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Introduction. For R a commutative ring with identity 1 we let SL(n, R) denote the
group of n X n integral matrices with determinant 1. A transvection T is an element of
SL(n, R) which we represent (see [1]) as a pair (<p, d) where q> e (Rn)*, the dual space of
R", d e R", (p(d) = 0, and for all x e R" we have

T(x) = x + cp(x)d.

Throughout this paper an involution is an element Y of SL(n, R) which has order two.
Let n = 3 and R = Z and let C = diag(-l, - 1 , - 1 ) be the central element of GL(3, Z).
Then any involution Y in SL(3, Z) is conjugate to the matrix

where a = 0 or 1, there being thus two conjugacy classes which we will call even and odd
respectively. In the even case we see that YC is a reflection and we note that groups
generated by reflections are well understood (see [2] for example). It is our goal to study
subgroups of SL(3, Z) generated by odd involutions. In either case we note that we can
also specify an involution Y as a pair (q>, d) where in this case q> e (I3)*, d e Z3, <p(d) = 2,
and for alljteZ3we have

Y(x) = -x + (p(x)d.

This similarity between transvections and involutions in SL(3, Z) enables us to apply
techniques which we have used in previous work to the investigation of subgroups of
SL(3, Z) generated by involutions. Our results concern a certain matrix associated to a set
of involutions, together with its accompanying graph. In order to explain our main result
(Theorem 1.1 below) we will need the following, definitions.

Let S = {Yi, . . . , Yk} be a set of involutions in SL(n, R) where Yj =
(q>i, dx),... , Yk = (q^, dk) and let In(5) be the subgroup of SL(n, R) generated by
Yu .. . ,Yk. Associate to the set S the k x k matrix M(S) = ((p,(dy)). Now given any k x k
matrix M = (ajj) we let G(M) be the directed graph with vertices vu .. . ,vk and a
directed edge between u, and uy if and only if a/y =£ 0. In particular, if M = M(S), then we
will also denote G(M(S)) by G(S) and we will identify the vertices vx,.. . ,vk with the
involutions Y,, . . . , Yk.

Let 5' be another set of involutions in SL(«, R). Then an elementary t-equivalence is
a surjection f:S-^>S' such that there are Yh Yj e S with

if h*J
l if h=j.

We denote such an / by /,-,-. These generate the equivalence relation of t-equivalence. The
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matrices M(S) and the graphs G(S) are acted upon by r-equivalences in the following
natural way: let / be a ^-equivalence and define /(M(5)) = M(f(S)), /(G(5)) = G(/(5)).

In the case where n = 3 and S is a set of three involutions we will show that if the
images of In(S) under all of the projections <J>P:SL(3, Z) —»SL(3, Z/pZ) are transitive
subgroups (in particular if In(5) = SL(3,Z)), then the f-equivalence class of the matrix
M(S) contains one of the following matrices

or

where )3 = 4 or 5, or their transposes. The above hypotheses on In(5) will be shown to be
equivalent to a simple determinant type condition on the matrix Af(S). We will show that
if 5 and Q are sets of involutions with M(S) = M(Q) and det(M(5)) ¥= 0, then In(5) and
In((2) are isomorphic (in fact conjugate) subgroups of SL(3, Z). This shows that in all
cases of interest the matrix M(S) completely determines the group In(5), at least up to
conjugacy. In each of the above cases we show that In(S) = SL(3, Z). Thus this gives a
complete classification of such subgroups of SL(3, Z). Since the methods are constructive,
one can easily devise an algorithm to determine which case one has. If M is a matrix, then
M' will denote the transpose of M. Our main result may now be stated as

THEOREM 1.1. Let S be a set of three involutions in SL(3,Z) and let M{S) = (ai]).
Then the following conditions are equivalent:

(i) for all primes p the image of In(5) under the projection

<&p:SL(3,Z)->SL(3,Z/pZ)

is a transitive subgroup of SL(3, Z/pZ) and for p = 2 this image does not fix any
quadratic form on (Z/2Z)3;

(ii) det(M(5)) = ±1 and ana23a31 — a2ial3a32 = ±1;
(iii) M(S) is t-equivalent to one of the matrices A4, A\, A5, A'5> B or B';
(iv) In(5) = SL(3,Z).

