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Traditional methods for the assessment of dietary intake are prone to error; in order to
improve and enhance these methods increasing interest in the identification of dietary bio-
markers has materialised. Metabolomics has emerged as a key tool in the area of dietary
biomarker discovery and to date the use of metabolomics has identified a number of putative
biomarkers. Applications to identify novel biomarkers of intake have in general taken three
approaches: (1) specific acute intervention studies to identify specific biomarkers of intake;
(2) searching for biomarkers in cohort studies by correlating to self-reported intake of a
specific food/food group(s); (3) analysing dietary patterns in conjunction with metabolomic
profiles to identify biomarkers and nutritypes. A number of analytical technologies are
employed in metabolomics as currently there is no single technique capable of measuring
the entire metabolome. These approaches each have their own advantages and disadvan-
tages. The present review will provide an overview of current technologies and applications
of metabolomics in the determination of new dietary biomarkers. In addition, it will address
some of the current challenges in the field and future outlooks.

Metabolomics: Dietary intake: Biomarkers: Nutrition

Metabolomics is the youngest member of the ‘omics’
family, joining genomics, proteomics and transcrip-
tomics as tools in global systems biology(1). Metabolo-
mics studies the small molecular weight molecules or
metabolites that are present in biological samples with
an aim to identify perturbations in metabolism under
different conditions(2). It complements other ‘omic’ tech-
nologies such as trancriptomics and proteomics and is
considered to best reflect activities at a functional
level(3). The metabolome responds to nutrients, stress
or disease long before the transcriptome or proteome
making it an attractive approach for multiple fields,
with metabolite alterations now implicated in the devel-
opment of a number of human diseases(4–6).

The metabolomics pipeline is composed of a number
of steps. In general, these steps involve: (i) experimental
design; (ii) sample preparation; (iii) data acquisition;
(iv) data processing; (v) statistical analysis(2,7), an over-
view of which is illustrated in Fig. 1. All stages should
be carefully designed and executed in order to provide

valid datasets and ultimately valid experimental conclu-
sions and hypotheses(7). Numerous comprehensive
reviews on the experimental strategies in metabolomics
are available elsewhere(8–11). The focus of this review
will provide an overview of current technologies and
applications of metabolomics in the determination of
new dietary biomarkers. In addition, it will also address
challenges in the field and future outlooks.

Metabolomic technologies

A number of analytical technologies(12) are employed in
metabolomics with the ultimate goal of analysing a large
fraction or all of the metabolites present. Due to metab-
olite diversity and the range of concentrations in which
they are present (pM–mM), a range of these technologies
is often used as at present no single technique has the
capability to measure the whole metabolome(8,10,11). An
overview of metabolites captured using different
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technologies is depicted in Table 1. In general, metabolo-
mic analyses have been classified into targeted or non-
targeted approaches and the type of approach used for
a particular study will be dependent on the research ques-
tion/design. The two major metabolomic platforms used
in these approaches are NMR spectroscopy and MS.
Non-targeted metabolomics involves measuring as
many metabolites as possible in a biological sample sim-
ultaneously, therefore providing a broader coverage of
metabolites(13). This approach offers the opportunity
for novel target discovery; however, the challenges lie
in the time required to process the extensive amounts
of raw data produced, difficulties in relation to character-
ising unknowns and bias towards high-abundance mole-
cules(14,15). In contrast, targeted approaches are takenwhen
specific classes of metabolites are to be measured. Through
the use of internal standards, analysis can be carried out in a
quantitative manner(14). The major limitation of this
approach is that it requires the compounds of interest to be
known a priori, which need to be available commercially
in purified form as standards in order to be quantified(16).

