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1. Introduction

The arithmetic filtration on the cohomology of a smooth complex projective
variety X is defined by letting F r

aH
n(X;Q) be the linear span of cohomolo-

gy classes supported on algebraic subvarieties of codimension at least r. When
n = 2r; F r

aH
2r(X;Q) is the space spanned by the fundamental classes of alge-

braic subvarieties of codimension r. The other terms of the arithmetic filtration
provide subtler information about subvarieties of X .

The general Hodge conjecture([Gr]; [Ho]) asserts the equality of the arithmetic
filtration with Grothendieck’s corrected Hodge filtration, which we denote by
F r

QH
n(X;Q). The special casen = 2r of the general Hodge conjecture asserts that

F r
aH

2r(X;Q), the space of algebraic cycles of codimension r, equals Hr;r(X) \
H2r(X;Q), the space of Hodge cycles. This special case is (usually) called the
usual Hodge conjecture.

The general Hodge conjecture is equivalent to the usual Hodge conjecture
for all X , together with the assertion that for any irreducible Hodge structure
V � F r

QH
n(X;Q), the Tate twist V (�r) is isomorphic to a Hodge substructure of

Hn�2r(Y;Q) for some smooth projective variety Y (Proposition 2.1). In this paper
we prove this second conjecture for a certain class of abelian varieties (Theorem
5.1).

The abelian varieties we consider are those whose Hodge rings are characterized
by endomorphisms. To understand what this means we need to consider certain
families of abelian varieties (see Section 4.6 for details). In a series of papers
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342 SALMAN ABDULALI

([Sm3] is a good survey) Shimura studied families of abelian varieties called PEL-
families; these are solutions to moduli problems for abelian varieties with prescribed
polarizations, endomorphisms, and, level structures. Mumford [Mm1] obtained a
larger class of families of abelian varieties by considering arbitrary Hodge classes
on powers of an abelian variety A instead of endomorphisms. Indeed, given an
abelian variety A, Mumford constructed the family of all abelian varieties whose
Hodge groups are ‘contained’ in the Hodge group of A (see [Mm1, p. 348] for
the precise meaning). We shall say that A is of PEL-type if the family of abelian
varieties constructed by Mumford from A is a PEL-family in Shimura’s sense.
(We note here that Shimura assumed the endomorphism algebras to be division
algebras; this was only for convenience, and we do not make this assumption here.)
ThusA is of PEL-type if and only if the Hodge group ofA equals the Hodge group
of the generic fiber of a PEL-family; i.e., each power of A has no Hodge cycles
other than those it is required to have by virtue of the endomorphisms of A.

In Theorem 5.1 we show that for an abelian varietyA of PEL-type whose Hodge
group is semisimple, and whose simple factors of type III satisfy an additional
condition, the usual Hodge conjecture for all powers of A implies the general
Hodge conjecture for A (the definition of the type of a simple abelian variety is
recalled in Sect. 4.1). This class of abelian varieties includes all abelian varieties A
such that the Hodge ring of each power of A is generated by divisors, and such that
each simple factor of A is of type I or type II. The general Hodge conjecture for
such abelian varieties has also recently been proved by Tankeev [T] and Hazama
[Ha] independently.

Our results also cover the abelian varieties which Weil [W] considered as
possible counterexamples to the usual Hodge conjecture. For such an abelian
variety A, the usual Hodge conjecture for A implies the usual Hodge conjecture
for all powers of A. Schoen [Sc1] has proved the usual Hodge conjecture for
a 4-dimensional abelian variety of Weil type with endomorphisms by Q(

p
�1)

or Q(
p
�3) (see also [vG, p. 238]). We may now conclude the general Hodge

conjecture for any power of such an abelian variety.
In the final section of this paper, we look at some examples of abelian varieties

which do not satisfy the hypotheses of our main theorem, and briefly discuss the
possibility of generalizing it.

2. The general Hodge conjecture

Letk be either Q or R. Ak-Hodge structure of weightn is a finite dimensional vector
spaceV over k, together with a direct sum decompositionVC =

L
p+q=n V

p;q such
that V p;q = V q;p. The type of V is then the set f(p; q) jV p;q 6= 0g. We define the
height of V to be the smallest p such that V p;n�p 6= 0.