This result is in direct contrast to the case of subgroups of SL(3, Z) generated by
transvections where it is possible to find a set of three transvections generating a subgroup
H which projects onto all of the SL(3, Z/pZ)'s (in fact onto all of the SL(3, Z/mZ)'s for
integers m > 1) but which is a rank three free group and so is not the whole of SL(3, Z);
see [4] for details.

2. Generation of SL(/i, Z) by involutions. Let Etj be the n x n matrix whose only
non-zero entry is a 1 in the (/, /) position. Let B(j = I + Etj be the i, j elementary matrix in
SL(n, Z). Let /?,-, be the n x n diagonal matrix differing from the identity only in the ith
and /th diagonal positions which are both — 1. It is easily seen that SL(2, Z) is not
generated by involutions and that GL(2, Z) is generated by two involutions. In this
section we note the following (well-known) result:

PROPOSITION 2.1. If n ^ 3 , then SL(n, Z) is generated by n involutions.

Proof. The cases n = 3 and n > 3 need to be treated differently. Suppose n = 3 and
let Yi = /?23#2i, Y2 = RnB32 and YZ = RX2B^. Then Yu Y2 and Y3 are involutions and
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one easily checks the following:

B23(Y2B23) = B32, B13fl32(Y2Y3) =B^2.

Since Bn, B^ and B31 generate SL(3, Z) the result follows for n = 3.
For n > 3 and i = 1, 2, . . . , n we define Y, = /?(+1 i+2Bi+1 ,_j where all indices are to

be taken mod«. Then, since n > 3 we have (YiYi+l)
2 = B?+2i and (B,,_2Y,)2 = flf+

1,,_2

where again all indices are to be read mod n. It is left to the reader to check that all the
elementary matrices Bu-2 and B,,_3 also generate SL(n, Z).

3. Preliminary results. In this section we give some basic properties of involutions,
/-equivalences and transitive subgroups of SL(n, R) generated by involutions. These are
results which hold for all n s= 3. We first prove a statement made in §1.

LEMMA 3.1. Let S and Q be sets of involutions in SL(n, R) with M(S) = M{Q) and
det(Af (5)) =£ 0. Then In(5) and In(<y) are conjugate subgroups of SL(n, R).

Proof. Suppose that S = {Yu . . ., Yn) and Q = {UU..., £/„}, where Y, = (<p,, d,),
Ui = {r}h e,). Since det(M(5)) =£0 we see that {du . . . , dn) and {e,, . . . , en) are bases for
R". Then one easily checks that the matrix of Y, relative to the basis {dx, . . . , dn} is the
same as the matrix of {/, relative to the basis {«,, . . . , «„}. The result follows.

LEMMA 3.2. (i) Let T = (<p, d), U = (ip, e) be two involutions. Then

(ii) Let S = {Yu . . . , Yk) be a set of involutions as above and let M(S) = (ars). Then
thj(M(S)) = (b,,), where

bki = aki ifk¥= j , i*j; and
t>u = au for all i = l, . . . , k.

Proof This is an easy calculation.

PROPOSITION 3.3. Let f:S—*S' be a t-equivalence. Then
( i ) I ( / ( 5 ) ) I ( 5 )
(ii) rank(M(/(5))) = rank(M(5));
(Hi) det(M(/(5))) = det(M(S));a«d
(iv) G(M(S')) is connected if and only if G(M(S)) is connected.

Proof. Clearly we need only prove these results in the case when / is an elementary
/-equivalence, say / = f,y for i =£/ = 1, . . . , k. In this case (i) is clear since an elementary
/-equivalence is just a Nielsen transformation. Now (ii) and (iii) follow from Lemma 3.2
since M(f(S)) is obtained from M(S) by adding multiples of the ith row and column to
the yth row and column. For a proof of (iv) see Proposition 3.2 of [3,1].

REMARK. In the case n = k = 3, as above, let M(5) = (a,y). It follows easily from
Lemma 3.2 that not only is det(Af(5)) preserved by /-equivalences but the quantity
lfli2fl23fl3i - fl2iai3«32l is a l s o preserved.
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LEMMA 3.4. If R = Z/pZ for p a prime and S = {Ylt... , Yn), Y]\ = (<p,, d,-), is a set of
involutions in SL(n, R) such that In(5) is transitive, then d1, . . . , dn span R" and
q>i, . . . , <pn span (/?")*. In the case R = Z, du . . . , dn is a Z-basis for Z".

