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1. Background and statement of main results. The deformation theory of non-
orientable surfaces deals with the problem of studying parameter spaces for the different
dianalytic structures that a surface can have. It is an extension of the classical theory of
Teichmiiller spaces of Riemann surfaces, and as such, it is quite rich. In this paper we
study some basic properties of the Teichmiiller spaces of non-orientable surfaces, whose
parallels in the orientable situation are well known. More precisely, we prove an
uniformization theorem, similar to the case of Riemann surfaces, which shows that a
non-orientable compact surface can be represented as the quotient of a simply connected
domain of the Riemann sphere, by a discrete group of Mb'bius and anti-Mobius
transformation (mappings whose conjugates are Mobius transformations). This unifor-
mization result allows us to give explicit examples of Teichmiiller spaces of non-orientable
surfaces, as subsets of deformation spaces of orientable surfaces. We also prove two
isomorphism theorems: in the first place, we show that the Teichmiiller spaces of surfaces
of different topological type are not, in general, equivalent. We then show that, if the
topological type is preserved, but the signature changes, then the deformations spaces are
isomorphic. These are generalizations of the Patterson and Bers-Greenberg theorems for
Teichmiiller spaces of Riemann surfaces, respectively.

A Riemann surface (I , A') is a topological surface 2 with a complex structure X, that
is, a covering of 2 by charts with holomorphic changes of coordinates. Since holomorphic
functions have positive Jacobian, it turns out that Riemann surfaces are orientable. The
natural generalisation to the case of non-orientable surfaces is that of a dianalytic
structure, where we require that the changes of coordinates are either holomorphic or
anti-holomorphic (the complex conjugate is holomorphic). A pair (Z.,X), where 2 is a
surface and X is a dianalytic structure, is called a Klein surface. In particular, Riemann
surfaces are Klein surfaces. It is classical fact that any Klein surface can be represented as
XIT, where X is either the Riemann sphere, the complex plane or the upper half plane,
and F is a group of dianalytic bijections of X. Except for a finite number of cases, up to
homeomorphism, Klein surfaces are uniformised by the upper half plane; these are called
hyperbolic surfaces. A compact non-orientable surface 2 is the connected sum of g (real)
projective planes; g is called the genus of the surface. Observe that here we use the genus
in the topological sense; some authors (in particular, [17]) use the so-called arithmetic
genus, which is equal to g - 1. A non-orientable surface is hyperbolic if and only if g s; 3.
In the first result of this paper, we prove a uniformization theorem, by groups which are
more suitable for computations than groups acting on the upper half plane.

THEOREM 1.1. Let I. be a compact non-orientable surface of genus bigger than 2. Then
there exists a Kleinian group G, acting discontinuously on a simply connected set A ofC,
and an antiholomorphic function r, such that

1. g(A) = A for all g e C; r(A) = A;
2. A/G is isomorphic to the complex double 2C ofL;
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az + b
3. r is of the form r: z —* ~ , with ad — be ̂  0;

cz + a
4. A/F s= 2, where T is the group generated by G and r;
5. F is unique up to conjugation by Mobius transformations.

Here by a Kleinian group we mean a group of Mobius transformations that acts
discontinuously on a non-empty open set of the Riemann sphere. The complex double of
2 is a Riemann surface 2C, together with a unramified double cover TT:2 C -*2. If 2 is
hyperbolic, then 2C is also hyperbolic (see §2 below).

Let M(1) denote the set of dianalytic structures, on the non-orientable surface 2,
that are compatible with the differential structure induced by X. The quotient of M(2) by
the group of diffeomorphisms homotopic to the identity (acting by pullback, see §3), is the
Teichmuller space T(Z) of 2. It has a natural real analytic structure given by projecting
the natural structure of M(2). It is not hard to prove that T(Z) embeds in the Teichmuller
space of 2C (see §3). Combining this embedding with Theorem 1.1 and the results of I.
Kra in [12], we can give presentations for the deformation spaces of some non-orientable
surfaces. As an example, we compute the Teichmuller space of a surface of genus 3.