Let VC =
L

p+q=n V
p;q and WC =

L
p+q=mW p;q be Hodge structures. A

morphism of Hodge structures of degree r is a k-linear map ' : V !W such that
'(V p;q) � W p+r;q+r for all pairs p; q. We say that the Hodge structures V and
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W are isomorphic if they are isomorphic in the category whose objects are Hodge
structures and whose morphisms are morphisms of Hodge structures of degree 0.
We say that they are equivalent if they are isomorphic in the category whose objects
are again Hodge structures, but whose morphisms are of arbitrary degree. Thus two
Hodge structures are isomorphic if and only if they are equivalent and have the
same weight.

Let S be the real algebraic group such that S(R) is the unit circle in the complex
plane. Then any Q-Hodge structure V determines a morphism of real algebraic
groups ' : S ! GL(VR) such that ei� acts on V p;q as multiplication by e(p�q)i�.
The Hodge group of V is defined to be the smallest Q-subgroup, G, of GL(V )
such that GR contains the image of '. The Hodge substructures of V are the same
as the G-submodules of V , and the R-Hodge substructures of VR are the same as
the G(R)-submodules of VR.

Let X be a smooth projective variety over C. The arithmetic filtration F �

a on
Hn(X;Q) is defined by taking F r

aH
n(X;Q) to be the set of cohomology classes

supported on algebraic subvarieties of codimension at least r.
The Hodge filtration is given by

F
r
H

n(X;C) :=
M

p+q=n

p>r

H
p;q(X):

The rational Hodge filtration is obtained by defining F r
QH

n(X;Q) to be the
largest Q-Hodge substructure of F rHn(X;C) \Hn(X;Q).

We have F r
aH

n(X;Q) � F r
QH

n(X;Q). The general Hodge conjecture [Ho],
as amended by Grothendieck [Gr], states that this inclusion is an equality. The
case n = 2r is the usual Hodge conjecture. The following proposition gives an
equivalent formulation due to Grothendieck (see also [Sc2, Lem. 0.1, p. 139]).

PROPOSITION 2.1. (Grothendieck [Gr, p. 301]). The general Hodge conjecture
is equivalent to the usual Hodge conjecture together with

(2.2) For any smooth complex projective variety X , and any irreducible Hodge
substructureV ofHn(X;Q), there exists a smooth projective variety Y , a nonneg-
ative integer s, and a Hodge substructureW � Hs(Y;Q) such that W has height
0 and V is equivalent to W .

Proof. Let d be the dimension of X , and h the height of V .
Assume the general Hodge conjecture. Then V is supported on an algebraic

subvariety Z of codimension h. Let Y ! Z be a desingularization of Z , and
f : Y ! X its composition with the inclusion. Then

f� : Hs(Y;Q)! H
n(X;Q)

is a morphism of Hodge structures, where s = n � 2h. Since the image of f�
contains V , Hs(Y;Q) has a Hodge substructure W which is equivalent to V .
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(We have used here the fact that our Hodge structures are polarizable, and hence
semisimple. This follows, for example, from the fact that their Hodge groups are
reductive (see [D, Prop. 3.6, p. 44]).) Since the degree of f� is h, the height of W
must be 0.

Conversely, assume (2.2). Note that the height of V is h = (n � s)=2. Let k
be the dimension of Y . Then there exists a Hodge cycle � 2 H2k+2h(Y �X;Q)
inducing an equivalence ' of Hodge structures from W to V . The usual Hodge
conjecture for Y � X implies that � is the class of an algebraic cycle Z . Since
'(�) = p2�(p

�

1� ^ �), we see that any element of V is supported on p2�(Z). The
codimension of p2�(Z) is h. This shows that V is contained in F h

aH
n(X;Q). 2

We shall refer to (2.2) as the unusual Hodge conjecture. Then the general Hodge
conjecture is equivalent to the usual Hodge conjecture together with the unusual
Hodge conjecture.

