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SUMMARY

Spatial–temporal patterns of measles incidence reflect the spatial distribution of human hosts.

The heterogeneous spatial distribution of communities has been shown to introduce spatially

dependent temporal lags in the timing of measles incidence. Incidence patterns reflect internal

dynamics within a community and coupling of communities through the movement of infectious

individuals. The central role of human movement in coupling dynamics in separate communities

suggests that physical geographic barriers to movement should reduce spatial–temporal

correlation. We examine measles dynamics in Maryland and Pennsylvania during the period of

1917–1938. The central feature of interest is the Chesapeake Bay, which separates Maryland into

two distinct regions. We find that correlation of measles incidences in communities separated by

the bay is reduced compared to communities not separated by the bay, suggesting the bay acted

as a barrier to human movement during this time sufficient to decouple measles dynamics in

Maryland counties.

INTRODUCTION

Studies of measles dynamics have been extremely

important to the development of infectious disease

dynamical theory and ecological theory in general.

The availability of detailed, accurate spatial–temporal

data on case rates have made possible many seminal

investigations of the impact of seasonal forcing [1],

population density [2], host demographic changes [3],

and noise on disease dynamics [4, 5]. One outcome of

this work is the finding that the spatial–temporal

pattern of measles incidence reflects the underlying

community structure [6]. Hierarchical waves of in-

fections move from large cities to smaller towns

due to the re-introduction of measles from large

communities to smaller communities where measles

transmission ceases in the troughs between seasonal

epidemics. Theoretical models linking communities

based upon the distance separating them and their

relative population sizes successfully captures many

of the features of the spatial–temporal pattern of

measles in the United Kingdom.

Conversely, a lack of movement of people between

two communities might decouple the dynamics in

two communities. Physical geographic barriers,

features such as rivers, mountains or bays, may by

limiting travel decouple measles dynamics in com-

munities separated by these features. Such features

are important in the spread and dynamics of diseases

of wildlife [6]. Here, we examine the impact of

the Chesapeake Bay on the spatial–temporal corre-

lation of measles incidence in Maryland, USA during
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the period 1917–1938. During the time of these data,

no bridges or tunnels spanned the bay thus forc-

ing travellers to either span the bay by boat or travel

around the bay. At present the 4.3-mile-long Bay

Bridge, built between 1949 and 1952, and the 23-mile

Chesapeake Bay Bridge Tunnel, built between 1960

and 1964, traverse the bay. Although ships routinely

crossed the bay during the time of these data (regular

ferry services, begun in 1919, provided scheduled

transportation services, with a 23-mile trip requiring 2

h) trips across the bay have dramatically increased

since the construction of these two bridges.

We compared the spatial–temporal correlation in

Maryland and one additional state, Pennsylvania, to

previous results in the United Kingdom, and looked

for evidence of spatial hierarchy in the data from the

United States. Although temporal patterns in certain

cities of the United States have been compared to

incidence series in the United Kingdom and elsewhere

[3, 7], and geographical coherence investigated with

state-level data [8], a systematic review of the spatial–

temporal correlation structure of county level

measles data from the pre-vaccine era has not been

performed. One factor that might produce different

spatial–temporal dynamics in the United States com-

pared to the United Kingdom is the difference

in population density [9]. The population densities of

the United Kingdom (166.47 persons/km2) and the

United States (77 persons/km2) differs markedly and

within Maryland, population density varies from

3672.21 persons/km2 in Baltimore City and 627.03

persons/km2 in Allegheny County in Pennsylvania

where Pittsburgh is located to 23 persons/km2 on the

Eastern Shore and 36 persons/km2 in the three most

western counties.

In previous work, we described two distinct pat-

terns of measles dynamics within one country,

Cameroon. Before recent mass vaccination cam-

paigns, one part of the country had annual epidemics

while another had epidemics every third year [10].

Although we could not distinguish the respective

role that differences in internal dynamics and spatial

de-coupling of these populations played in creating

the distinct patterns, we speculate that the very

low level of travel between these regions allowed

them to maintain different dynamics. Elimination

campaigns in Africa and elsewhere must consider

the coupling of populations within the targeted

region and between the target region and other

parts of the world. Coupling through migration

of cases may link areas with heterogeneous rates of

immunization and allow measles to persist even in

areas with large vaccination coverage. Uncovering

topographical features that are important in coupling

or de-coupling regions may provide an advantage in

moving successful elimination programmes forward.

