m1 ≤m1(�)≤m1, m2 ≤m2(�)≤m2, v≤ v(�)≤ v

}
(5)

where m1, m1, m2, m2, v, and v are positive numbers to be chosen at the actuary’s discretion.
Since the credibility estimator only depends on the prior � through the value of Q(�), we can
equivalently formulate this with a set

Q = {
q= (m1,m2, v) :m1 ≤m1 ≤m1, m2 ≤m2 ≤m2, v≤ v≤ v

}
(6)

Now it is clear that the incorporation of imprecision in this credibility context is much more
straightforward than in the robust Bayesian setting. That is, instead of fixing specific values for
(m1,m2, v), the actuary now considers a range of such values. And only having to specify a range
of values for (m1,m2, v) reduces the burden on the actuary to make one “right” choice. Moreover,
it is arguably easier to elicit information about (m1,m2, v) in the form of intervals: between the
two statements “the collective premium equals m1” and “the collective premium is between m1
andm1,” an expert is much more likely to be confident in the latter.

It is clear that the credal set C given by (5) or, equivalently, the set Q of q= (m1,m2, v) values
in (6), corresponds to a range of credibility estimators. Indeed, for each q= (m1,m2, v) ∈ Q, there
is a corresponding credibility estimator:

δ̂
q
opt(X

n)= vm1
nm2 + v

+ nm2
nm2 + v

X̄n

The next result shows that this range is, in fact, an interval in R.
Proposition 1. Given Q in (6), which is determined by the credal set C in (5), the range of
corresponding credibility estimators forms a closed and bounded interval in R.

Proof. The set Q is a closed hyper-rectangle in R
3, so obviously connected and compact. Since

the real-valued function q �→ δ̂
q
opt(Xn) is continuous, the corresponding image of Q is connected

and compact, hence a closed and bounded interval.
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Henceforth, we will refer to this interval as the imprecise credibility estimator and denote it by
I(Xn;Q) or I(Xn;C), or just In for short. Specifically,

In =
[
min
q∈Q

δ̂
q
opt

(
Xn) , max

q∈Q
δ̂
q
opt

(
Xn)] (7)

The imprecise credibility estimator has several appealing features. First, recall that the Bühlmann
credibility estimator’s dependence on the statistical modelP was only indirect, through the prior’s
implicit dependence on the model. That indirect dependence is eliminated by giving the estimator
a parametrisation in terms of the generic quantity q, whose values are interpretable independent
of a model. This implies that the imprecise credibility estimator is model-free and, consequently,
is not susceptible to model misspecification bias. Second, mapping the actuary’s specified range of
q values back to the credal set (5), it is clear that C covers a very wide range of prior distributions,
not just those of a particular parametric form, so (7) is not sensitive to the choice of prior form
either. Therefore, we conclude that the imprecise credibility is doubly robust in the sense that its
performance is not sensitive to the actuary’s choice of model or prior distribution – because the
actuary is not even required to make such specifications.

We should emphasise again that “imprecise” in this context is not synonymous with “inaccu-
rate.” The imprecision in our proposed imprecise credibility estimator is entirely determined by
the amount of information available to the actuary. Indeed, in the extreme case of complete cer-
tainty, the actuary can choose Q to be a singleton and Bühlmann’s original credibility estimator
emerges. For the more realistic case where the actuary has some degree of uncertainty about the
prior specification, the imprecise credibility estimator in (7) seems to be the natural generalisa-
tion of Bühlmann’s developments. In other words, our imprecise credibility estimator combines
the benefits of Bühlmann’s with an honest assessment of the actuary’s uncertainty about the prior
specification.

It is also worth emphasising that the imprecise credibility estimator, while being an interval, is
not an interval estimator in the traditional sense. That is, the range of values in (7) is completely
determined by the prior imprecision. It has nothing at all to do with the sampling distribution
properties of an estimator, so one cannot expect it to have any frequentist coverage probability
guarantees like a confidence interval would. Moreover, it has nothing at all to do with a posterior
distribution, so one cannot expect it to have a certain amount of posterior probability assigned
to it like a Bayesian posterior credible interval would. Instead, the imprecise credibility estimator
is just the set of all credibility estimators corresponding to the range of prior specifications the
actuary is willing/able to make.