3. The group theoretic filtration

Define the group theoretic filtration on Hn(X;Q) by letting F r
gH

n(X;Q) be the
sum of those Hodge substructures of Hn(X;Q) which are equivalent to Hodge
substructures of Hs(Y;Q) for some smooth projective variety Y , and some s 6
n � 2r. We say that a class A of smooth projective varieties dominates X if
each irreducible Hodge substructure of F r

gH
n(X;Q) is equivalent to a Hodge

substructure of Hs(Y;Q) for some Y 2 A, and some s 6 n� 2r. As we shall see,
this filtration is intimately related to representations of the Hodge group, hence its
name.

The unusual Hodge conjecture may now be restated as asserting the equality
of the rational Hodge filtration with the group theoretic filtration. The proof of
Proposition 2.1 shows that to prove the general Hodge conjecture for X it is
sufficient to prove (i) the unusual Hodge conjecture for X , and, (ii) the usual
Hodge conjecture for Y � X for all Y in a class A of algebraic varieties which
dominates X .

The following two propositions are easy consequences of the definitions, Propo-
sition 2.1, and its proof.

PROPOSITION 3.1. F r
gH

n(X;Q) � F r
QH

n(X;Q) for any smooth projective
variety X . 2

PROPOSITION 3.2. If the usual Hodge conjecture is true for Y � X for all Y
in a class A of algebraic varieties which dominates X , then F r

gH
n(X;Q) �

F r
aH

n(X;Q). 2

PROPOSITION 3.3. (cf. [Gr, p. 301]). For any smooth, projective variety X , and
any r, we have

F
r
gH

2r+1(X;Q) = F
r
QH

2r+1(X;Q)
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and the usual Hodge conjecture implies that

F
r
gH

2r+1(X;Q) = F
r
aH

2r+1(X;Q) = F
r
QH

2r+1(X;Q):

Proof. F r
QH

2r+1(X;Q) is a Hodge structure of type (r; r+1); (r+1; r). Hence
the Tate twist V := F r

QH
2r+1(X;Q)(�r) is a Hodge structure of type (0, 1), (1, 0);

since it is polarizable there exists an abelian variety A such that V is isomorphic to
H1(A;Q). Therefore F r

gH
2r+1(X;Q) = F r

QH
2r+1(X;Q), and the usual Hodge

conjecture for A�X implies that either of these equals F r
aH

2r+1(X;Q). 2

4. Abelian varieties

4.1. ENDOMORPHISMS

Let A be a simple abelian variety over C. By Albert’s classification, the endomor-
phism algebraD(A) := End(A)
Q of A is one of the following (see [Sm1, Sect.
1.3, p. 154])

(I) a totally real number field,
(II) a totally indefinite quaternion algebra over a totally real number field,
(III) a totally definite quaternion algebra over a totally real number field, or,
(IV) a division algebra whose center is a CM-field.

The type of D(A) in the above classification is also called the type of A.

4.2. KNOWN CASES

Recall that any abelian variety A is isogenous to A
n1
1 � A

n2
2 � � � � � A

nl
l where

the ni are positive integers, and the Ai are pairwise nonisogenous simple abelian
varieties called the simple factors of A. The general Hodge conjecture is known
for the following abelian varieties

(a) Any abelian variety A such that the Hodge ring of An is generated by divisors
for all n, and such that each simple factor of A is of type I or type II (Hazama
[Ha] and Tankeev [T]). Special cases of this were proved earlier by Mattuck
[Ma] and Gordon [Go1, Go2].

(b) A power of an elliptic curve with complex multiplication (Shioda [So, p. 63]).
(c) A simple abelian variety A of CM-type such that [ �K : �K0] = 2d, where

d := dimA;K is the endomorphism algebra of A;K0 is the maximal real
subfield of K , and bars denote Galois closure (Tankeev [T]).

