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Abstract
Blood-side resistance to oxygen transport in extracorporeal membrane blood oxygenators (MBO) depends
on fluid mechanics governing the laminar flow in very narrow channels, particularly the hemodynamics
controlling the cell free layer (CFL) built-up at solid/blood interfaces. The CFL thickness constitutes a barrier
to oxygen transport from the membrane towards the erythrocytes. Interposing hemicylindrical CFL
disruptors in animal blood flows inside rectangular microchannels, surrogate systems of MBO mimicking
their hemodynamics, proved to be effective in reducing (ca. 20%) such thickness (desirable for MBO to
increase oxygen transport rates to the erythrocytes). The blockage ratio (non-dimensional measure of the
disruptor penetration into the flow) increase is also effective in reducing CFL thickness (ca. 10–20%), but at
the cost of risking clot formation (undesirable for MBO) for disruptors with penetration lengths larger than
their radius, due to large residence times of erythrocytes inside a low-velocity CFL formed at the disruptor/
wall edge.
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1. Introduction

MBO replace temporarily shunted lungs in cardiopulmonary bypass, being a mature technology
intensively used worldwide during heart surgery. Yet, relatively low oxygen transfer rates to the
erythrocytes (RBC) are still a shortcoming (Matsuda & Sakai, 2007), making of mass transfer enhance-
ment a path for MBO technical/medical progresses (Lim et al., 2006; Yeager & Roy, 2017). The CFL built
up at the membrane/blood interface, typical of in vitro laminar blood flows (Popel & Johnson, 2005), is a
major resistance to the oxygen transport to the erythrocytes. Although recognized that the blood-side
resistance to oxygen transport is directly dependent on the blood flow characteristics in very narrow
channels (characteristic lengths typical of microfluidics), little attention has been given to this subject,
particularly on how interposition of disruptors at the membrane surface acts as potential reducer of CFL
thickness (Lim et al., 2006; Yeager &Roy, 2017), which will constitute themain focus of the present work.

2. Objective

Effects onCFL thickness of interposing hemicylindrical disruptors within dog or horse blood flows inside
rectangularmicrochannels, surrogate ofMBOmimicking their hemodynamics (Yeager &Roy, 2017), are
quantified. Different disruptor geometries, as displayed in Figures 1 (c,d), are placed at one wall for
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cavity-flow, or alternately at opposing walls for zigzag-flow – see Figures 1 (a,b), with arrangements
shown in Figure 1 (e).

3. Methods

Microchannels weremanufactured with biocompatible PDMS, frequently adopted for in vitro blood flow
studies (Haeberle & Zengerle, 2007; Ng et al., 2002), by photolithography (mould) and soft-lithography
(microdevices).

Blood-flow images, acquired with a high-speed/high-resolution CMOS camera (Optronics-CR600x2)
connected to a microscope (Sampaio et al., 2015), were digitally post-processed with MATLAB tech-
niques to accurately determine the CFL thickness: walls were located with histogram threshold (Kim
et al., 2009; Otsu, 1979) combined with Sobel/Prewitt filters; RBC/plasma interface identified withmulti-
threshold clustering (Sampaio et al., 2015).

Calibrating the used syringe pump (blood-flow generator), Nexus-5000-Chemyx, yielded as maxi-
mum flowrate uncertainty 6.0%. Blood, kept at 4 °C, was heated in a thermostatic bath (25 °C) before
experiments, and waved gently for 1minute (distributing the RBC and preventing sedimentation).
Differently aged dog/horse blood viscosity was measured in a rotary viscometer DV-II + Pro.

Microchannels geometry was characterized by SEM images (Figure 1), testifying their surface
smoothness (Silva et al., 2009), perpendicularity and disruptors good definition. Several similar images
allowed comparing the actual height and width of all used microchannels with the designed ones
(maximum error: 4%). Key parameters are displayed in Table 1.

4. Results and discussion

Different aged blood viscosity results, horse (hematocrit, Ht≈40%) and dog (Ht≈46%), displayed in
Figure 2, evidence its negligible variation with blood age. Therefore, experiments performed up to 1week
after blood collection appear not to affect CFL results.