THEOREM 1.2. The space 7"(2) of a non-orientable surface of genus 3 can be identified
with the set of points (r,, T2, T3) of T(ZC), such that

Re(T2) =0,
Re(T,) = Im(r3),

We introduce the concept of puncture on a non-orientable surface as a generalisation
of the corresponding idea on Riemann surfaces; a puncture is a domain on 2,
homeomorphic to the unit disc minus the origin, that cannot be completed to be
homeomorphic to the unit disc, and such that any change of coordinates in the domain is
holomorphic. The above theorems extends easily to the case of surfaces with punctures.
For example, we can identify the deformation space of a surface of genus 1 with two
punctures.

THEOREM 1.3. The space T(1), where 2 is the (real) protective plane with two
punctures, can be identified with the set of points of the upper half plane with imaginary
part bigger than 1 and real part equal to zero.

One can define a Klein hyperbolic orbifold as a non-orientable surface 2, with finitely
many (maybe zero) punctures, such that the covering from the upper half plane to 2 is
ramified over a finiter number of points. The surface Zc carries an anticonformal
involution o\ such that 2<7(c) = 2. We have that 7(2) can be identified with the set of
fixed points of the anti-conformal involution tr*, induced by a in T(ZC). We say that the
Teichmuller spaces of two non-orientable surface 2, and 22 are real isomorphic, if there
exists a biholomorphic mapping/: 7(2^)-^ T(2C

2), such that / ° cr* = a* ° f. The following
result is a generalisation of the Bers-Greenberg isomorphism for Riemann surfaces.

THEOREM 1.4 (Bers-Greenberg theorem for non-orientable surfaces). If 2,, i = 1, 2,
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are two non-orientable hyperbolic orbifolds, with the same genus and number of
ramification points, then the spaces 7(2]) and r(22) are real isomorphic.

This paper is organized as follows: in §2 we prove the uniformization theorem; §3
contains the proof of Theorem 1.4 and other results about isomorphisms of deformation
spaces; finally, §4 has the examples.

ACKNOWLEDGEMENTS: I would like to thank R. R. Simha, for useful discussions. I
would like also to thank the Tata Institute of Fundamental Research, for providing me
with excellent research facilities.

2. Uniformization. Classically, hyperbolic Klein surfaces are uniformized as the
quotient of the upper half plane by a discrete group of dianalytic self-homeomorphisms
(Mobius and anti-Mobius transformations with real coefficients), known as NEC
(non-euclidean crystallographic) groups. In this section, we will prove a uniformisation
theorem by a different type of groups, which are more suitable for computations. We will
use these groups, in §4, to produce some explicit examples of deformation spaces of
non-orientable surfaces.

We start by recalling some facts of uniformization of Riemann surfaces. A partition *%
on a Riemann surface 2, of genus g ^ 2, is a collection of simple closed disjoint curves,
such that no curve of <# is homotopically trivial, and no two curves of ^ are freely
homotopically equivalent. A partition consists of at most 3g - 3 curves; if this is bound is
attained, we say that the partitions is maximal. See [18] for the proof of the existence of
partition on surfaces.

THEOREM 2.1 (Maskit Uniformization Theorem, [13], [14]). Given a Riemann surface
2 and a maximal partition <# = {alt.. . , a3tl-3+n}, there exists a Kleinian group G, known as
a terminal regular b-group, such that:

1. there is a unique maximal simply connected set A of the Riemann sphere, where G
acts discontinuously, and g(A) = A for all g e G;

2. A/r = 2;
3. to each curve of *€ corresponds a maximal conjugacy class of cyclic subgroups of G

generated by a parabolic transformation;
4. besides 2, the group G uniformizes the 2g - 2 thrice punctured spheres obtained

from squeezing each curve of 9? to a puncture;
5. G is unique up to conjugation by Mobius transformations.
A symmetry a on a Riemann surface is an anticonformal involution. If F(a) denotes

the set of fixed points of cr, then we have that 2 - F(a) consists of at most two
components. It is a well known fact that 2/(cr) is orientable if and only if 2 - F(a) is not
connected ([7], [17]). The classical result about the structure of F(a) is the following.