(d) A general fiber of a PEL family of abelian 4-folds with endomorphisms by
Q(i), and polarization given by a hermitian form of signature (3, 1) (Schoen
[Sc2]).
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4.3. HERMITIAN GROUPS

We shall now review some facts about algebraic groups of hermitian type. For
further details see Satake [Sa3]. LetG be a connected, semisimple, linear algebraic
group over R. Assume that G(R) is hermitian, so that X := G(R)0=K is a
bounded symmetric domain, where K is a maximal compact subgroup of G(R)0:

Let g := LieG(R); k := LieK , and let g = k � p be the corresponding Cartan
decomposition. Let x be the unique fixed point of K in X . Differentiating the
natural mapG(R)0 ! X gives an isomorphism of p with Tx(X), the tangent space
of X at x, and there exists a unique H0 2 Z(k), called the H-element at x, such
that ad H0 j p is the complex structure on Tx(X).

Let � be a nondegenerate alternating form on a finite dimensional real vector
space V . The symplectic group Sp(V; �) is of hermitian type; the corresponding
symmetric domain is the Siegel space

S(V; �) := fJ 2 GL(V ) jJ2 = �1 and �(x; Jy) is symmetric,

positive definiteg

Sp(V; �) acts on S(V; �) by conjugation. The H-element at a point J 2 S(V; �)
is H0 = 1

2J . To obtain matrix representations, consider the real Hodge structure
VC = V 1;0�V 0;1, where V 1;0 (resp.V 0;1) is the eigenspace of the complexification
of J for the eigenvalue i (resp.�i). Let e1; : : : ; em be a basis of V 1;0, and ej+m =
�ej . Then e1; : : : ; e2m is a symplectic basis for (VC; i�). Note that Sp(VC; �) =
Sp(VC; i�). With respect to this basis, we have

i� =

 
0 �Im
Im 0

!
; J =

 
iIm 0

0 �iIm

!
;

H0 =

 
(i=2)Im 0

0 (�i=2)Im

!
:

(4.3.1)

Let G and G0 be hermitian groups with symmetric domains X and X 0, and,
H-elements H0 and H 0

0, at the points x 2 X and x0 2 X 0, respectively. A repre-
sentation � : G! G0, defined over R, is said to satisfy the H1-condition if

[d�(H0)�H
0

0; d�(g)] = 0 for all g 2 g;

and to satisfy the H2-condition if

d�(H0) = H
0

0:

Let � : X ! X 0 be holomorphic. We say that � is strongly equivariant with
� : G ! G0, if � satisfies the H1-condition, and �(gx) = �(g)�(x) for all g 2
G(R)0.
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4.4. HODGE GROUPS

The Hodge groupG(A) of a complex abelian variety A is defined to be the Hodge
group of H1(A;Q). The derived group Gder of the Hodge group is a connected,
semisimple, linear algebraic group over Q such that Gder(R) is of Hermitian type
and Gder has no nontrivial, connected normal Q-subgroup H such that H(R)
is compact [Mm1]. Let V := H1(A;Q), and let � be a Riemann form for A.
Then G(A) � Sp(V; �), and the inclusion of Gder into Sp(V; �) satisfies the H1-
condition. It satisfies the H2-condition if and only if G(A) is semisimple (see [A2,
Prop. 2.2, p. 1124]). If two abelian varieties have the same simple factors then their
Hodge groups are the same.

PROPOSITION 4.4.1. Let A and B be abelian varieties dominated by A and
B respectively. Assume that A and B satisfy the unusual Hodge conjecture and
the Hodge group of A � B is the product of the Hodge groups of A and B.
Then A � B also satisfies the unusual Hodge conjecture; it is dominated by
fX � Y jX 2 A; Y 2 Bg.

Proof. Any irreducible Hodge structure inHn(A�B;Q) is of the form V 
W ,
where V � Hi(A;Q) and W � Hj(B;Q) are irreducible Hodge structures
and i + j = n. By assumption V and W are equivalent to Hodge structures
V 0 � Ha(X;Q) and W 0 � Hb(Y;Q), where V 0 and W 0 have height 0;X 2 A,
and, Y 2 B. Then V 0 
W 0 � Ha+b(X � Y;Q) has height 0 and is equivalent to
V 
W . 2

4.5. THE LEFSCHETZ GROUP

Let A be a complex abelian variety, D := End (A)
Q its endomorphism algebra,
V := H1(A;Q), � a Riemann form on A, and � the induced involution on D.
The Lefschetz group L(A) is defined by Murty [Mt1, p. 198] as the connected
component of the centralizer ofD in the symplectic group Sp(V; �). It is a reductive
algebraic group over Q which contains the Hodge group of A.