Proof. The proof is exactly the same as in the transvection case (see Proposition 2.5
of [3,1]).

This immediately gives:

COROLLARY 3.5. The minimal number of involutions needed to generate SL(n, Z),
n s 3, is n.

We will say that a subgroup H of SL(n, Z) is p-transitive if its images under all of the
natural homomorphisms

(n, Z)—»SL(ra, Z/qZ) are transitive (where q is a prime number).

PROPOSITION 3.6. If S = {Yj, . . . , Yn}, Yt = (<p,, dt), is a set of involutions in SL(n, R)
such that In(5) is p-transitive, then det(M(5)) = ±1. In particular, in the case n = 3 all of
the involutions are odd.

Proof. Let M = M(S), and suppose that det(Af) = 0 modp for some prime p. We
will now be thinking of M as a matrix with Zp coefficients. Let cx, . . . , cn be the columns
of M. Then there are Xx,. . . , An e Zp such that

AiC, + A2c2 + . . . + Kncn = 0.

Let d = kxdx + . . . + Xndn. Then one easily checks that Y^d) = —d for all i = 1 , . . . , n. It
easily follows that In(5) is not p-transitive. If n = 3 and some Yj is even, then one easily
checks that det(M(5)) is even; this gives the second statement.

As we are only interested in the case where In(5) is p-transitive, the above result
shows that from now on we may assume that det(M(5)) = ±1. It turns out that this
condition does not guarantee that In(5) is p-transitive as we will see in the next section.
In the case n = 3 it follows from the condition det(M(5)) = ±1 that the graph G(M(S)) is
connected. In general we have the following result, a proof of which can be obtained from
the corresponding result (Proposition 2.2) of [3,1].

LEMMA 3.7. If In(5) is transitive, then G(M(S)) is connected.

4. The case n = 3. If k = n = 3 we can say something more about when In(5) is
p-transitive, however in order to do so we must prove the following result which classifies
the involutions in SL(3, Z). An involution Y in SL(n, R) is of rank r if rank(Y + Id) = r.
Clearly there is at most one conjugacy class of involutions of rank 0. We now prove

PROPOSITION 4.1. Any involution Y in SL(3,Z) is of rank 1 and is conjugate in
SL(3,Z) to the matrix

where w = 0, 1. Moreover the involution Y can be represented as a pair (<p, d) where
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qp e (Z3)*, deZ3, (p(d) = 2 and for all xeZ3 we have

Y(x) = -x + cp(x)d.

Proof. By Exercise 2 on page 54 of [5] we see that any involution in SL(3,Z) is
conjugate to a matrix of the above type. It is clear that any such matrix is a rank one
involution. The rest follows easily.

REMARK. The above result shows that involutions in SL(3,Z) have a similar form to
transvections. It is this result together with the fact that SL(3, Z) is generated by (rank 1)
involutions which allows us to make some progress. Note that for a transvection T the
rank of T - Id is equal to one.

THEOREM4.2. Let R = Z orZl'pZ for some prime p. If S = {Yu Y2, Y3}, M(S) = (a,v),
In(5) is p-transitive and for p = 2 the group <&p(In(5)) does not fix any quadratic form on
(Z/2Z)3, then

(a12a23a3i - a21a13a32)(det(M(S))

is a unit in R. In particular, if R = Z we have det(A/(5)) = ±1 and (a12a23a3l ~

Proof. We show that if the above expression is not a unit, then <&p(In(S)) fixes a
quadratic form. We then show that this contradicts our hypotheses. Let M(S) = (a(y) and
let 5' = (s^) be a symmetric matrix. Then by a suitable choice of basis (i.e. {d1( d2, d3}-see
Lemma 3.1) we may take Yj, Y2, Y3 to be the matrices

y,=

Then the conditions

Y2=

2s12 + a2lsu

2^13 +

/ - I 0
y3 = l o - l

\fl31 «32

i = 1, 2, 3, give the following equations

- a I 3 5 2 3 = 0;

= 0;
= 0;

= 0;

2s23 + a21s13 + a23s33 = 0;

2s23 + a31512 + a32s22 = 0.