THEOREM 2.2 (Harnack). / / a is a symmetry on a compact surface 2 of genus g, then
F(a) is either empty or consists of s simple disjoint curves 5;, with s^g + 1.

This theorem can be improved as follows.

THEOREM 2.3 (Kra-Maskit). In addition to the curves (if any) 8U... ,8S, there exists
closed curves 8S+U... ,8,, such that:

1. {5};'=1 is a collection of disjoint curves;
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2. cr(8j) = Sj, for all j ;

3. 2 — U Sj consists of two components, 2j and 22;

4. a interchanges S

The existence of maximal partitions invariant under symmetries is a well known fact;
but our proof is different from those in the literature (see, for example [17, 117-120]), but
we include it here for the sake of completeness.

LEMMA 2.4. Let 1. be a Riemann surface of genus g^-2, and let a be a symmetry on 2.
Then there exists a maximal partition <€ invariant under u, that is, a(^) = c€.

Proof. Let % denote the set of curves given by the Harnack-Kra-Maskit thoerems.
We claim that % is a partition on 2. In fact, we have that if a curve of % is homotopically
trivial, then 2, and 22 are discs, and therefore, 2 will be homeomorphic to the Riemann
sphere. Similarly, if two curves of % are freely homotopic, we get that 2 is a torus.

If <g, is maximal, we are done. If not, let a be a curve such that ^ = 1 , U {a} is a
partition. We claim that %2 U ia(a)} >s a partition. This can be seen in three easy steps:

1. a(a) is not homotopically trivial, since a is a homeomorphism, and a is not trivial
(being a curve in a partition);

2. a(a) is not (freely) homotopically equivalent to any curve of ^x. If there is a curve
8 in <#,, freely homotopic to a{a), then, applying a, we would get that a is freely
homotopic to 5, contradicting the fact that ^2 is a partition;

3. o-(a) is not freely homotopic to a. If these two curves are freely homotopic, then
we have that a and cr(a) bound a cylinder in 2. Since these curves lie in different
components of 2 - %, we get that there is a curve, 8 in %, in that cylinder. But this
implies that a is homotopically equivalent to 5, which is again not possible.

Any non-orientable surface 2 has a double unramified cover by a Riemann surface
2C, called the complex double ([2, 37-40]). If 2 has genus g, then 2C has genus g - 1 . 2
has a symmetry a, such that 27(o-)s2. We have now all the necessary tools to prove
Theorem 1.1.

Proof of Theorem 1.1. Let 2C be the complex cover of 2, and let a be the symmetry
on 2C such that 2c/(cr) = 2. By our hypothesis, 2 r has genus greater than 1, so applying
the Lemma 2.4 we obtain a cr-invariant maximal partition % on 2C. Using the Maskit
Uniformization Theorem, we get a Kleinian group G, uniformizing 2C in the invariant
simply connected component A. We only need to show that the symmetry a lifts to an
anti-Mobius transformation, in the covering determined by G (i.e., it is of the form given
in the statement of the theorem). For simplicity, assume first that a is orientation
preserving. Then cr induces a set of conformal mappings, (Tj:Sj-+Sk, among the parts
Sl,...,S2g-2 of 2 - <6. The infinite Nielsen extension, Sj, of S, is a thrice punctured
sphere, obtained from 5, by completing the holes to punctured discs. It is a classical fact
that (Tj extends to a quasiconformal mapping, denoted by <r;, from Sj to 5^, with maximal
dilatation 1 < K(dj) ^ K(o-j) ([4], [1]). Since cr, is conformal, we have that its dilatation is
equal to 1, and therefore K(d-j) = 1, that is, a) is also conformal. Let £/, be a component of
7t~\Sj), where ;r:A—»2 is the natural quotient mapping from A onto 2, and let
Gj = stab(G, Uj): = {g e G; g(Uj) = I/,}. We have that the Gy's are triangle groups with two
invariant components; let U] be the component that does not contain A. Then, the
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mapping a, induces a conformal mapping between U) and U'k, for a proper choice of Uk.
This can be done with all the components of n~x(Sj), and all the ; = 1,. .. ,2g - 2,
obtaining in this way a conformal self-mapping a, of AUg(L/;'). But this set is the region
of discontinuity of G (that is, the set of points of the Riemann sphere were G acts
discontinuously). Since G is finitely generated, we have that the complement of the region
of discontinuity has measure zero. Therefore, the classical theory of quasiconformal
mappings gives us a conformal automorphism of the Riemann sphere that extends a. Such
mapping should be a Mobius transformation.