Suppose now that A is simple. Let E be the center of D, and k the field of
invariants of �. Then k is the maximal real subfield ofE. Recall [Sm2, Lemma 1.2,
p. 162] that there exists a unique E-bilinear form T : V � V ! D such that for all
x; y 2 V , and all a; b 2 D,

�(x; y) = TrD=Q T (x; y); T (ax; by) = aT (x; y)b�; and

T (y; x) = �T (x; y)�:

Then L(A) is the connected component of the restriction of scalars of a unitary
group

L(A) = Rk=Q AutD(V; T )0
: (4.5.1)
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4.6. KUGA FIBER VARIETIES

Let G be a semisimple linear algebraic group over Q such that G(R) is of her-
mitian type and has no compact factors defined over Q. Denote by X the bounded
symmetric domain associated toG. Let V be a finite dimensional vector space over
Q; � a nondegenerate alternating form on V; � : G ! Sp(V; �) a representation
defined over Q, which satisfies the H1-condition, and � : X ! S(V; �) a strongly
equivariant map. Let� be a torsion-free arithmetic subgroup ofG, andL a �-lattice
in V on which � takes integer values. From this data Kuga ([K], cf. [Sa3, Sect.
IV.7, pp. 195–202]) constructed a family of polarized abelian varieties, called a
Kuga fiber variety over the arithmetic variety �nX , such that the fiber over �x is
the torus VR=L with the complex structure �(x), and Riemann form �.

Let A be an abelian variety with Hodge group G and Lefschetz group L. The
derived groups Gder and Lder are both hermitian, and their inclusions into the
symplectic group of a Riemann form satisfy the H1-condition. The corresponding
Kuga fiber varieties are the ‘Hodge families’ of Mumford ([Mm1], [Mm2]), and the
PEL-families of Shimura ([Sm3], see also [Sa3, p. 200, Example 2]), respectively.
We shall say that A is of PEL-type if Mumford’s Hodge family is a PEL-family.
ThusA is of PEL-type if and only if Lder = Gder. If the Hodge ring of every power
of A is generated by divisors then A is of PEL-type [Mt1, Theorem 3.1, p. 202].
From this we see that all the abelian varieties listed in Section 4.2 for which the
general Hodge conjecture is currently known are of PEL-type.

5. The main theorem

THEOREM 5.1. Let A be an abelian variety of PEL-type with semisimple Hodge
group. Suppose that for every simple factor B of A, if B is of type III, then
H1(B;Q) has odd dimension as a vector space over the endomorphism algebra of
B. Then the group theoretic and rational Hodge filtrations on the cohomology of
A coincide, A is dominated by any sufficiently large power of itself, and the usual
Hodge conjecture for all powers of A implies the general Hodge conjecture for A.

Proof. A is isogenous to a product An1
1 � A

n2
2 � � � � � A

nl
l where the Ai are

pairwise nonisogenous abelian varieties. By the multiplicativity of the L-group
[Mt1, Lem. 2.1, p. 198] we have

L(A) = L(A1)� L(A2)� � � � � L(Al):

Since

G(A) � G(A1)�G(A2)� � � � �G(Al)

and G(A) equals the derived group of L(A), we conclude that each Ai is of
PEL-type, and,

G(A) = G(A1)�G(A2)� � � � �G(Al):
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Proposition 4.4.1 now implies that it is enough to prove the theorem when A is a
power of a simple abelian variety.

Let A be a power of a simple abelian variety A0, and let G := G(A). Let U
be an irreducible Hodge structure contained in the cohomology of A. Let W be
an irreducible G-submodule of UR. Suppose there exists a G-submodule W 0 of
Ha(Ab

0;R) for some a; b, such that W 0 contains (a; 0)-forms and is G-equivalent
toW . Then the smallest rational Hodge structureU 0 containingW 0 isG-equivalent
to U and has height 0. (We have used here the fact that two representations of G
defined over Q are equivalent over Q if and only if they are equivalent over R.
This follows from the density of G(Q) in G(R) [BS, Theorem A, p. 26]. See [Sa2,
Lemma 1, p. 220] or [A1, Lemma 2.1, p. 228] for more details.) Therefore, to
complete the proof of the theorem, it suffices to show that such a W 0 always exists.