Next, computation of the imprecise credibility estimator In in (7) is straightforward, no more
difficult than that of Bühlmann’s credibility estimator.
Proposition 2. Given Q, which is determined by the tuple (m1,m1,m2,m2, v, v), the endpoints of
the imprecise credibility estimator satisfy

min
q∈Q

δ̂
q
opt(X

n)=min{c1, c2, c3, c4} and max
q∈Q

δ̂
q
opt(X

n)=max{c1, c2, c3, c4}
where

c1 = n
n+ v/m2

X̄n + v/m2
n+ v/m2

m1,

c2 = n
n+ v/m2

X̄n + v/m2
n+ v/m2

m1,

c3 = n
n+ v/m2

X̄n + v/m2
n+ v/m2

m1,

c4 = n
n+ v/m2

X̄n + v/m2
n+ v/m2

m1
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Table 1. Summary statistics for scaled Norwegian fire claims data, 1990–1991

Year n Min 1st Qu Median Mean 3rd Qu Max

1990 628 1.000 1.577 2.300 3.947 3.611 157.074
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1991 624 1.000 1.506 2.197 3.641 3.818 99.384

Proof.Write

δ
q
opt(X

n)= nX̄n + (v/m2)m1
n+ v/m2

Then the theorem follows from the fact that δqopt(Xn) is monotone inm1 and v/m2.

There is no simple and general rule that can be given for choosing the setQ, or the correspond-
ing credal set (5), in practice. The reason is that Q is intended to represent the actuary’s degree
of uncertainty in a particular application, so clearly we cannot give any specific advice about how
he should choose Q. One can make use of the actual data to help guide this choice, and we have a
few remarks about this in section 5.1. Here, however, all we can say is that, clearly, the size of Q
is directly related to the length of In, so it is to the actuary’s advantage to choose Q as small as he
can possibly justify.

Fortunately, the choice of Q can only affect the results in small or moderate samples. The
following result demonstrates that, when n is large, the imprecise credibility estimator collapses,
at a root-n rate, to the single point μ�.
Proposition 3. Suppose the loss variables X1, X2, . . . are iid from distribution P�, with meanμ�. Let
In = I(Xn;Q) be the imprecise credibility estimator in (7). Then

max
{|max In − μ�| , |min In − μ�|} =O(n−1/2) in P�-probability as n→ ∞

Proof. For ck, k= 1, 2, 3, 4, as defined in Proposition 2, it is easy to check that,

ck − μ� = X̄n − μ� +O(n−1), in P�-probability, k= 1, 2, 3, 4

Chebyshev’s inequality implies that X̄n − μ� is O(n−1/2) in P�-probability, so the same holds for
each ck − μ�. Since the max and min operators are continuous, we get

min{c1, c2, c3, c4} − μ� =O(n−1/2) and max{c1, c2, c3, c4} − μ� =O(n−1/2)

in P�-probability by the continuous mapping theorem. Then the claim follows since the min and
max above correspond to the endpoints of In.

Therefore, the imprecise credibility estimator has all the benefits of Bühlmann’s original pro-
posal, namely, insensitivity to model and prior specifications and fast asymptotic consistency,
while incorporating an honest assessment of the actuary’s prior uncertainty.

4. Example
Consider the Norwegian fire claims data that has recently been analysed by several authors,
including Brazauskas & Kleefeld (2016), Mdziniso & Cooray (2018), Hong &Martin (2018, 2020),
and Syring et al. (2019). The 1990 and 1991 data sets contains n= 628 and n= 624 entries, respec-
tively, and are available from http://lstat.kuleuven.be/Wiley/ or the R package CASdatasets. We
first rescale the data sets by dividing each entry by 500. Table 1 provides the summary statistics for
the two scaled data sets.
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The situation we have in mind here is one where the 1990 data provides some “prior informa-
tion” that we use to help construct a credal set, which will then be converted into an imprecise
credibility estimate based on the 1991 data. This requires specification of bounds on the three
prior hyperparameters (m1,m2, v), which we carry out as follows. We should emphasise that the
assessment of imprecision is a subjective one (see section 5.1) that must be considered on a case-
by-case basis. What we present below is an illustration of the kinds of considerations one should
make, rather than a recommendation of what credal set to use.