NMR spectroscopy

NMR spectroscopy has been utilised extensively in the
field of metabolomics research and has played a key
role in our understanding of metabolism for many dec-
ades(17,18). It benefits from being perhaps the most select-
ive analytical technique, with its ability to provide
unambiguous information about a molecule, an import-
ant aspect in terms of characterising components of com-
plex mixtures(7,17). NMR does not require extensive
sample preparation time, has high reproducibility and
little inter-laboratory variability(18). In addition, the ana-
lysis is non-destructive and does not require pre-selection
of the analysis conditions, such as ion source conditions
for MS or chromatographic operating conditions(7).
However, a major drawback of NMR in comparison
with MS-based methods is its limited sensitivity(19).
Another barrier delaying more prevalent use of NMR

as a metabolomic tool is the need for manual spectral
profiling(20).

The majority of metabolomic applications employ
(one-dimensional) 1H (proton) NMR as the majority of
known metabolites contain hydrogen atoms. In compari-
son with other methods, NMR is non-biased to particu-
lar metabolites, i.e. all metabolites will be detected once
they are present in concentrations above the limit of
detection. Two-dimensional (2D) NMR experiments
such as TOCSY, 1H J-RES and 1H–13C HSQC are
important to use in conjunction with one-dimensional
spectra for metabolite identification(21) and to compare
with reference databases such as the Human
Metabolome Database(22) and Biological Magnetic
Resonance Databank(23). In addition, one-dimensional
and 2D NMR experiments offer the potential to identify
previously unknown metabolites(24).

NMR has the capability of not only measuring solu-
tion states (e.g. urine, plasma and serum), but can also
measure tissue samples directly through a technique
called magic angle spinning(25). Its application has been
particularly utilised in the area of tumour monitoring(26).
For example, it has been used to robustly determine the
differences between benign and malignant tissue from
patients with breast and colon cancer with a high degree
of sensitivity and specificity(27). This technique can also
be used for real-time monitoring as it is conceivable
that magic angle spinning–NMR spectroscopy can be
performed within a 10–20 min time frame, highlighting
the translational potential as a clinical resource for
rapid diagnostics(5).

As mentioned previously there are some disadvantages
associated with NMR, the major one being its limited
sensitivity. To address this issue a number of recent
developments have been seen. For example, the use of
labelled compounds can lead to significant improvements
in sensitivity (e.g. using 13C or 15N NMR)(28) and instru-
mental advances such as the use of cryogenically cooled
probes and microcoil probes have also enhanced sensitiv-
ity, allowing the detection of metabolites at low
abundance(21,29).

Fig. 1. (Colour online) An overview of the metabolomics pipeline. LC/MS, liquid chromatography–MS.
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In recent years, a number of software packages have
been developed that support semi-automatic NMR
spectral profiling of one-dimensional and 2D 1H NMR
spectra(30,31). Of note is an open-source software called
BAYESIL (http://www.bayesil.ca), which provides a
fully automated system, allowing analysis of complex
mixtures quickly and accurately. The development of
such tools provides quantitative and accurate NMR
profiling effectively, without the need for trained experts,
enabling a wealth of new applications of NMR in clinical
settings(20).

MS-based technologies

MS-based techniques are coupled with a chromato-
graphic step, most commonly GC or liquid chromatog-
raphy. This chromatographic step allows the separation
of metabolites prior to detection, which reduces the

complexity of the mass spectra and enhances resolution,
sensitivity and selectivity(32,33).

GC–MS has long been used in metabolomics for the
comprehensive analysis of metabolites due to its high
selectivity and sensitivity. It is most suitable for volatile
metabolites and those that can become volatile following
chemical derivatisation. Although, chemical derivatisa-
tion can improve significantly the GC separation of com-
pounds, it is also a disadvantage as it can introduce
unwanted artefacts(16,34). The development of compre-
hensive 2D GC further enhances separation performance
by coupling two columns coated with different stationary
phases, which greatly increases separation capacity(32),
chemical selectivity and sensitivity, thus providing more
accurate information about metabolite retention times
and mass spectra(35). A recent study by Rocha et al.(36)

used a 2D-GC–MS untargeted approach to analyse
human urine. They identified 700 compounds from a
diverse number of chemical families (e.g. ketones, alco-
hols, aldehydes, thiols, amines, etc.), providing the
most complete information available on the volatile com-
ponents of human urine.