LetD be the endomorphism algebra ofA0,E the center ofD, and k the maximal
real subfield of E. From 4.5.1 we see that G(R) is a product �G� indexed by the
set S of embeddings of k into R. Let � 2 S. Then

D� := D 
k;� R �=

8>><
>>:

R if D is of type I or II,

C if D is of type IV,

H if D is of type III.

From 4.1 we now see that, in the notation of Helgason [He, pp. 444–445],

G�
�=

8>><
>>:

Sp(n;R) if D is of type I or II,

SU(p; q) if D is of type IV,

SO�(2n) if D is of type III.

If D is of type IV, our assumption that G is semisimple implies that p = q (see
[Sa3, Chap. IV, (4.14), p. 183]). In all cases, we find that G� is not compact. It
then follows from [Sa3, Sect. IV.5, pp. 185–186] that we have a decomposition
H1(A0;R) =

L
�2S V�, where each V� is a real Hodge substructure ofH1(A0;R)

on which G acts trivially for  6= �, and

G� ! Sp(V�; � jV� � V�)

is an H2-morphism for each �. Thus to complete the proof, it suffices to show that
for each irreducible G�-submodule W� in the exterior algebra of V�, there exists
an equivalentG�-submoduleW 0

� of height 0 in the exterior algebra of V b
� for some

b.
To simplify the notation we drop the subscript �, writing D for D�, G for G�,

and V for V�. We divide the proof into three cases, according to whether D = R,
C, or, H.

Case 1: D = R.
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In this case G is a symplectic group Sp(V0; �), and V is equivalent as a G-
module to either V0 or V0 � V0, according to whether A0 is of type I or type II
(see [Sa1, Sect. 3.4, p. 451] and [Mt1, pp. 201–202]). We may assume without
loss of generality that V0 = V . With the matrix representation of Section 4.3, the
symplectic Lie algebra is given by

sp(VC; �) =

( 
A B

C �tA

! �����B;C symmetric

)
;

and a Cartan subalgebra is given by

t =

( 
A 0

0 �A

! �����A = diag(�1; : : : ; �n)

)
:

Each �j is evidently a weight of sp(VC; �) and ej is a vector of weight �j . The
fundamental weights of sp(VC; �) are �j := �1 + � � � + �j . The representation
of sp(VC; �) on �jVj has highest weight �j ; it is equivalent to the direct sum
of �j�2V and the irreducible representation �j of highest weight �j [Vr, p. 394,
Exercise 24]. A vector of highest weight in �jV is e1 ^ e2 ^ � � � ^ ej . Since each
ei 2 V 1;0, we see that the representation of highest weight equal to �j in �jV

contains a vector in V j;0.
Any irreducible representation � of sp(VC; �) has highest weight � = a1�1 +

� � �+ an�n, where the aj are nonnegative integers. � is the highest weight of

�1 
 �1 
 � � � 
 �2 
 � � � 
 �n;

where we take the tensor product of aj copies of �j for each j. Let a := a1+2a2+
� � �+ nan. From the Künneth decomposition

â

V
m �=

M
c1+c2+���+cm=a

 
c1̂

V
O c2̂

V
O

� � �
O cm^

V

!
(5.1)

we see that ^aV b
C contains a submodule W equivalent to � provided that

b > a1 + a2 + � � �+ an:

Furthermore, this submodule contains an (a; 0)-form.

Case 2: D = C.

In this case G is the real Lie group SU(m;m) for some m > 2, and G(C) is
isomorphic to SL2m(C). With respect to a suitable basis the Lie algebra of G(R)
is given by

g =

( 
X1 X12

t �X12 X2

!
2 sl2m(C)

�����
Xi 2Mm(C)
t �Xi = �Xi

)
;
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a Cartan subalgebra is given by

t = fdiag(�1; : : : ; �2m) 2 sl2m(C) j�j 2 iRg; (5.2)

and anH-element is given by (4.3.1) (see [Sa1, p. 430]). The fundamental weights
of gC relative to tC are

�k := �1 + � � � + �k; 1 6 k 6 2m� 1:

The action of g on V is given by the symplectic representation

 
X1 X12

t �X12 X2

!
7!