(a)

(b)

(c)

(d)
(e)

Figure 1. Illustrative SEM images of somemicrochannels and sketch of the cavity and zigzag disruptors arrangements: (a) SEM
image of cavity microchannel (�30); (b) SEM image of zigzag microchannel (�35); (c) SEM image of CFL disruptor with the
largest penetration length (�250); (d) SEM image of CFL disruptor with the smallest penetration length (�400); (e) top view
sketches of the used zigzag and cavity microchannel arrangements and corresponding dimensions (D0 – disruptor diameter;
W – microchannel width; Le – distance between disruptors; xdisr – disruptor penetration length.
Note – Visual inspection of magnified images acquired both with an optical microscope (objective�40) and SEM (up to�500)
allowed for the assessment of the good quality of the microchannels (walls smoothness and good definition and perpen-
dicular level of the walls).
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Figures 3 (a-d) show CFL thicknesses for horse and dog blood flows for different flowrates
(microchannels R, C1 and Z1). Figures 3 (a,b) evidence the systematic and more pronounced CFL
thickness increase with flowrate in microchannel R. Disruptors interposition reduces always the CFL
thickness (ca. 20%), which is desirable for MBO. However, comparing dog and horse blood flows, CFL
thickness is ca. 6% smaller for the former: its larger hematocrit renders smaller the space available at the
central region for RBC to migrate. Figures 3 (c,d) evidence the spatial periodic character of blood flows
after some disruptors for the zigzag arrangement: CFL thickness keeps practically invariable between the
13th and 14th disruptors. This might suggest the zigzag arrangement as preferable.

CFL variation with the diameter was inconclusive (microchannels C1, C2, and C3) or incipient
(microchannels Z1, Z2 and Z3). Moreover, CFL thickness kept unchanged with disruptors positioning
(microchannels C1, C6, C7, Z1, Z6 and Z7).

Table 1. Actual height and width (assessed from SEM images) of the manufactured microchannels. Dimensions are defined
in Figure 1 (e). R: reference microchannel (no disruptors); Ci: cavity-flow type; Zi: zigzag-flow type.

Microchannel
designation

Actual
height
[μm]

Actual
width W
[μm]

Design diameter
D0 of disruptor

[μm]

Design distance
between disruptors

Le [m] D0=W Le=W

Blockage
ratio

[xdisr/W]

R 41.5 394.9 – – – – –

C1 38.6 399.6 200 1,600 0.5 4 0.25

C2 39.3 399.6 260 1,600 0.65 4 0.325

C3 38.7 402.0 140 1,600 0.35 4 0.175

C4 38.6 397.9 200 1,600 0.5 4 0.35

C5 38.7 399.6 200 1,600 0.5 4 0.45

C6 39.3 399.0 200 1,200 0.5 3 0.25

C7 38.7 397.9 200 2000 0.5 5 0.25

Z1 39.7 405.3 200 1,600 0.5 4 0.25

Z2 40.7 415.8 260 1,600 0.65 4 0.325

Z3 38.6 422.1 140 1,600 0.35 4 0.175

Z4 40.5 419.8 200 1,600 0.5 4 0.35

Z5 38.6 409.6 200 1,600 0.5 4 0.45

Z6 40.9 415.8 200 1,200 0.5 3 0.25

Z7 38.8 414.0 200 2000 0.5 5 0.25

Note – design size values were: height = 40 μm; width = 400 μm.

(a) Horse blood (b) Dog blood

Figure 2. Effect of aging on the viscosity of blood of different animals [⋄ 3hours after collecting blood; □ 10 hours after
collecting blood;△ 24 hours after collecting blood;� 48hours after collecting blood; ∗ 3 days after collecting blood;∘ 7days
after collecting blood;þ 15days after collecting blood]: (a) horse blood (Ht≈40%, at 25 °C); (b) dog blood (Ht≈46%, at 25 °C).