• Since the interpretation of m1 is the most straightforward of the three, in order to keep our
comparisons relatively simple and brief, we suggest here to set [m1,m1] to be the standard
95% confidence interval based on a normal approximation for the distribution of the sample
mean which, in this case, is [m1,m1]= [3.28, 4.61]. Since the sample size is relatively large, a
central limit theorem approximation ought to be reasonable, but we emphasise again that we
are not recommending practitioners make this choice.

• Sincem2 is more difficult to interpret thanm1, we apply more care in setting the bound. There
is no reason to believe that the variance of the process mean would be especially large, so we
proceed with setting a guess m̂2 equal to the third quartile of the 1990 data, which is 3.61. Then
we set the bounds asm2 = φ−1m̂2 andm2 = φm̂2, respectively, where φ > 1 is an imprecision
factor described in more detail below.

• Like withm2, we proceed by taking a guess v̂ equal to the sample variance from the 1990 data,
which is 72.5. Then the bounds for v are set as v= φ−1v̂ and v= φv̂, respectively, where φ > 1
is an imprecision factor, not necessarily the same as that form2 introduced above.

In our comparisons below, we consider three different imprecision levels corresponding to values
of the factor φ.

Level 1. φ = 2
Level 2. φ = 3
Level 3. φ = 4.

Since we have two such imprecision factors in our credal set construction – one for each of the
m2 and v bounds – each with three levels, there are nine total imprecision level combinations. In
the figures, we denote the different combinations as A.B, which is interpreted as m2 and v having
imprecision levels A and B, respectively. Our goal is to investigate the effects of both imprecision
levels and the sample size on the imprecise credibility estimator.

The plots in Figure 1 show the imprecise credibility estimator applied to data that have the
same sample mean (3.64) as the 1990 Norwegian fire data but with varying sample sizes: n ∈
{100, 200, 400}. The vertical bar represents the interval In itself. As expected, smaller sample sizes
and higher imprecision levels correspond to larger intervals.While the intervals in each individual
panel do not vary greatly with the imprecision level, especially when the sample size is relatively
large, they do vary and the extent of this variability is controlled by the practitioner’s choice of
an imprecision factor φ. Depending on the application, even our most conservative imprecision
level, namely, 3.3, might be too liberal, in which case even wider bounds on the hyperparameters
(m1,m2, v) might be warranted, leading to even wider imprecise credibility estimators.

For comparison, consider one of the robust Bayes solutions presented in Gómez-Déniz (2009),
which assumes an exponential family model with a conjugate prior. Of course, since these data
appear to have been sampled from a heavy-tailed distribution, an exponential family model is
questionable. Our reason for introducing the exponential family model is to make a different
point, one that is independent of whether that model is appropriate or not, but it is worth empha-
sising that there are no “standard models” that would be appropriate for these data, hence the
proposed method has an advantage in the sense that it does not require the practitioner to specify
a model at all. Returning to our main point with the exponential family model, the robust Bayes
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(a) (b)

(c)

Figure 1. Plots of the imprecise credibility estimator In based on the sample mean from the 1991 Norwegian fire data, with
varying sample size n and varying imprecision levels in the construction of the credal set corresponding to the plausible
values of (m1,m2, v).

solutions derived in Gómez-Déniz (2009), Theorem 1, all return single values, all very close to the
sample mean. Therefore, there are no signs of prior imprecision in the answer returned by the
robust Bayes procedure, i.e., the answer is largely insensitive to the choice of credal set, especially
when n is large.