0
BBBB@

�X2 0 0 tX12

0 X1 X12 0

0 t �X12 X2 0
�X12 0 0 �X1

1
CCCCA ; (5.3)

(see [Sa1, Section 1.5, pp. 432–433, and, Section 3.2, p. 447] and [Mt1, pp. 201–
202]). Then VC = W � �W , where W and �W are irreducible gC-modules with
highest weights �1 and �2m�1 respectively. Each of W and �W is the sum of an
m-dimensional space of (1, 0)-forms and an m-dimensional space of (0, 1)-forms.
For 1 6 k 6 m, �kW is an irreducible gC-submodule of �kVC which contains
(k; 0)-forms and has highest weight �k. For m < k 6 2m� 1;�2m�1�k �W is an
irreducible gC-submodule of �2m�1�kVC which contains (2m � 1 � k; 0)-forms
and has highest weight �k. Thus any fundamental representation of gC occurs in
�aVC and contains (a; 0)-forms for some a.

Any irreducible representation � of gC has highest weight � = a1�1 + � � � +
a2m�1�2m�1, where the aj are nonnegative integers. � is the highest weight of

�1 
 �1 
 � � � 
 �2 
 � � � 
 �2m�1;

where we take the tensor product of aj copies of �j for each j. Let

a := a1 + 2a2 + � � � +mam + (m� 1)am+1 + � � �+ a2m�1:

From the Künneth formula (5.1) we see that�aV b
C contains a submodule equivalent

to � provided that b > a1+a2+ � � �+a2m�1. Furthermore this submodule contains
an (a; 0)-form.

Case 3. D = H.

Let m be the dimension of H1(A0;Q) over D(A0), which we are assuming to be
odd. It follows from [Sm1, Prop. 15, p. 177] that m 6= 1, and thus m > 3. The real
Lie group G is simple and of type Dm. Its Lie algebra is given by

g =

( 
X1 X12

� �X12 �X1

!
2 sl2m(C)

�����
X1;X12 2Mm(C)

t �X1 = �X1;
tX12 = �X12

)
;
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a Cartan subalgebra is given by (5.2), and an H-element is given by (4.3.1). The
fundamental weights of gC with respect to tC are �1; : : : ; �m, where

�k = �1 + � � �+ �k for 1 6 k 6 m� 2;

�m�1 = (�1 + � � �+ �m�1 � �m)=2; and

�m = (�1 + � � �+ �m�1 + �m)=2:

The inclusion of g into su(m;m) satisfies the H2-condition. The action of g on
V is the composition of this inclusion with the symplectic representation defined
in (5.3) (see [Sa1, Sect. 3.3, pp. 449–451] and [Mt1, pp. 201–202]).

Recall from Case 2 of this proof that VC = W � �W . V is an irreducible g-
module, but W is equivalent to �W , so gC acts on VC as two copies of the standard
representation. W is a 2m-dimensional vector space containing anm-dimensional
subspace of (1, 0)-forms and an m-dimensional subspace of (0, 1)-forms. For 1 6
k 6 m�2;�kW is an irreducible gC-submodule of �kVC containing (k; 0)-forms,
and having highest weight �k.�m�1W is an irreducible gC-submodule of�m�1VC
containing (m�1; 0)-forms, and having highest weight�m�1+�m. However�mW

splits as the direct sum of two irreducible gC-submodules,U1 andU2, having highest
weights 2�m�1 and 2�m, respectively. U2 contains (m; 0)-forms, but U1 does not.

The complex conjugate of �m�1 is (��1 � � � � � �m�1 + �m)=2 which is
conjugate to �m under the action of the Weyl group when m is odd. It follows
that for odd m, the complex conjugate of U1 is equivalent to U2, and hence any
real h-submodule of �mV which contains U1 must also contain a gC-submodule
equivalent to U2, and thus must contain (m; 0)-forms.