To complete the proof of the theorem it suffices to observe the following two facts,
which are easy to prove:

1. the theory of quasiconformal mappings has a natural extension to cover the
orientation reversing mappings [17]; and

2. Bers' results on Nielsen extensions can be applied to orientation reversing
mappings.

We define a ramification point x on a Klein surface as a point such that the universal
covering looks like z*->z", in a neighborhood of x, (which corresponds to the points
z = 0) for some finite positive integer n. The number n is called the ramification value of
x. Ramification points correspond to fixed points of orientation preserving transforma-
tions, of finite order.

DEFINITION 2.5. A puncture is a domain D in Z satisfying the following conditions:
1. D is homeomorphic to D* = {z e C; 0 < \z\ < 1};
2. for any sequence of points in D* converging to the origin, the corresponding

sequence in the surface diverges;
3. if there are two patches on Z, whose images contain some sets of the form {z e C;

0 < | z | < r s l } (that is, neighborhoods of the "missing point"), then the change of
coordinates is holomorphic.

Given a Klein surface with ramification points and/or punctures, called a Klein
orbifold, we define its signature as a collection of numbers (and a symbol) of the form
(g, ±, n; v , , . . . , vn), where g is the genus of the surface, n is the number of special points,
and v , , . . . , vn are the ramification values, with punctures having ramification value equal
to oo. if the orbifold is orientable, then we take the symbol +, while - is used for
non-orientable surfaces. If all the ramification values are equal to °°, then we will write
the signature as (g,±,n). It is not difficult to see that if Z has signature (g, - ,
n; V,, . . . , vn), then the signature of Zc must be (g - 1, +, 2n\ v,, v i , . . . , vn, vn). A Klein

» 1
orbifold Z, is hyperbolic if and only if kg - 2 + n - 2 - is positive, where k = 1 if Z is not

;=i n

orientable, and k = 2 in the orientable case. Since the Maskit Uniformization Theorem
and the theory of quasiconformal mappings extend to the case of surfaces with
ramification points, we have that Theorem 1.1 can be applied also to hyperbolic Klein
orbifolds.

3. Isomorphisms between Teichmiiller spaces. A natural problem in deformation
theory is to study which properties of a surface are determined by its Teichmiiller space,
and vice versa. More precisely, in this section we will see that, if the Teichmtiller spaces
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of two surfaces are equivalent, then the surfaces are homeomorphic. Reciprocally, if two
Klein orbifolds have the same genus and number of ramification points, we will prove that
their deformation spaces are isomorphic.

We start by recalling the definition of the modular group, and some basic facts about
hyperelliptic surfaces. The modular group Mod(2) of a non-orientable surface is the
quotient of the group of diffeomorphisms, by those homotopic to the identity (in the case
of Riemann surfaces, one takes only the orientation preserving diffeomorphisms). We
have that Mod(2) acts on 7(2) by pullback: given a mapping / , and a real analytic
structure structure X, we define f*(X) as the unique structure on 2 that makes
/ : (2,/*(*)) —(2,*) dianalytic. The mapping /*: [X] - • [/*(*)] becomes dianalytic in
the natural structure of T(Z).

