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Computation of the stationary

distribution of an infinite

Markov matrix

G>H. Golub and E. Seneta

An algorithm is presented for computing the unique stationary

distribution of an infinite stochastic matrix possessing at

least one column whose elements are bounded away from zero.

Elementwise convergence rate is discussed by means of two

examples.

1. Introduction

For a denumerably infinite stochastic matrix P = {p . .} ,

i, 3 = 1, 2, . . . , a vector X satisfying

(1.1) X > 0 , X # 0 , x'P = X1

is called an invariant measure; any positive multiple of an invariant

measure is one also. If an invariant measure satisfies, in addition,

GO

(1.2) x'l = I x. = 1 ,
i=l *

it is called a stationary distribution.

In this note we shall display an algorithm for computing a stationary

distribution X (under conditions on P which ensure existence and
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uniqueness) from successive finite matrix truncations of P . A similar

algorithm when P is a finite matrix has been previously described (Styan,

[5]).

It is now well known (Feller, [2]) that for an irreducible and

recurrent (persistent) P" an invariant measure always exists, and is

unique, to positive multiples; and is elementwise strictly positive. In

two previous papers (Seneta, [3], [4]) two algorithms were discussed which

yielded pointwise convergence to such X , of vectors computed from the

successive truncations of P , when X is normed so that a fixed element

is unity. If P is in fact positive-recurrent, i ts invariant measure can

be normed to satisfy (1.2), so that a (unique) stationary distribution

exists, and i t is in this form (of a stationary distribution) that the

invariant measure is usually required to be computed, from the Markov chain

context in which stochastic positive-recurrent P are important. This

problem was touched on but not discussed to any extent in the two papers

cited.

We shall not necessarily have present in this note the irreducibility

of P , but work under the probabilistically restrictive, but classical

assumption that P satisfies

(1.3) supUnf pi-\ > 0
0 i

that is, there is at least one column of P , say the j*-th, with positive

elements, which are in addition uniformly bounded away from zero, that is,

for at least one j , say 3=0* >

(1.1*) inf pi. > 6(j) > 0 .

2. Markov matrices

Finite stochastic P with a positive column are classically known as

Markov matrices (BernsteTn, [?])• The condition (1.3) is a natural way of

extending this terminology to the infinite case, since, moreover as we

shall now sketch, the implications are the same as in the finite case.

The positivity (alone) of the j^-column implies that the index set

of P contains a single essential class C of indices (that i s , a single
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closed self-communicating class), which contains j* and is therefore

aperiodic. Indices outside C , if any, are inessential and lead to C .

The index set C is in fact positive-recurrent under (1.3) for

y> ( tr)}
where F = \p . . > . A matrix P containing a single essential aperiodic

1 %3 )

class, C , which is in fact positive-recurrent, is sometimes called

regular; for such P i t is well-known that, elementwise, as r •+ °° ,

ergodicity obtains, that i s ,

(2.1) P* •* 1 • X'

where X is the (unique) stationary distribution of P , and only those

elements of X = ix(i)) are positive for which i € C . In the present

situation where (1.3) holds, it can be deduced that the elementwise

approach to the limit in (2.1) is in fact (uniformly) geometric. This

'geometric ergodicity' testifies to the restrictiveness of condition (1.3).

For the sequel it is convenient, and results in no loss of generality,

to take j* = 1 , so that

(2.2) p£l > 6(1) > 0 , i = 1, 2, ... .

If we denote by / \? = {I~\P-J\ the (n*n) northwest corner truncation

of P , then / \P i s in general substochastic, and in virtue of (2.2)

contains a single closed f in i te set of indices , / ,C , which contains the

index 1 , and so i s aperiodic.

3. The algorithm

Define the vector y = (j(j)) > 0 by

6(j) if 3 satisfies (l.k),

yti) = •
0 otherwise.

Clearly, by assumption, y # 0 , with at least first element positive.

Focus attention on the following infinite system of equations , which is

certainly satisfied by the unique stationary distribution corresponding to
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P :

(3.1) x'(l-(P-l-y')) = y' ,

where X is a vector of unknowns; and on the corresponding (nxw)

northwest truncated system for each n = 1, 2

(3-2) ' ( n ^ ' W - W N * ) 1 •<«>*'» = («)y'
where / vZ1 is a vector of unknowns.