Liquid chromatography–MS requires no need for
chemical derivatisation of metabolites, which is an
advantage over GC–MS. Analysis of a wide range of
metabolites ranging from low to high molecular weight
and from hydrophilic to hydrophobic can be carried
out through selection of the appropriate column and
mobile phases. HPLC separations are best suited for
the analysis of labile and non-volatile polar and non-
polar compounds in their native form(37). Column tech-
nology has also improved greatly in terms of metabolite
coverage and for reducing analysis time. The introduc-
tion of ultra-high pressure liquid chromatography,
using porous particles with internal diameter smaller
than 2 µm, in conjunction with MS(37) has substantially
increased chromatographic resolution and peak capacity
compared with conventional HPLC columns(38). Overall,
the ultra-high pressure liquid chromatography–MS tech-
nique shows great promise as a hyphenated micro-
separation tool in metabolomics as the majority of pri-
mary metabolites are intrinsically polar(37).

During the last decade liquid chromatography–MS
techniques have developed, which employ soft ionisation
approaches such as electrospray ionisation and atmos-
pheric pressure chemical ionisation, making MS more
sophisticated and more robust for daily use(16).

A number of different types of MS detectors exist,
which vary in terms of cost, selectivity, sensitivity and
accuracy. These include ion traps, single quadrupoles,
triple quadrupoles, time-of-flight, quadrupole
time-of-flight, orbitraps and Fourier transform ion cyclo-
tron resonance. Triple quadrupoles are particularly good
for quantification of biomarkers because of their high
selectivity and robustness, whereas quadrupole
time-of-flights are particularly suited for untargeted
metabolomic analysis because of their higher mass accur-
acy (detect the difference between m/z 300·00 and
300·003) and scan rate. They are also increasingly used
for quantification, much like the triple quadrupole
instruments(39).

Table 1. Overview of the metabolite coverage achievable by the
different metabolomic technologies

Metabolomic
technique Metabolite coverage References

GC–MS Amino acids Wishart et al.(22);
Halket et al.(34);
Wishart et al.(80);
Bouatra et al.(81);
Schauer et al.(82),
Psychogios et al.(83)

Organic acids
Fatty acids
Phosphates
Sugars
Alcohols
Steroids
Bile acids
Nucleotides

LC–MS Amino acids Wishart et al.(22);
Halket et al.(34);
Wishart et al.(80);
Bouatra et al.(81);
Psychogios et al.(83)

Organic acids
Fatty acids
Sugars
Sterols
Steroids
Glycerophospholipids
Glycerolipids
Sphingolipids
Eicosanoids
Prenol lipids
Oxylipins
Polyketides
Saccharolipids
Bile acids
Metal ions
Neurotransmitters
Biogenic amines
Nucleotides

NMR
spectroscopy

Amino acids Wishart et al.(22);
Kobayashi et al.(23);
Wishart et al.(80);
Bouatra et al.(81);
Psychogios et al.(83)

Organic acids
Keto acids
Sugars
Alcohols
Lipids (HDL, LDL,
lipoproteins particles)

Nucleotides

LC–MS, liquid chromatography–MS.
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MS-based metabolomics offers quantitative analyses
with the ability to quantify very low concentrations of
potential biomarkers(33). Metabolites can be fully quan-
tified through the use of internal standards, ideally
using stable isotope labelled standards and spiking
them into the sample or semi-quantitatively which is
often the case when a range of metabolites are measured.
Semi-quantification normalises the metabolite signal
intensity to that of an internal standard or another rela-
tive metabolite, whereas full quantification or absolute
quantification determines the absolute metabolite quan-
tity. Stable isotopes are critical for absolute quantifica-
tion; however, the availability of commercial isotope
labelled standards is limited and costs can be prohibitive
to large-scale use(38).