5. Remarks
5.1 Default choice of credal set?
Asmentioned above, the credal set in (5) or, equivalently, the setQ in (6) represents what the actu-
ary is willing to assume based on the available prior information in a given application. Therefore,
we cannot give any firm advice on how to make that choice. All we can offer are a few remarks
about how the data might be used to help guide this choice. We urge the reader to keep in mind
that we are not recommending the actuary choose Q in this way.

https://doi.org/10.1017/S1748499521000117 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499521000117


Annals of Actuarial Science 147

Following the now well-developed non- or semi-parametric empirical credibility theory
(Bühlmann & Gisler, 2005, section 4.9; Klugman et al., 2008, section 20.4), estimates of the three
quantities – m1, m2, and v – in the credibility formula are available. Since those are relatively
simple functions of the current and perhaps historical data, a naive strategy would use the sam-
pling distributions of these functions, perhaps under some simplifying assumptions, to construct
approximate “confidence intervals” form1,m2, and v. These confidence intervals may not be espe-
cially reliable, since they were derived based on some simplifying assumptions. In view of this, the
actuary might consider stretching these intervals out to some extent before using them to the
define the range of the three quantities in Q.

Similarly, suppose we have a parametric model Pθ and a class of priors �λ indexed by the
hyperparameter λ. In principle, it would be possible to evaluate the marginal likelihood for λ,
given data Xn, produce a maximum marginal likelihood estimator λ̂. Then (m1,m2, v)(�λ) are
functions of λ, so some guidance on the choice of Q can be provided by finding a set of plausible
values for λ. Like above, one could use the asymptotic normality of maximum likelihood estima-
tors to construct an approximate “confidence region” for λ which, in turn, could be used to guide
the choice of Q.

5.2 Extension to non-constant risk exposure cases
In the above, our discussion is in the framework of the Bühlmann credibility estimation where the
risk exposure is assumed to be one. In some real-world applications, this assumption may not be
appropriate. For example, if a policyholder purchases an insurance policy in the middle of a year,
then his/her benefits will be effective from the purchase date throughout to the end of the year
and the corresponding risk exposure will not be one; if some policyholders drop out of a group
insurance in 1 year and some other join in the following year, then risk exposure for this group
insurance will vary from year to year. To accommodate these cases, Bühlmann & Straub (1970)
propose a generalisation of the Bühlmann credibility estimator. This generalisation assumes that
losses X1, . . . , Xn are iid, given θ , with individual premium μ(θ)= Eθ (X) and the process vari-
ance k−1

i Vθ (X), where ki is a constant proportional to the size of the risk, i.e., it stands for the
risk exposure for Xi. Let k1, . . . , kn be the risk exposure for the X1, . . . , Xn, respectively, and
k= k1 + . . . + kn be the total risk exposure. As in the Bühlmann credibility estimation, we still
putm1(�)= E�{μ(θ)},m2(�)= V�{μ(θ)}, and v(�)= E�{σ 2(θ)} but take X̄n = k−1 ∑n

i=1 kiXi.
Then the Bühlmann–Straub credibility estimator is given by

μ̂c
BS = v(�)m1(�)

km2(�)+ v(�)
+ km2(�)

km2(�)+ v(�)
X̄n (8)

If Xi is interpreted as the average loss for a group of ki members in the ith year, then the credibility
premium to be charged for each member in the group for the (n+ 1)st year is μ̂c

BS, while the total
premium to charge this group of kn+1 members should be kn+1μ̂

c
BS.

The imprecise credibility estimator can be constructed for the Bühlmann–Straub credibility
estimator too. The procedure is completely similar to the one for the the Bühlmann credibil-
ity estimator. After choosing a credal set Q based on his prior knowledge, the actuary obtains
the corresponding imprecise credibility estimator IBS(Xn;C) via (8) as before. It is also easy to
see that Propositions 1–3 all extend in a straightforward way to the imprecise Bühlmann–Straub
credibility estimator.