/
It should be noted that the subtraction of / -,1 • / >y' from , ,P

does not alter the location of the zero and positive elements of , vP and

so does not change its essential structure; however / ,P - , >1 • , .y '

now has each row sum strictly less than unity, and by a well known property

of such matrices the matrix (/ >J- (/ \P~/ \1'i ^'JJ ^ a s a n inverse, and,

furthermore,

elementwise, so that the inverse has non-negative entries (and indeed at

least one column, the first, strictly positive, in virtue of (2.2).). It

thus follows

( 3 - 3 ) ( n ) 1 ' -

w i t h Mz> ~

i s t h e u n i q u e s o l u t i o n t o ( 3 . 2 ) , a n d , f u r t h e r , from ( 3 . 2 ) , s i n c e

( n ) Z > " MZ' ' (nf+ (n)Z> ' (n)] ' ( n ^ ' = ( n ) y > '

i t follows that

l3-k) ( n ) 2 " ' M ] ~ ( » ) 2 ' * ( n ) ] + [ n ) Z < ' ( n ) 1 * i n ) * ' ' ( n ) 1

~ Wy (n)1

on account of the substochasticity of , ,P . Hence, since

, >> ' > 0 , * 0 it follows from (3.3) and (3.1*) that
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(3.5) 0 < 6(1) = ( n ) * ( U S ( n ) z ' •

where , ,Z = {, sz(i)} ; and from (3-2) that

(3

it

(3

.6)

Now since

follows that

• 7)

(n)

(

z'

n)

= (

z1 =

' " (n)Z>

(if we extend, for the present instance only, the definition of / ^Z by

putting / •.z(i) = 0 for i > n ) . Thus we know that the limit

z*U) = lim (nf(i)

e x i s t s for each i = 1 , 2 , . . . , by the boundedness of ( 3 - 5 ) . I f we put

Z* = {z*{i)} , (3-5) and (3 .6) g i v e , by Fa tou ' s Lemma,

( 3 . 8 )

0 < 6(1) 5 Z*'l S 1 ,

z*1 > z* ' (p- l -y ' ) + y ' ,

which implies

z*' 2 z*'P , z « ; 0 , t 0 .

Now in fact, equality must hold at all entries, for otherwise,

z*'l > z*'l

by stochastici ty of P . Thus

z*' = z*'P

and from (3.8) ,

Z*'l = 1 .

Thus Z* is the unique stationary distribution corresponding to P .

Thus to summarize: The successive solutions i \Z , n = 1, 2, ...
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for the finite systems (3-2) converge elementwise to the unique stationary

distribution oorresponding to P . Moreover, from (3.7)j the elementm.se

convergence is monotone increasing in . >z , thus providing a steadily

improving bound for the required limit vector.

4. Convergence rate

It appears that l i t t l e , in general, can be said about the convergence

rate. This is b'orne out by the following simple example. Let p = {p.}

be a probability vector with all entries positive, that i s , p. > 0 ,

OD

T p. = 1 . The infinite matrix

clearly satisfies (l.U), and has unique stationary distribution p . If we

indicate with a subscript n the usual truncations, then

(«) (") (n)

a n d c o r r e s p o n d i n g t o i t s P e r r o n - F r o b e n i u s e i g e n v a l u e , / \ p ' ' 1 , has l e f t

a n d r i g h t p o s i t i v e e i g e n v e c t o r s r e s p e c t i v e l y ( )P*> ( )1 • I t f o l l o w s t h a t

( U . 3 )

, k = 0 .

How a permissible choice of y is 6p , where 0 < 6 < 1 , in which case

(3.3) becomes

in)*' '
r _ x ^ > r T f-i x\ l . r , n ~ l

and using (1».3),
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6

Therefore

and we notice that, since , >p already coincides with the first n

elements of the stationary distribution p , the rate of pointwise

convergence is that of

(k.U) 1 - I pv

i-1 %

to zero as n •*• °° .

Since we are at liberty to choose the \p.} , within the constraint

p. > 0 all i , J p. = 1 , we can arrange to make the convergence of this

% i %

quantity to zero quite slow, for example, if we choose

p. = const i"^1+Y' , y > 0 > t n e n (U.U) is d(w"Y) as «-»•«.

It may be relevant to note, that for this rather specialized example,

one of the approximation techniques described in Seneta [3], that of

finding successive left Perron-Frobenius eigenvectors of / <.P and norming

always so that, for example, the first element is unity, "settles down"

immediately to the elements of the stationary distribution similarly

normed, for / \P/P-, coincides with the first n elements of P/p, •

However, it is also known by example (Example (l) in the paper Just cited)

that the eigenvector convergence for this method can be slow also; and in

any case the 'convergence radius' (reciprocal of the Perron-Frobenius

eigenvalue)

again at rate
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We conclude with another simple example. If P = {p • •} i s given by

pil = a ' pi,i+l = 1 ~ a ' i = ly 2 0 < a < 1 , and p{ j . = 0

otherwise, and we take y = iy(j)} to be defined by j / ( l ) = (l-y)a ,

yij) = 0 otherwise, where 0 < y < 1 , straightforward calculations give

( n ) cMd-af , i = 1, 2, . . . , n

where

The difference between the required i - th component and i t s approximations

obtained from the rc-th truncation is thus

'•l-Y+Yd-a)

so that the pointwise convergence rate is geometric and independent of y .
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