A drawback of these conventional separation methods
is the low sample throughput, so a number of comple-
mentary approaches are emerging in order to reduce ana-
lysis time(40). One such approach is direct infusion MS,
which allows the direct introduction of a sample into
the spectrophotometer, bypassing the conventional chro-
matographic separation step. Advantages include rapid
analysis, reproducibility and consequently high-
throughput screening ability(41); however, it does suffer
from metabolite interferences, particularly in complex
matrices such as serum(40).

Overall, one of the main advantages of these MS techni-
ques is the associated high sensitivity, allowing the detection
ofmetabolites that arebelow thedetection limit of 1HNMR
spectroscopy. Exciting developments in automation and
quantitation for NMR and MS-based metabolomics have
been recently described(42,43). Shifts towards commercial
kits, automation and better standardisation will ultimately
reduce costs, increase throughput, allow greater reproduci-
bility and substantially reduce sample-handling errors(42).

Metabolomics and dietary biomarkers

The diet is an important environmental exposure and
therefore its measurement is a vital part of health-related
research. Measuring habitual dietary intake should be
both accurate and applicable to large numbers of free-
living individuals, hence measuring dietary exposure is
one of the greatest challenges in nutritional research(44).
Traditional tools for collecting information on dietary
intake including FFQ, food diaries and 24-h recalls are
often unreliable and are subject to possible underreport-
ing and recall errors(45,46). Due to these well-documented
problems, there has been a growing appreciation to
improve methods to assess dietary intake(47,48). The use
of dietary biomarkers provides a more objective and
accurate measure of intake and if used in combination
with traditional methods will improve the ability to
assess dietary intake. Currently, ideal biomarkers exist
for salt and protein intake (sodium/nitrogen measure in
a 24-h urine) and energy expenditure (double-labelled
water technique)(45). The further development of robust
dietary biomarkers will improve the assessment of the
relationship between diet and chronic disease(49). In

recent years, metabolomics has emerged as a key tool
in dietary biomarkers discovery.

Applications of metabolomics to identify novel bio-
markers of dietary intake have in general taken three
approaches: (1) specific acute intervention studies to
identify specific biomarkers of intake; (2) searching for
biomarkers in cohort studies by correlating to self-
reported intake of a specific food/food group(s); (3) ana-
lysis of dietary patterns in conjunction with metabolomic
profiles to identify nutritypes and biomarkers. These bio-
marker discovery studies have in general applied untar-
geted metabolomic approaches(50).

Use of specific acute intervention studies to identify
specific biomarkers of intake

Dietary intervention studies generally involve partici-
pants consuming specific food(s) followed by the collec-
tion of biofluids either postprandially or following a
short-term intervention(2). The most popular choice of
biofluid for these types of studies is urine, due to it
being non-invasive; however, plasma and serum are
also possible and useful. This approach has resulted in
the identification of a number of putative biomarkers
of specific foods and drinks such as citrus fruit(49,51,52),
cruciferous vegetables(53,54), red meat(55,56), coffee(57,58),
tea(59,60), sugar-sweetened beverages(61) and wine(62). A
good example of a robust biomarker of citrus fruit is pro-
line betaine, which was identified initially by Atkinson
et al.(52) and subsequently validated by independent
research groups(49,51,63). The biofluid used in all of these
studies was urine; however, different metabolomic analyt-
ical strategies were applied to measure proline betaine,
which included NMR and MS. One such study was per-
formedbyHeinzmann et al.(49), which involved eight volun-
teers consuming standardised meals over a 3 d period. On
the second day of the study, a mixed-fruit meal (apple,
orange, grapefruit and grapes) was introduced. Urine
samples were collected and subsequent analysis via NMR
spectroscopy and partial least-squares-discriminant ana-
lysis identified proline betaine as a potential biomarker of
citrus fruit intake. To confirm the findings, proline betaine
was measured in citrus fruits and the urinary excretion
kinetics were evaluated. Furthermore, the biomarker was
further validated in a large cohort study (INTERMAP,
UK), with excellent sensitivity and specificity (90·6 and
86·3 %, respectively) for discriminating between consumers
and non-consumers of citrus fruit(49).