We write these in the following form:

/0
0

a2l

0

0

a12

0
0
0
0

«32

0

0
0

2
0
2
0

0
2

a21

2
0

fll3\
a12

0
2
0
2

s22

*33

512

5 i 3

^23/

0\
0
0
0
0w

One calculates that the determinant of the above matrix is the expression in the statement
of Theorem 4.2. If R = Z and this determinant is not a unit let q > 1 be a prime dividing
it. Otherwise, if R = Z/pZ we let q =p. Then mod q there is a non-zero solution to these
equations and so there is a quadratic form which is fixed by In(5) as required. This
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directly contradicts our hypotheses if q = 2. ltq>2, then we obtain a contradiction using
the following result.

LEMMA 4.3. If p>2 is a prime and G is a subgroup of SL(3, Z/pZ) which fixes a
non-trivial quadratic form S on (Z/pZ)3, then G does not act transitively on the non-trivial
elements of (Z/pZ)3.

Proof. One easily checks that if 5 is represented by a symmetric matrix (also called
5), then the condition v'Sv = w'Sw for all v, w e (Z/pZ)3 implies that S is the zero matrix.
Now if G were transitive then this condition would have to be satisfied; this gives the
contradiction.

REMARKS 1. By the above results, in the case R = Z we now need only consider the
case where det(M(5)) = ±1 and (ax2a23a3x - «2i«i3«32) = ±1- 2. The above result shows
that condition (i) of Theorem 1.1 implies condition (ii).

5. r-Equivalence classes of matrices. In this section we show that condition (ii) of
Theorem 1.1 implies condition (iii). Let 5 = {Y,, Y2, Y3} be a set of 3 involutions in
SL(3,Z) as in the previous sections. We further assume that det(M(S)) = ±1 and
oX2O23a3X — a2Xa13a32= ±1. Let M = M(S) = (fl,y). Define t-deg(M), the t-degree of M to
be the largest number of zeros occuring in some element of the f-equivalence class of M.
Note that if Yt = (<p,-, d,), then the effect of replacing cpt and d, by their negatives has no
effect on Yh however it has the effect of multiplying the /th row and column of M(S) by
- 1 .

PROPOSITION 5.1. Let n = 3 and assume that det(M) = ±1 and aX2a23a3X — a2XaX3a32 —
±1. Then (up to some permutation of Yx, Y2, Y3) M is t-equivalent to A4 or A'4 (if
det(M) = 1); or A5 or A'5 (if det(M) = -1) if and only if t - deg(M) # 0. Further, A4 and
A 5 are not t-equivalent.

Proof. Certainly f-deg(Af) =£ 0 if M is /-equivalent to A4, As or their transposes. Now
suppose that f-deg(Af) ¥= 0. Let us assume first that a13 = 0. Since ax2a23a3l — a2\al3a32 =
±1 we see that al2, a23 and a31 all have absolute value 1. By replacing dt and <p, by their
negatives if necessary we see that we can assume that ax2 = 1. Similarly by changing d3

and (p3 we can arrange that a23 = 1. Now Lemma 3.2 shows that doing f,3 allows us to
assume that a31 = 1 also. In this situation det(M) = 9 - 2a32 - 2a2u and so a32 + a2X = 4 or
5. Consider the following f-equivalences:

By these moves (which we will refer to as basic) we can reduce to the case where a2x = 0
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or 1. If a2i = 1, then we do the following:

'2 1 0\ / 2 1
1 2 1 | - * [ 0 2 - 1

a32 2/ \ 1 - a 3 2 2,

Replacing d2 and q>2 by their negatives shows that we can now assume that a2l = 0 and
that a32 = 4 or 5. Thus we have A4 or A5. It is easily seen that these two cases correspond
to distinct f-equivalence classes since det(M) is different in the two cases and det(M) is
fixed by ^-equivalences (Proposition 3.3) and by the operation of permuting Yl, Y2, Y3.

The cases where a31 = 0 are dealt with similarly: here one obtains A\ or A'5. Now if
fli2 = 0> then an analogous process to the above reduces to the case a12 = fi23 = a31 = 1,
a2l = 0 and either (i) a13 = 0 or (ii) a32 = 0. Note that case (ii) is Ap for some /S = 4, 5 and
that case (i) is f-equivalent to some Ap by a process similar to the basic moves above. All
remaining cases are treated similarly. This concludes the proof.