METHODS

Data

Each of the US states has routinely reported cases

of measles to the US Surgeon General since 1928.

Unfortunately, these data do not appear in national

publications for any reporting unit except the state

level for any length of time. However, measles inci-

dence and death data at the county level were avail-

able from some states of the United States. We

obtained monthly case data from two states,

Pennsylvania andMaryland.Monthly case data for 67

counties in Pennsylvania for the period between

February 1928 and February 1934 were published

in the Vital Statistics Bulletin of the State of

Pennsylvania [11]. Monthly case data for the state of

Maryland for a longer period (1917–1938) are avail-

able from the Annual Report of the State Board of

Health of Maryland for the year ending December 31,

1917–1938 [12]. In both cases, dates were limited by

the availability of data, as temporal gaps in reporting

appeared in the Pennsylvania publication after 1934

and Maryland stopped routine publishing of monthly

measles data by county after 1938. The total number

of reported measles cases in these data is 486 424.

The area covered in this dataset is y130 000 km2.

Over 10 million people lived in the two states at the

time. We used contemporary county populations to

calculate incidence in each county (datasets are

available from corresponding author upon request).

The data were collected through passive surveil-

lance and potentially suffer from under-reporting.

Two studies during this period estimated that between

20% (as estimated through comparison with active

case finding) [13, 14] and 33% (by comparing re-

ported cases to the size of birth cohorts) of cases were

actually reported to the passive surveillance system.

We believe this proportion of cases gave us a sufficient

sample to study the dynamics of cases in these areas

during this time period.

Time-frequency decomposition

Measles incidence in this region during this time

period, as in other areas of the world, exhibits
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multiple periodicities. Incidence is strongly seasonal,

with peaks in incidence occurring during the winter

months. In addition, multi-annual cycles in inci-

dence occur with periods of between 2 and 4 years

in these data. As in other measles datasets, we

expect the seasonal variance to be fairly well synchron-

ized over the region, but longer-term periodic

components could exhibit phase relationships. We

use wavelet decomposition to isolate the longer-

term periodic model of temporal variance [9, 15],

isolating normal seasonal variation of measles

incidence and focusing instead on longer-term

periodicity. Effectively, this technique smoothes

variation at fast time-scales, so that we can exam-

ine characteristics of multi-annual cycles. A de-

tailed description of our methods appears in the

Appendix [15].

Phase and spatial synchrony

The term spatial synchrony has been used to describe

the amount of correlation in incidence across a geo-

graphic region [9]. We estimate spatial synchrony be

estimating the pair-wise correlation between counties

in the dataset. Correlation gives a measure of

the similarity of two series and depends both on the

timing and relative amplitude of variance in the two

series. We used wavelet reconstructed series to exam-

ine the correlation of the multi-annual variance in

measles incidence rather than correlation of seasonal

or shorter term variance.

We are also interested in whether the timing of

peaks irrespective of their amplitude is similar

across Maryland and Pennsylvania. To compare

purely the timing of changes in incidence, we calcu-

lated wavelet phase angles for each reconstructed

series. Details of the methodology appear in the

Appendix [9].

The non-parametric covariance function was used

to examine spatial and phase synchrony, the way in

which correlation of either the reconstructed series or

phase series varied as a function of the distance sep-

arating measurements [16]. Because we only had

data for correlation at distinct distances, the set

of distances between counties, we had to estimate

the correlation at other distances using the non-

parametric covariance function. The non-parametric

covariance function provides a method for estimating

correlation at continuous distances. Algorithms in

the NCF library for R/S-plus were used (available at :

http://asi23.ent.psu.edu/).

K-means clustering of time-series data

Clustering techniques have been used often as a tool

in molecular and evolutionary genetics to determine

homology and evolutionary relationships of indi-

vidual genes as well as gene families [17]. We use

clustering techniques as an exploratory technique

to determine the geometry of spatial–temporal corre-

lation in our disease data. Rather than clustering

cases in space or time, an approach that has been

used extensively in the past, we cluster time-series

of incidence to obtain clusters of locales that have

experienced similar patterns of incidence through

time. Details of the method appear in the Appendix

[18].