5.3 Doubly robust imprecise Gibbs posteriors
Hong & Martin (2020) demonstrate that the classical credibility estimator can be interpreted as
the posterior mean of an appropriate Gibbs posterior. The Gibbs posterior distribution, which
has its origins in statistical physics, is the output of a generalisation of the Bayesian framework,
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one where the quantity of interest is defined by the solution to an optimisation problem, namely,
as the minimiser of an expected loss; here, “loss” is in the sense of decision theory, not a loss
to the insurance company. In our present context, the quantity of interest is the mean of the X
distribution, which is most directly characterised as the solution to the optimisation problem

μ� = arg min
μ

R(μ)

where R(μ)= E�μ(X) and �μ(x)= (x− μ)2. This is just the classical result which states that the
mean of a distribution is the minimiser of the expected squared error loss. For problems like
this, where the quantity of interest is defined via a loss function rather than a likelihood, Bissiri
et al. (2016) argued that the proper generalisation of the Bayesian approach results in a posterior
distribution for μ with a density function

πn(μ)∝ e−ωnRn(μ) π(μ), μ ∈R

where Rn(μ)= n−1 ∑n
i=1 �μ(Xi) is the empirical version of the risk, ω > 0 is a so-called learn-

ing rate parameter (e.g. Grünwald, 2012), and π is a prior density for μ. In the present setting,
with squared error loss, the first term on the right-hand side amounts to a Gaussian likelihood;
therefore, if π is a suitable Gaussian prior, then the corresponding Gibbs posterior mean has
form similar to that of the classical credibility estimator, justifying the above claim. For other
loss functions, the Gibbs posterior form could be quite different; see Syring &Martin (2017, 2019,
2020), Syring et al. (2019), and Bhattacharya &Martin (2020) for examples and general theoretical
properties.

One advantage of the Gibbs posterior is its robustness to model misspecification – this happens
automatically because the Gibbs posterior does not require the user to specify a model. If, on top
of this model-free Gibbs formulation, one considered a credal set of candidate prior distributions
for μ, then we get an imprecise Gibbs posterior that is also robust to prior specification, hence
doubly robust. In fact, if the credal set of priors for μ consists of Gaussian distributions, then each
would return a Gibbs posterior mean with form like the credibility estimator, so the imprecise
Gibbs posterior mean would return an interval like that in (7). Of course, in the present context, it
is better to directly write down the imprecise credibility estimator, as we have done here, but this
imprecise Gibbs posterior perspective is more general and deserving of further investigation.

6. Conclusion
Prior uncertainty and model misspecification are two major concerns for actuaries when they
want to use the Bühlmann credibility estimator. In this paper, we proposed a method for cred-
ibility estimation by representing the prior uncertainty in terms of a credal set. The proposed
method leads to an interval of credibility estimators, which we refer to as the imprecise credibility
estimator, that preserves the key features of the classical credibility estimator, while being honest
about the inherent prior imprecision. This makes our method doubly robust in the sense that it
is robust to both model missepcification and prior uncertainty. Our method also extends to the
Bühlmann–Straub credibility model.

Again, we want to emphasise that imprecision is not synonymous with “inaccurate” in the
present context. More often than not, the available prior information is not sufficiently detailed
to identify exactly one prior distribution to be used in a Bayesian analysis, so this imprecision is
inherent and should be accounted for. By not working with the entire class of prior distributions
compatible with the available information, whether it be for the sake of simplicity or some other
reason, the actuary is making potentially unjustifiable assumptions that can bias his estimates and
predictions. By working with the proposed imprecise credibility estimator, the actuary can avoid
these potential biases.
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A big picture view of what is proposed here suggests some potentially interesting future
investigations. The original Bayes framework starts with a fully specified statistical model and
prior distribution, yielding optimal decision procedures, relative to the assumed model, etc.
Bühlmann, building on the early work of Whitney (1918), recognised the challenges in specifying
a full statistical model, and that such specifications are not necessary for the estimation prob-
lem at hand, so he relaxed the fully Bayesian formulation. Later, other researchers recognised the
difficulty in specification of a prior distribution and developed a corresponding robust Bayesian
framework, leading to 
-minimax optimal decision procedures. Here, we have combined those
latter two practical modifications of the original Bayesian framework to provide a new tool that
is both statistically efficient and accommodates available prior information, without requiring the
actuary to specify a statistical model or assume any particular prior form. To generalise this “best
of both worlds” beyond this relatively simple credibility estimation context, the formulation in
terms of an imprecise Gibbs posterior as described in section 5.3 above seems especially promising
and deserving of further investigation.
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