We now investigate the case where M is of f-degree zero. We will say that any 3 x 3
matrix M = M(S) = (a,-,) is t-reduced if det(M) = ± 1 , fli2a23«3i ~ fl2i«i3«32 = ±1 and M is
of f-degree zero or

|a.>- - aikakj\ > \atj\

for all distinct i, j , k. We now prove:

THEOREM 5.2. Any t-reduced t-degree zero 3 x 3 matrix M = M(S) is t-equivalent to
the matrix

or its transpose.

Proof. Assume throughout that 5 = {Y,, Y2, Y3}, Yi = (q>hdi), where M(S) is
f-reduced and of f-degree zero. We first observe that if det(Af) = 6 and al2a23a31 -
fl21a,3a32 = e (where 6, e = ±1), then

{a\2a23a2x + eai3 - (8 - 6 + e)ax2a23/2)
fl32 = } 2 2~; (1)

(a12fl13a21a23 - ana23 - a2ian)

unless ai2ai3a2ia23 ~ «i2«23 ~ «2i«?3= 0. However if this is the case, then we also have

ai2a23a21 + ea,3 - (8 - 6 + e)aX2a23l2 = 0.

Using the second equation we can express a13 as a function of a12, a23 and a21.
Substituting into the first equation and simplifying gives

a12a2i[e(A - a12a2l) - (A + al2a2xf] = 1,

where A = (8 — 5 + e)/2. Thus a12a21 = ±1 and one now checks that it is not possible to
satisfy the above equation with e = ±l and A = 3, 4, 5. Thus ~ ~ ~ ~ — - 2

and so we may always use equation (1).
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We next show that we may impose certain conditions on the matrix M(5) in order to
restrict the set of such matrices which we have to consider, while keeping the group In(S)
fixed. First note that changing the order of the involutions in 5 will give a permutation of
the entries of M(S). This clearly has no effect on the group In(5). We noted above that
Y, = (cph dt) = {-(pi, -dj). Using this idea we now prove:

LEMMA 5.3. Replacing some <p, and dt by their negatives if necessary we may assume
that all of the entries of M(S) are positive.

Proof. Let M(S) = (a,y). If a1 2<0, then replace <p2 and d2 by their negatives. If now
a1 3<0, then we do the same to q>3 and d3. Thus we may now assume that a1 2>0 and
a13>0. Next note that since ai2a23a3i — a2xax3a32 = ±1 and all the atj are non-zero we
must have sign^^a^) = sign(a32a21). Now suppose, for example, that a2x > 0 and a23 < 0.
Then by (1) and the choices made above we see that a32 > 0 and so we must have a31 < 0.
Now

det(M(5)) = 8 - 2a12a2l - la^a^ - 2aX3a3X + ai2a23a31 + a21a13a32

and since each of these terms is positive except for —2a12a21 we see that |det(M(5))| > 1,
a contradiction. All other cases are checked similarly. This proves Lemma 5.3.

From now on we will always invoke the above result and assume that a(y > 0 for all /,
j . With this assumption and the fact that M(S) is f-reduced we may now assume that
a,yflyjt > 2aik for all distinct i, j , k. If M is a matrix, then M' will denote its transpose.

LEMMA 5.4. If S and S' are two sets of three involutions such that M(S) = M(S')', then
In(S) and In(S') are isomorphic groups.

Proof. It is easily checked that the action of In(S) on the dual space (Z3)* is that of a
group of involutions having matrix M(S)'. The result now easily follows.

We now proceed more directly with the proof of Theorem 5.2. We consider two
cases:

Case 1: Here one of the inequalities «,,% — 2a,-* is actually an equality. Since the aiy

are positive integers and al2a23a31 — a2xax3a32 = ±1 we must have ait = aik = 1 and a]k = 2
or ajk = aik = l and a,y = 2. By Lemma 5.4 and suitably permuting Y,, Y2, Y3 we may
assume that au = a13 = 1 and a23 = 2. Further we see that all of the other inequalities are
strict. We then have

(21 ( ))

feu-4)
and so the condition fli3fl32 > 2fl12 gives a32 > 2. If a32 > 3, then

and so a2l<6. But knowing an, a13, a21 and a23 we can calculate a31 and a32 using the
non-degeneracy conditions. Similarly if we have a32 = 3 together with aX2, a13, a23, then
we can calculate a2X and a3X. In each case we obtain a21 = 5, a3x = l and «32 = 3. This
concludes our considerations of this case.