We say that a non-orientable surface 2 is hyperelliptic if it is a double cover of the
(real) projective plane (respectively, the Riemann sphere, in case of orientable surfaces).
Hyperelliptic surfaces carry the so-called hyperelliptic involution, which is a dianalytic
involution (holomorphic, in the case of orientable surfaces) a, such that 27(a) is the
projective plane. It is not hard to see that if 2 is hyperelliptic, so is its complex cover 2C,
and that a lifts to the hyperelliptic involution;' of 2C. Since the hyperelliptic involution on
a Riemann surface is unique, we obtain the reciprocal result: if 2C is the complex double
of a surface 2, and 2C is hyperelliptic, then 2 is also hyperelliptic; moreover, the
involution ; can be pushed down to the hyperelliptic involution a in 2. Hyperelliptic Klein
surfaces were introduced in [9]; for general background and more results on this topic, see
[6].

As in the case of Riemann surfaces, we have that the modular group acts effectively
on Teichmuller space, except for a finite number of cases. See also [5, Theorem 8.1],
where some of the results of the following proposition are proven.

PROPOSITION 3.1. Mod(2), for a hyperbolic non-orientable surface 2, compact with
finitely (maybe zero) punctures, acts effectively on T(Z), except for the following cases: the
projective plane with two punctures, the Klein bottle with one puncture, or the connected
sum of three projective planes.

Proof. As usual, let 2C denote the complex double of 2, and let a be the involution
associated to such covering. It is a well known fact ([17, p. 149] or below) that 7(2) can
be identified with the set or fixed points 7(2C)O.. of cr* in 7\2C). If / is a diffeomorphism
of 2, there is a unique orientation preserving lift, F:2C—»2C (see [16, 20] and [2, 39]). By
uniqueness, we have that F satisfies F* ° cr* = cr* ° F*. This proves that Mod(2) embeds
into the set A = {h* e Mod(2c); h* ° cr* = cr* ° h*}. The modular group of a hyperbolic
Riemann surface acts properly on the corresponding Teichmuller space, unless the
signature of the surface is (0, +, 4), (1, +, 2), (2, +, 0) or (1, +, 1). Since complex covers
have an even number of punctures, we get that only the first three signatures can give
non-orientable surfaces. We therefore obtain that the cases where Mod(2) may fail to act
effectively correspond to the signatures (1, - , 2), (2, - , 1) and (3, - , 0). This proves the
first part of the proposition.

If, in the other hand, 2 has signature in the above list, we have that the only elements
of Mod(2) that do not act properly are the classes of the identity and the hyperelliptic
involution. By the remarks before the theorem, we also have that these classes are the
only elements that act trivially on the Teichmuller space of hyperbolic Klein surfaces.

https://doi.org/10.1017/S001708950003192X Published online by Cambridge University Press

https://doi.org/10.1017/S001708950003192X


TEICHMULLER SPACES OF KLEIN SURFACES 71

It would be interesting to know whether the image of Mod(2) is equal to the whole
set A described in the above proof.

The proof of the following result is straightforward from the parallel result for
Riemann surfaces. Nevertheless, the proposition is interesting, because it shows the great
similarity between the theory of deformation of orientable surfaces, and that of
non-orientable ones.

THEOREM 3.2 (Patterson theorem for non-orientable surfaces). Let 2,-, i = 1,2, be two
hyperbolic compact, with finitely many (possibly zero) punctures, non-orientable surfaces,
and suppose that either 2j or 22 has genus not equal to 3. / / T(T.i) is real isomorphic to
7(22), then 2] is homeomorphic to 22.

Proof. It suffices to observe that if 7(20 and 7(22) are real isomorphic, then the
spaces r(Z'j) and 7(22) are biholomorphic, and therefore, 2^ and 22 are homeomorphic.