RESULTS

Across counties, measles incidence from both states

during the years 1917–1934 (1938 for Maryland) were

found to be positively correlated with a mean corre-

lation of the shorter series of Pennsylvania and

Maryland data of 0.25 (95% CI 0.22–0.28 using 1000

bootstrap samples). The temporally longer series

of Maryland data has a mean correlation of 0.40

(95% CI 0.33–0.47). Correlation between the longer

periodic mode of variance is on average lower

for Pennsylvania and Maryland data combined with

a mean of 0.15 of (95% CI 0.08–0.23). However,

correlation in the temporally longer Maryland data

remains high with a mean of 0.38 for the series (95%

CI 0.27–0.51).

Reconstructions of the long-term periodic variance

yielded series with fairly consistent periodicities

across counties. In the Pennsylvania and Maryland

data, the mean of the time-averaged period calculated

for each county is 32.2 months (95% CI 31.5–32.9).

The longer Maryland series has a mean time-averaged

period of 33.7 months (95% CI 32.9–34.5).

Figure 1 presents the average phase difference

for each county in the Pennsylvania and Maryland

set. The average phase difference for each county

was calculated as the average of all time-averaged

phase differences from each other county phase

series in the dataset. Positive phase differences

indicate that changes (peaks or troughs) in the

incidence series precede peaks in other counties.

Counties that are ahead of phase, on average, com-

pared with other counties appear as larger circles

on the map in Figure 1. Underlying the circular

symbols indicating phase, the shading of counties
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indicates the population density (greyscale, square

root-transformed population density used). Visually

the map suggests that more densely populated areas

are ahead in phase. We find that average phase dif-

ference is statistically significantly associated with

population density (P<1r10x3, R2=0.23). Caution

must be taken in interpreting results from this

shorter series since phase relationships are calculated

on the basis of just two cycles.

Spatial and phase synchrony

To further understand the spatial pattern correlation

structure of the Pennsylvania/Maryland series and

for the longer Maryland series, we calculated the

spatial synchrony of both series to determine how

the long-term periodic components in each county

are correlated as a function of distance. We found

that adjacent counties had high correlation (mean

correlation 76% in the shorter series and 80% in the

longer series) and that correlation dropped quickly

with distance, falling below 0.5 at 110 km (with 95%

confidence). Although similar to each other, both

datasets showed a smaller spatial extent (the distance

for which correlation is statistically significantly dif-

ferent from 0) than data from the United Kingdom

[9]. The Pennsylvania/Maryland data had a spatial

extent of 240 km and the longer Maryland data a

spatial extent of 200 km. The UK data had an extent

of >600 km. The results from the Pennsylvania

and Maryland datasets indicate that for counties

separated by more than 200 km (or 240 km for

the longer series) correlation is independent of spatial

location.

Evidence of travelling waves

As the large urban centres in the United Kingdom

were found to be the centres of travelling waves

moving to surrounding areas, we examined the
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0 average phase difference
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Fig. 1. Map indicating the mean phase difference for the multi-annual variance of measles incidence in Pennsylvania. Large
circles indicate counties that are on average ahead in phase of other counties in the dataset, meaning changes in incidence on
average precede peaks in other counties by several months. The size of a circle indicating a zero average phase difference is
shown in the bottom left-hand corner. Changes in incidence in a county with a zero average phase difference precede half of

all counties and follow the remaining half. Underlying shading indicates population density with darker grey indicating
counties of high population density. Coupled with population density, the map suggests that more densely populated areas
are ahead in phase, suggesting epidemics originate in more populous areas.

716 A. Vora, D. S. Burke and D. A. T. Cummings

https://doi.org/10.1017/S0950268807009193 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268807009193


correlation of each county’s measles series with

Baltimore, the largest city in Maryland. Using the

longer series, we calculated phase angles for each of

the wavelet reconstructed series. We found a statisti-

cal significant relationship between phase difference

and distance from Baltimore (beta=x2.2r10x3 per

km, P<0.07). Excluding counties separated from

Baltimore by the Chesapeake Bay from the linear

regression increased the statistical significance dra-

matically (beta=x2.3r10x3, P<1r10x3).

We also analysed the structure of pair-wise cross-

correlation in the Maryland data. We computed the

cross-correlation of 24 counties relative to Baltimore

City over a lag of¡36 months (73 total time periods).