Any irreducible representation of gC has highest weight� = a1�1+� � �+am�m,
where the aj are nonnegative integers. If the representation appears in the exterior
algebra of VC, then all of its weights must be integral linear combinations of the
�j’s. Hence am�1 � am mod 2.

Suppose first that am > am�1. Then we may write

� = a1�1 + � � �+ am�2�m�2 + am�1(�m�1 + �m) + bm(2�m);

with bm = am � am�1. Let

a := a1 + 2a2 + � � � + (m� 1)am�1 +mbm:

The above considerations show that ^aV b
C contains an irreducible gC-submodule

with highest weight � which contains (a; 0)-forms, provided that b > a1 + a2 +
� � �+ am�1 + bm.

Next suppose that am < am�1, write

� = a1�1 + � � �+ am�2�m�2 + am(�m�1 + �m) + cm(2�m�1);
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with cm = am�1 � am, and let

a := a1 + 2a2 + � � � + (m� 2)am�2 + (m� 1)am +mcm:

Then, for b > a1 + a2 + � � � + am�2 + am + cm, ^aV b
C contains an irreducible

gC-submodule U with highest weight �. The complex conjugate of U has highest
weight

a1�1 + � � �+ am�2�m�2 + am(�m�1 + �m) + cm(2�m):

Hence the smallest real g-submodule of ^aV b
C containing U contains (a; 0)-

forms. 2

Remark 5.2. Case 1 of the above proof is similar to the proofs of Tankeev [T]
and Hazama [Ha] of the general Hodge conjecture for these abelian varieties. Their
proofs, in fact, show more – that in this case the abelian variety is dominated by
itself. In Cases 2 and 3, however, this is no longer true; for example, a 4-dimensional
abelian variety of Weil type [W] is not dominated by itself, though it is dominated
by its square.

6. Some other cases

In Section 4.2 we listed the abelian varieties for which the general Hodge conjecture
is currently known. Of these, only (a) satisfies the hypotheses of Theorem 5.1;
the Hodge group fails to be semisimple in the other three cases. However, the
conclusions of Theorem 5.1 hold in cases (b) and (c). In Theorem 6.1 below, we
show that any product of elliptic curves is dominated by a power of itself. As for
the abelian variety in case (c), Theorem 2 of [T] shows that it is dominated by
itself. In case (d), the abelian variety is not dominated by any power of itself. It
is, however, dominated by the square of an elliptic curve, together with the set of
powers of itself. I would like to thank Chad Schoen for explaining this last point
to me.

THEOREM 6.1. If A is a product of elliptic curves then the group theoretic
filtration, the arithmetic filtration, and the rational Hodge filtration are all equal,
and the general Hodge conjecture is true. A is dominated by any sufficiently large
power of A.

Proof. The usual Hodge conjecture for products of elliptic curves is well known;
indeed, the Hodge ring of such an abelian variety is generated by divisors. This
was first proved by Tate (unpublished, see [Gr, p. 302]); detailed proofs may be
found in [I] and [Mt2, Section 2]. It follows that the Hodge and Lefschetz groups
of A coincide. The multiplicativity of the Lefschetz group and Proposition 4.4.1
now imply that it suffices to prove the theorem for a power of an elliptic curve. If
the elliptic curve is not of CM-type, this is a special case of Theorem 5.1.
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LetA = Em, whereE is an elliptic curve of CM-type. Then the Hodge groupG
ofA is a 1-dimensional torus acting onH1(E;C) as�+��1, where� is a character.
The representation space of � is of Hodge type (1, 0), and the representation space
of ��1 is of type (0, 1). Any irreducible representation of G(C) has the form �n

where n is an integer. If m > n > 0, then Hn(Em;C) contains a 1-dimensional
subspace on whichG acts as �n; this subspace consists of (n; 0)-forms. Since G is
not split, if V is any representation of G defined over Q such that VC contains �n

then it also contains ��n. It follows that the unusual Hodge conjecture holds for
A. The equality of these filtrations with the arithmetic filtration now follows from
Proposition 3.2. 2
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