Case 2: All of the inequalities a^a^ ^2aik are strict. Since a13a32>2a12 we see that

x2[ax2ax3a2ia23 -ana\3 - a2Xa\3]
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where A = (8 - 6 + e)/2. Thus

Assume that e = 1. The case where e = — 1 is dealt with in a similar way by considering
the transposed matrix M(S)' (see Lemma 5.4). Then A > 4 and so -A < -4 . Thus we have

a13(a13 - Aa12a23) + 2a\2a\3

al2a13

al2a23(2a

al2ax3

2a23

fll3 "12

2

2

(a12fl

12^25
(a12fl

l

:(fll2<:

23(Ol

1

- 4 a 1 3 )

*-2a. .3)

1

If a^ < a2!) then we now have

al3 2(ana23-2al3)

The above equation shows that a13 < 3 and in fact that if a13 = 3, then 6 < a12a23 < 9. Thus
we have shown

(i) if a23<a21) thena,3<3.
Since permuting the indices of M{S) = (a,y) by the permutation (123) does not change the
value of e can similarly show that

(ii) if a31 < a32, then a21 < 3; or
(iii) if a,2<a13, thena3 2<3.
Note that at least one of the above conditions must be satisfied since fli2a23a3i —

fl2ifli3fl32 = ±1. The rest of the proof is just more case checking. Suppose without loss that
(i) is satisfied. If a,3 = 3, then by (3) we have 6<a, 2 a 2 3 <9. Thus

(fli2a23fl2l + 3 - (9 - <3)q12fl23/2)

(3a12fl2,a23 - a,2a|3 - 9a21)

and one checks that a32 is not an integer (a contradiction) for all possible cases with
"i2fl23 = 7, 8 and 8 = ±1.

If now a13 = 2, then from (2) we have a]2 = 1, a2i < a23 + 2 and so a21 = a23 + 1. One
now similarly checks that a32 cannot be an integer.

Lastly, if a,3 = 1, then a21 > 2a23 and so by (2) we have

2a23 < a21 < 2a23 + l/(fli2(ai2a23 - fli3)),

and so a21 is not an integer. This concludes the proof of Theorem 5.2.

REMARK. It is possible to show that A4, A5 and B are not ^-equivalent. The proof of
this fact is accomplished by considering more inequalities of the entries of these matrices.

6. Some sets of three involutions generating SL(3, Z). In this section we show that
condition (iii) of Theorem 1.1 implies condition (iv). In the last section we showed that to
each set S of three involutions in SL(3, Z) there is a f-equivalence S—> S' such that up to a
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permutation of the elements of S, M(S') is one of three matrices. We now show that in
each of these cases these involutions generate SL(3, Z).

Case 1: M(S) is the matrix A4. Here we note that A4 is the matrix of the set of three
involutions which were shown to generate SL(3, Z) in Theorem 2.1.

Case 2: M(S) is the matrix A5. Let Yj, Y2 and Y3 (respectively) be the following
matrices having M({Yi} Y2, Y3}) = A5.

Then X = (YXY2)
2 = fifi^n and Z = {YxY3f = B2

3lB32. Also Y2Y,(XZf = B3l'B32
l, which

together with Z allows us to generate B31 and B32. Now £/ = B32Y3 is the matrix

But M({YX, Y2, U}) = A4 and so Yu Y2 and {/ generate SL(3, Z) by case 1 above.

Case 3: A/(5) is the matrix B. In this case we have not been able to directly show
that In(5) = SL(3, Z), however using the Todd-Coxeter algorithm as implemented in the
group theory package 'Cayley' it can be shown that In(S) has index 1 in SL(3, Z).

This concludes our proof of all of the claims made in $1 since condition (i) of
Theorem 1.1 clearly follows from condition (iv). Thus we have been able to characterise
all integral 3 x 3 matrices M(S) (and the groups In(S) associated to them) satisfying the
two non-degeneracy conditions det(M(5)) = ± l and a12a23a3l- a2Xa13a32= ±1. If we
consider matrices satisfying only the last condition, then it is possible to say something
about the groups In(S) in certain special cases. For example if aua23a31 - 021̂ 13032 = ±1
and M(5) = (fl,y) where we have either

(i) |fl,y|>7for all J ^ / ; or
(ii) |fl/,%| ^ 6 |a,/t| for all distinct i, j , k;

then In(5) is isomorphic to the free product Z|Z|Z2. This is proved exactly as in [4] for
the transvection case.
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