After calculating the interval in each county for

which the lag value was at a maximum, an ordinary

least squares linear regression of the maximum

lag against the air distance from Baltimore revealed

a strong positive relationship (P<0.001), indicating

an increased lag time with increasing distance from

Baltimore City. However, when using the overland

distance, the correlation is not statistically significant

(P<0.11), which implies that the Chesapeake Bay

may play a role in disrupting distance-related dy-

namics.

We use K-means clustering to divide the Maryland

series into similar clusters (Fig. 2). Dividing Maryland

into two clusters revealed a tight geographical

relationship between the clusters, with one cluster

primarily consisting of the counties in central

Maryland and the other cluster containing the

counties on the far eastern and western borders of

Cluster 1

Garrett
Allegany Washington

Frederick
Carroll

Baltimore
Harford

Cecil

Montgomery
Howard

Anne Arnodel

Anne Arnodel

Baltimore City Kent
Queen
Anne’s
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Dorchester
Wicomico

Worcester
Somerset

Galvert

St. Mary’s

Chesapeake Bay

Charles

Washington, DC Prince George’s

Cluster 2

Cluster 1

Garrett
Allegany Washington

Frederick
Carroll

Baltimore
Harford

Cecil

Montgomery
Howard

Baltimore City Kent
Queen
Anne’s

Caroline

Talbot
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Wicomico

Worcester
Somerset

Galvert

St. Mary’s

Chesapeake Bay

Charles

Washington, DC Prince George’s
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Talbot

Fig. 2. K-mean cluster assignments for clustering log normalized measles incidence time-series for two (top map) and three
(bottom map) clusters. Members of one cluster appear as the same colour (white, light grey, black). Membership in the same
cluster indicates correlation in measles incidence.
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the state (Fig. 2, top). This pattern may indicate a

radial spread of measles from the centre of the state

outward. Dividing Maryland into K=3 clusters in-

dicated even more interesting geographical relation-

ships (Fig. 2, bottom). The central Maryland counties

remained essentially unchanged but the far eastern

and western counties split into tighter clusters, separ-

ating themselves almost exclusively into geographical

contiguous clusters.

Spatial synchrony in relation to the Chesapeake

The results of the K-means analysis and the phase

synchrony in relation to Baltimore suggested that

the pattern of measles incidence on the eastern

side of the Chesapeake Bay differed from the

pattern on the western side. We hypothesized that

correlation between counties that are separated by

the Chesapeake Bay might be lower than correlation

between counties not separated when controlling

for distance separating pairs of counties. We explicitly

investigated this by calculating the spatial synchrony

individually for the set of county pairs separated

by the bay (those for which the line connecting the

centroid of each county intersects the bay) and for

the set of county pairs that are not separated by the

bay. Figure 3 shows the non-parametric covariance

functions fit to these two sets of counties along

with confidence intervals. At each value of the x-axis

indicating the distance separating counties, Figure 3

shows the mean and confidence envelope for corre-

lation of the multi-annual variance. The grey confi-

dence intervals, and white mean curve, indicate the

correlation as a function of distance for pairs of

counties that are separated by the Chesapeake Bay.

The black curves indicate correlation as a function of

distance for the pairs of counties that are not sep-

arated by the Chesapeake Bay. For distances up to

about 120 km, the correlation of pairs separated by

the bay is significantly less than correlation of pairs

not separated by the bay.

DISCUSSION

We found evidence of spatial–temporal correlation of

measles incidence across Maryland and Pennsylvania

and evidence that changes in incidence patterns in

the more densely populated counties precede changes

in less densely populated counties. We also found

evidence of a travelling wave moving from Baltimore

to the surrounding areas. However, we found on

average less spatial synchrony in this region than

has been documented in the United Kingdom [9]. One

feature that acts to reduce spatial synchrony is the

Chesapeake Bay.

The dynamics of measles in Maryland provides

an additional example of how the correlation struc-

ture of measles dynamics is dictated not by purely

physical spatial arrangements, but by the way in

which space is navigated by human hosts. Gravity

models incorporating both distance and the popu-

lation of potential targets of travel as a proxy for

the attractiveness of a community have captured

many of the features of measles dynamics in

the United Kingdom [19]. Our results indicate

that distance in these models might benefit from in-

corporating some measure of the resources required

to make a given journey.