Although a number of biomarkers of specific foods have
been reported, it is worth noting that few have been vali-
dated in large separate cohorts, making it difficult to trans-
late these biomarkers into practice. It should also be noted
that these acute biomarkers of intake are often short-term
biomarkers that are rapidly excreted in urine, almost com-
pletely over a period of 24 h(64). Therefore, searching for
longer-term biomarkers of habitual intake is required.

Searching for biomarkers in cohort studies by correlating
to self-reported intake of a specific food/food group(s)

Searching for biomarkers of specific food(s) can also be
carried out through the use of cohort studies. In this
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approach, dietary data are collected using a traditional
method (e.g. FFQ, food diaries) to identify low and
high consumers or consumers and non-consumers of a
specific food. Metabolomic profiles are then compared
between these groups in order to identify potential bio-
markers. These cohort studies tend to be larger in
terms of study participants in comparison with acute
intervention studies, but rely on self-reported dietary
assessment methods which are prone to error. It also
needs to be highlighted that biomarkers identified in
cohort studies do not assess the direct relationships of
food amounts consumed, they are simply correlations
between the food and the metabolite(s) and therefore
the relationship is only an association(65). Confirmation
of these associations would be required in an intervention
study in order to validate the metabolite as a specific bio-
marker of intake.

To date, a number of biomarkers of food intake have
been identified using cohort studies for e.g. fish(66), red
meat(67,68), whole-grain bread(69) and walnuts(70). An
important recent study applied metabolomics to serum
samples to identify biomarkers of red meat intake and
identified a relationship between a number of those iden-
tified biomarkers (ferritin, glycine, diacyl phosphatidyl-
cholines 36 : 4 and 38 : 4, lysophosphatidylcholine 17 : 0
and hydroxy-sphingomyelin 14 : 1) with risk of type-2
diabetes. The authors found that high levels of ferritin,
low glycine and altered hepatic derived lipids in the circu-
lation were associated with both total red meat consump-
tion and diabetes risk. The findings are consistent with
the hypothesis that metabolic processes reflected in the
circulating concentrations of these biomarkers take part
in linking red meat consumption to type-2 diabetes
risk(67).

This was the first reported study to evaluate a large set
of metabolites as potential mediators linking exposure
and disease, which is an important next step in bio-
marker discovery. Identifying these links between diet
and disease will provide an insight into which metabo-
lites and metabolic pathways are potential disease media-
tors, which could then be targeted or modulated through
dietary interventions to improve health outcomes. In
order to achieve this much work is required, particularly
in the area of biomarker validation.

Use of dietary patterns to identify biomarkers of intake

The concept of identifying biomarkers using dietary pat-
terns in combination with metabolomic patterns was pio-
neered in our research group(71). Since then, this
approach has been used in a number of studies(72–76),
where patterns of intake are related to metabolomic pat-
terns(2). This approach generally involves applying a
multivariate statistical strategy such as principal compo-
nent (PC) analysis or k-means cluster analysis to dietary
data to identify dietary patterns and then through the use
of regression (or other statistical method) linking these to
metabolomic profiles in order to identify dietary biomar-
kers and/or nutritypes.

A recent study used this novel approach to distinguish
between two dietary patterns in an attempt to develop a

compliance tool(77). An untargeted approach was applied
using ultra-high pressure liquid chromatography/quadru-
pole time-of-flight/MS to analyse urine samples from 181
participants as part of a parallel intervention study, who
were randomly assigned to follow either a New Nordic
Diet or an Average Danish Diet for 6 months. Partial
least-squares-discriminant analysis was applied to the
urinary metabolomic data to develop a compliance
model for the New Nordic Diet and Average Danish
Diet based on the metabolites that were identified as
being the most discriminatory between the two diets.
This resulted in a model with a misclassification error
rate of 19 %, showing good promise as a compliance
measure for different dietary patterns, which could be
used to identify non-compliant subjects or groups of indi-
viduals with certain dietary responses(77). This study
demonstrates that metabolomics can be used to discover
which metabolites are the strongest predictors of compli-
ance to complex diets; however, these metabolites should
be followed up by quantitative measurements to further
enhance and validate the model.