In order to prove Theorem 1.4, we need to review a basic concept of Teichmtiller
theory: quadratic differentials and Beltrami coefficients. Let (2(2) denote the space of
bounded quadratic differentials on a Klein surface. These are simply quadratic
differentials, regular on the surface, with at most simple poles at the punctures, and with
zeros of certain order (determined by the ramification value) at the ramification points
(see, for example [10]). It is easy to see that the set (2(2), for a non-orientable surface,
can be identified with the subspace of elements of (2(2C), that are preserved by <r, that is,

d> = (<£ o a)(da)2. Here by da we mean da/dz =~\ — H — \<r. The dimension of Q(T)
2 \dx By/

over U. is equal to the dimension of G(2C) over C. The embedding from (2(2) into £>(2C)
is an isometry in the norm,

|M|=supkp(jt)|A-2(*), fsQCZ),

where A is the metric obtained by pushing down the Poincare metric of the upper half
plane onto the corresponding surface (and the supremum is taking over the whole
surface). The cotangent bundle of 7(2) can be naturally identified with the space <2(2).

Let I be a Klein surface, uniformized by the NEC group I\ Let M(H, F) denote the
space of Beltrami differentials for F. This set consists of (classes of) measurable functions
/A, with support in the upper half plane, and L^-norm less _than one, satisfying
(M ° y)j'ly = M> if y e r is orientation preserving, or (/u. ° y)y'Idy = jl, if y e F
reverses the orientation. For each \x e M(H, F), there is a unique quasiconformal
homeomorphism w^, of the upper half plane, with dilatation p., that fixes 0,1 and =•=. Two
Beltrami coefficients, /J. and v, are equivalent if wM = wv on the real line. The space of
Beltrami differentials, quotiented by the above equivalence relation is the Teichmiiller
space 7"(F) of the group F. It can be proven that T(T) is naturally isomorphic to 7(2),
where 2 = H/F. It is easy to see that, if G is the subgroup of F consisting of the
orientation preserving mappings, then H/G = 2C. We can identify the Beltrami
differentiator F with those Beltrami differentials for G, that are invariant under a, that
is, (fi o a)b(rlb(T = fx. This allows us to identify the deformation space 7(2) with the set
of fixed points of cr*, 7(2C)O.., in the deformation space of the complex double T(lc). In
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this way we obtain a Teichmiiller's lemma for non-orientable surfaces: on each
equivalence class of Beltrami differentials there is a unique mapping with minimal
dilatation, which is of the form p. = /c<p/|<p|, with <p e Q(H), k a real number. With this
background, we can provide two proofs of Theorem 1.4 of §1.

First proof of Theorem 1.4. Let 1 be a hyperbolic surface of signature (g, —,n\
vi» • • • , vn), where we assume that at least one of the ramification values is finite. Let 2()

be the surface of signature (g, —,n;«,..., <*), obtained by removing from 2 all the
points with finite ramification value. Let F and Fo be NEC groups uniformizing 2 and So

respectively. Define Hr as H - {fixed points of elliptic elements of F}. Then, by our
hypothesis we have that H ¥= Hr. Since Zos=Hr/F, we have a covering map h :H—»Hr;
that makes the following diagram commutative.

The function h induces a group homomorphism ^:F0«— F, defined by the rule h ° %(y) =
y ° h. The mapping h induces a mapping h*:M(H, Fo)—»A/(H, F), between Beltrami
coefficients, given by the expression (h*fx.) ° h = fih'/h' (see below for a proof of the fact
that h is a holomorphic function). It is not hard to see, using the same arguments that in
the orientable case, that h* induces an real analytic bijection between the spaces 7*(I0)
and T(Z). See, for example, [8] (or [3], for more details). By analytic continuation, we can
extend h* to a biholomorphic function between T(ZC

O) and T(2.c), that obviously
commutes with the involutions er0 and cr, giving the desired isomorphism.