Experimental Results 3

https://doi.org/10.1017/exp.2020.60 Published online by Cambridge University Press

https://doi.org/10.1017/exp.2020.60


(a)

(b)

(c)

(d)

(e)

(f)

Figure 3. Thickness of CFL as function of the volumetric flowrate and blockage ratio (non-dimensional degree of the disruptor
penetration into the flow). (a,b) Horse and dog blood flows [□ microchannel R (free of CFL disruptors); △ zigzag-flow type
microchannel Z1; ▲ cavity-flow type microchannel C1]; CFL measured at the wall region opposing the 1st disruptor in
microchannels Z1 and C1; (c,d) CFL thickness after some disruptors for horse and dog blood flows in microchannel Z1; CFL
measured [□ right above 13th disruptor; ■ right above 14th disruptor; △ wall opposite to the 13th disruptor; ▲ wall opposite
to the 14th disruptor]; (e) Thickness of CFL at the wall opposing the disruptor as function of the blockage ratio for horse blood
flows in zigzag-flow typemicrochannels Z1, Z4 and Z5 [⋄ 10 μl=min , 1st disruptor;♦ 10 μl=min , 2nd disruptor; ♦ 10 μl=min ,
14th disruptor; △ 25 μl=min , 1st disruptor; ▲ 25 μl=min , 2nd disruptor; ▲ 25 μl=min , 14th disruptor]; (f) Thickness of CFL at
the wall opposing the disruptor as function of the blockage ratio for dog blood flows in cavity-flow typemicrochannels C1, C4
and C5 [∘ 10 μl=min , 1st disruptor; • 10 μl=min , 5th disruptor; □ 25 μl=min , 1st disruptor; ■ 25 μl=min , 5th disruptor].
Note – For the cavity arrangements, CFL exhibited a non-linear increase of its thickness with the flowrate at the downstream
disruptors region.

Figure 4. Illustration, for a blood flow around a disruptor with its penetration length into the flow xdisr larger than its radius
D0=2, of the large residence time of a RBC inside the CFL upstream and close to the disruptor edge (highlighted with a circle
marker) in comparisonwith that of another RBCat the plasma/erythrocytes interface (highlightedwith a squaremarker). Flow
images at that region for different instants: (a) t = 0 s; (b) t = 0.01 s; (c) t = 0.02 s; (d) t = 0.03 s; (e) t = 0.04 s; (f) t = 0.26 s.
Note – These images, extracted from hundreds of the sequential images acquired with a frame rate of 2000 fps (0.5ms
between consecutive frames), exhibit a partial top view of a disruptor with the flow coming from the top to the bottomof each
image. There was no experimental evidence of a similar phenomenon for blood flow around disruptors with penetration
lengths xdisr smaller than or equal to their radius D0=2.
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Figures 3 (e,f) reveal a systematic CFL thickness reduction with the blockage ratio increase (micro-
channels C1, C4, C5, Z1, Z4 and Z5): between 10–20% for dog blood in cavity-type flows; and 10–15% for
horse blood in zigzag-type flows.

Images in Figure 4 suggest a limit for the blockage ratio: when xdisr is greater than D0=2, a CFL
localized at the disruptor/wall edge, with low velocities and large residence times, may potentiate clot
formation (Completo et al., 2014), which is not desirable for MBO: erythrocytes inside such CFL require
much more time (ca.�6.5) to flow away from it than those outside it.

6. Conclusion

Interposition of disruptors in animal blood microchannel flows revealed effective in reducing CFL
thickness (ca. 20%), suggesting zigzag arrangement as slightly better, a feature desirable for MBO as it
promotes larger oxygen transport rates to the erythrocytes. Variation of the disruptors diameter and
positioning yielded no relevant CFL thickness improvements. Blockage ratio (non-dimensional measure
of the disruptor penetration into the flow) proved to be quite effective in reducing CFL thickness (ca. 10–
20%).However, this comes at the cost of risking clot formation (undesirable forMBO) for disruptors with
a penetration length greater than its radius.
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