There are several potential reasons why the data

considered exhibit a smaller spatial extent than

data from the United Kingdom. The spatial scale of

the observations is different. Our data are reported at

the county level as opposed to the city or town level in
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Fig. 3. Spatial synchrony of the long-term mode of period-
icity of measles incidence in Maryland as a function of

distance. Spatial synchrony provides a measure of the cor-
relation of series as a function of spatial distance separating
them. The black curve surrounded by black 95% confidence

intervals indicates the correlation of counties that are
not separated by the Chesapeake Bay. The white curve
surrounded by grey 95% confidence intervals indicates

the correlation of counties that are separated by the
Chesapeake Bay (meaning the line between the centroids
of the counties intersects the Chesapeake Bay). The figure

indicates that at a distance of y120 km the correlation of
pairs separated by the bay is significantly less than the cor-
relation of pairs not separated by the bay.
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the United Kingdom data. Counties in the US dataset

may include both large and small communities and

thus reflect an aggregate behaviour from these com-

munities. Another possible reason for the disparity is

that the temporal scale of observations is coarser than

the UK data (months as opposed to 2-week intervals).

The UK analysis focused on a period when measles

dynamics exhibited a strong biennial pattern. Our

dataset covers a time when the dynamics were both

biennial and triennial. These two behaviours may

differ in their associated spatial synchrony. Finally,

a difference in population density between the United

Kingdom and the Maryland and Pennsylvania region

(77 persons/km2 as opposed to 166.47 persons/km2

in 1930) may be responsible for the difference in

spatial synchrony. Regions of low population density

may act as barriers to coupling as insufficient hosts

exist to maintain wave fronts. This may act to lower

average spatial correlation.

The datasets considered here have limitations. In

one we had a large spatial extent, but a limited

length of time, in the other, a long temporal length but

a smaller spatial extent. It is possible that detailed

spatial temporal data exist from other regions of

the United States. These datasets may be valuable

resources for comparative studies of measles dy-

namics in regions with varying population density and

demographic characteristics.

It is possible that the reduction in synchrony for

pairs separated by the bay reflected the spatial ge-

ometry of population density. Our data spanned a

historical time during which large-scale travel across

the bay was not possible, but also considers two geo-

graphic areas that are of markedly different popu-

lation densities both then and in the present day.

If pairings of communities on opposite sides of the

bay preferentially include pairs of significantly differ-

ent population density, the reduction of synchrony

would be expected purely due to the expected phase

difference between large communities and small

communities. However, we found no significant dif-

ference in the between-pair difference in population

density for pairs separated by the bay than those not.

Regional de-coupling of measles dynamics may

pose challenges to measles elimination campaigns as

areas that have eliminated the disease may encounter

cases from decoupled populations where transmission

is ongoing. The more we can elucidate the network

of spatial coupling across regions, the better we can

target resources to isolate communities with on-going

transmission, maintain low levels of transmission

and potentially eliminate measles transmission from

the globe. Analyses of historical patterns of measles

have yielded large amounts of information on the

dynamics of this pathogen and the general theory of

contagion. Data from a variety of geographic settings

may continue to inform our efforts to eliminate

measles.

APPENDIX

Methods

Wavelet analysis

Wavelet analysis characterizes the distribution of

power in a time-series across frequency modes [15].

The distribution of power across frequency is deter-

mined for each time-step of the data. The key feature

of the technique is that, unlike the Fourier transform,

it is appropriate for non-stationary data, data in

which the cycle period changes over time. We use the

Morlet wavelet to compute the continuous wavelet

transform of each of the incidence series (time-series

were log-transformed and normalized to zero mean

and unit standard deviation). We then used wavelet

reconstruction to isolate the variation of the original

series contributed by periodicities between 18 months

and 5 years. A full description of the approach ap-

pears elsewhere [15].

Phase and spatial synchrony

We calculated wavelet phases by comparing the im-

aginary and real parts of the wavelet transform.

Wavelet phase angles vary from xp to p radians,

spanning a complete cycle from peak to peak.

As phases are circular, raw average phase dif-

ferences were transformed using a mod function

(mod(H+540, 360) – 180) to remove jumps in phase

difference [9].

K-means clustering

We use the K-means algorithm to cluster time-series

of length N into clusters according to their Euclidian

distance in N dimensional space. The algorithm div-

ides the points in N dimensions into a user-specified

number of clusters in such away that it minimizes

the sum of squared distance from any point to its

assigned centre [18]. Cluster assignment yields infor-

mation on the correlation structure of the dataset.
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