Second proof of Theorem 1.4. In this case, we will use the Bers-Greenberg theorem
for Riemann surfaces. Consider the same setting as in the first proof. Let G and Go be the
orientation preserving subgroups of F and Fo respectively. Then we have H/G = 2C and
H/Go = H c /G = 2CQ. We get that the following commutative diagram is commutative:

where n, nQ and p are the natural projections. The mapping h is defined as in the first
proof. The function / is the unique holomorphic mapping that makes the lower triangle
commutative. We have that n is holomorphic (a covering of a Riemann surface by an
open set of the complex plane), so the function h is holomorphic. This implies that the
group homomorphism #, of the first proof, takes the subgroup Go onto G. Since the
surfaces I and Sc have the same genus and number of ramification points/punctures, we
have that the spaces T(lc

0) and T(1C) are isomorphic, via the function h* induced by h, as
in the first proof. To prove Theorem 1.4 it suffices to show that h commutes with the

https://doi.org/10.1017/S001708950003192X Published online by Cambridge University Press

https://doi.org/10.1017/S001708950003192X


TEICHMULLER SPACES OF KLEIN SURFACES 73

antiholomorphic involutions a and cr0 (that "produce" the surfaces 2 and 20, respec-
tively). In other words, we have to show h ° <jo = a ° h. But we have that n ° h ° o-0 =
n°a°h, so h ° a0 is equal to either a° / j or a ° /i ° a. Since this last function is
holomorphic, we must have h ° a0 = <j ° h, as claimed. Identifying 7\Z0) and 7*(S) with
the set of fixed points of a* and <r* in 7(2o) and T(ZC), respectively, we get the
Bers-Greenberg theorem for non-orientable surfaces. •

4. Examples. In this section, we will show with two examples, how the techniques
of Kra of [12] can be applied to the case of non orientable surfaces. We will work with
deformation spaces of Kleinian groups, which are equivalent (if the groups are chosen
properly, for example, groups given by Theorem 1) to deformation spaces of Riemann or
Klein surfaces (see [11] or [17] for more details).

In our first example, we consider a Klein surface, Z, of signature, (1, - , 2). Its
complex double, 2C, has signature (0,+,4). A Kleinian group, Ga, uniformizing 2C is
generated by the transformations

["-I - 2 ] f -1 0] I " - l+2a -2a 2 1

where Im(a) > 1 (see above reference). The coordinate of Ga in the Teichmiiller space
7(0, +, 4) (notation should be obvious) is given by the expression

a = CT(f(A),f(B),f(AB),f(Ba)).

Here cr denotes the cross ratio of four points in the Riemann sphere, chosen so that
cr(°c, 0,1, z) = z, and f(T) denotes the unique fixed point of the parabolic transformation
T.

A maximal partition in 2C consists of a simple closed curve, say a^. We can assume
that the punctures Pt and P2 lie on the same component of 2 c - a , . The Mobius
transformation A corresponds to the partition curve. Let yt,j = 1 , . . . , 4, be a small simple
loop around the puncture Pj, oriented such that the puncture lies to the left of y,. The
parabolic elements T\ = B,T2 = (AB)~\ T3 = B" 1 and T4 = BaA, correspond to these four
loops. Without loss of generality, we can assume that T, corresponds to y,. Consider on 2C

the involution a = r ° R, where R is a rotation of 180 degrees on the axis of Figure 1, and
r is an anticonformal reflection on a}. The anticonformal mapping a has not fixed points,
and the quotient Lc/(a) has signature (1, - , 2).

1

Figure 1. A sphere with four punctures.
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In order to identify 7(2) in 7(2C), we have to study the action of the mappings R
and r on the group Ga. The transformation R interchanges the punctures that lie on the
same component of 2C - {a,}, that is, R sends y, to y2 and y3 to y4 (up to free homotopy).
The function r, not only interchanges the two components of 2C - {aj, but also changes
the orientation of the loops, sending y1 to yj1 and y2 to yjl. We have that R lifts to /tj'2,
while r lifts to r(z) = z + /x, /x e C, in the covering determined by the group Ga. Observe
that, although a Mobius transformation may have may square roots, parabolic elements
have only one, and therefore, A\'2 is well defined.