The identification of dietary patterns may also be
important for studying relationships between diet and
disease. For example, Bouchard-Mercier et al.(76) investi-
gated the metabolic signatures associated with the
Western and Prudent dietary patterns using a targeted
approach to profile participants (n 37) plasma.
Applying PC analysis to the metabolic plasma profiles
resulted in the identification of two PC. The first, PC1
was mainly composed of medium- to long-chain acylcar-
nitines, whereas PC2 was dominated by short-chain acyl-
carnitines and amino acids, including the branched-chain
amino acids. The authors found that PC1 was not corre-
lated to any food groups; however, PC2 was negatively
correlated with fruit intake and positively associated
with desserts (r =−0·38, P= 0·03; r = 0·37, P= 0·04,
respectively). In addition, PC2 also had a significant
positive correlation with saturated fat intakes (r= 0·39,
P= 0·02). The Western dietary pattern had an inverse
relationship with PC1 and a positive relationship with
PC2, suggesting that people eating a Western diet are
potentially at risk of increasing their long-term risk of
cardiometabolic diseases(76).

In summary, these studies indicate the potential of
metabolomics as a tool for not only evaluating compli-
ance to a dietary pattern, but also to identify and evalu-
ate relationships between diet and disease.

Challenges and future outlooks

The application of metabolomics for dietary biomarker
identification has grown significantly over the past 5
years(78) and in general this approach has produced a
number of robust biomarkers of dietary intake.
However, a number of challenges exist that need to be
overcome in order to advance this field of research.
One of the main challenges is in the area of biomarker
validation, which is often omitted in study design.
Following biomarker identification whether it is via an
acute intervention study or cohort study, subsequent
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validation in an independent cohort(s) is critical. The
independent cohort should not only be large, but also
diverse (e.g. multicultural populations) and a number
of considerations need to included such as age, sex, eth-
nicity, as well as sample processing, chromatographic
separation and analytical instrumental settings.
Another important aspect is the validation of the bio-
markers performance across different laboratories. It
can be a challenge to obtain identical metabolomic
profiles as often laboratories use different protocols and
therefore inter-laboratory validation is important(43).

Ideally, a well-validated biomarker should demonstrate
a dose–response, which would confirm its suitability for
use over a range of intakes(78); however, in the majority
of studies this important step is often missing. Indeed bio-
markers identified solely from cohort studies fail to assess
the direct relationships of foods consumed and do not
demonstrate responsiveness to intake, identifying merely
an association between the biomarker and food(65). A
recent review by Gibbons highlighted the need to combine
such studies with acute intervention studies to examine dir-
ect relationships and dose–response relationships(64).

Another challenge is in the area of metabolite identifica-
tion, which is one of the main limiting factors, particularly
when using MS-based metabolomics. The reason for this is
the huge chemical diversity that is present in biological
samples(79). To progress this field the metabolomics com-
munity are actively developing databases; examples
include the Human Metabolome Database, Metlin and
MassBank, which are publicly available. The Human
Metabolome Database contains over 41 000 metabolites
and is the most comprehensive collection of human metab-
olism data in the world(80). A similar database containing
food constituents and food additive metabolites has also
been created and is updated regularly, which is called the
FoodDB. The database contains over 28 000 metabolites,
a valuable tool for food and nutrition researchers(78),
although caution needs to be exerted as identifying meta-
bolites originating from foods remains difficult.

Conclusion

Metabolomics has proven a powerful tool in the area of
dietary biomarker discovery and its application has the
potential to greatly enhance our ability to assess dietary
intake. However, it is pertinent that validated biomarkers
of intake are translated into practice. In order for them to
meet their full potential cooperation across disciplines is
necessary.
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