From these observations we can compute the action of a* on 7(Fa) as follows. First
of all, observe that the group Ga is generated by A, B and Ba, with the property that AB
and A~^B~X are parabolic elements. We will use the notation G(A,B,Ba) to emphasise
this fact. Observe also that AB~a

x = Ba-v The mapping R sends G{A,B,Ba) to
G' = G(A,AV2BA-m,AmBQA-m) = G(A,B-1A-\B-U). Since the transformation r
is orientation reversing, we have that its action is given by conjugating the group C into
G(A,rBa+1r~\rABr~]). The mapping a* has therefore the form

cr*(a) = cr(oo, a + 1+ fi, a +2 + p, 1+ /JL)= -a.

Thus, the Teichmiiller space 7(2) can be identified with the set of points a e 7(2C) such
that Re(a) = 0. By the work of Kra, we have that 7(2) is precisely the set {z e C;

Consider now the case of a surface 2 of signature (3, - , 0). The complex double of 2
is a Riemann surface 2C, of genus 2 without punctures. In [12] we can find a group Gr

uniformizing 2C, generated by the mobius transformations:

= r - l
L

- l - 2 r 2 ( l - T 2 ) -2(1 - r 2 ) 2

r3 L

]
3 L 2ri - 1 + 2 T 2 ( 1 - T 2 ) J '
2(1 - T3)T2 + T3 - 2 -T 3 T 2

2 + (3r3 - 2)r2 - 2r3 + 3

The mapping Aj correspond to the curves a, of the partition of 2C of Figure 2.

Figure 2. A Riemann surface of genus 2.
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The Cj are loxodromic elements with the property that Bj"1:= C^A^C^ and
B3:=C3

1A3C3 are parabolic elements. The coordinates on T(ZC) are given by the cross
ratios

T, = CT(f(Al),f(B,),f(A2),
= cr(f(A2),f(Al),f(B,),f(A3)),

\j3 = cr(f(A^),f(A3A2),f(A2),

Let a = rR be defined in a similar way as in the previous example: R is a rotation by 180
degrees on the line of Figure 2, and r is an antiholomorphic reflection on the curve a2.
The computation of the case (1, - , 2) applies to the coordinate T2, since the part
corresponding to it (that is, 2 - {au a3}) is a surface of signature (0, +,4). So we get that
the action of a* on T2 is T2I-» -f2. We have that the mapping R lifts to A2

2, and the lift of
r is

Computing as in the previous example, and taking care of the fact that r reverses
orientation, we see that o-*(r1) is given by the cross ratio of the points

f(A2), ^ ( / ( M ^ U j U j " 2 ) ) , f"1)),

where C3 = rA2
aC3^A2

mr~x. This cross ratio gives CT*(T1) = 1 - f3. Similarly, one gets
CT*(T3) = 1 - TV Therefore, the Teichmiiller space T(Z) can be identified with the set of
points (Ti, T2, T3) e 7(2, + , 0) such that

'Re(T2) = 0

Re(r,) = 1 - Re(r3)
) = Im(T3),

which proves Theorem 1.2 of the introduction.
The above computations give us some other isomorphisms, different from those of

the previous section. Observe that the transformation R is just the hyperelliptic involution
on 2C. It is not hard to see that R* acts like the identity in T(I.C) ([15,126]). The mapping
r has a curve of the partition as the set of fixed points. We have that 2c/(r) is a sphere
with one hole and two punctures, in the first example, or a torus with a hole in the second
example. Let us denote this surfaces by 5j and 52, respectively.

COROLLARY 4.1. The spaces T(Si) and T(S2) are isomorphic to T(l, -, 2) and 7(3, - ,
0) respectively.

Isomorphisms between deformation spaces of orientable and non-orientable surfaces,
as those of the above corollary, do not happen if the genus is bigger than 2 [17,152]).
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