
A GENERALIZED INTEGRAL II 

R. D. JAMES 

1. Introduction. The definition and some of the properties of what may be 
called a Perron second integral (P2-integral) were given in a previous paper [4]. 
This integral starts with a function f(x) defined in an interval (a, c) and goes 
directly to a second primitive F(x) with the property that the generalized 
second derivative D2F is equal tof(x) for almost all x in {a, c). In the present 
paper the definition is changed slightly and further properties are deduced. 

In §4 it is shown that the P2-integral provides a solution to a problem dis­
cussed by Denjoy in a series of notes published in the Comptes Rendus in 1921 
[2]. Denjoy gave rules for the calculation of the second primitive of a func­
tion by a process of totalization. He lectured at Harvard in 1938 on this topic, 
among others, and three volumes of a book based on the lectures were published 
in 1941 [3]. The title of Volume 3 is Determination d'une fonction continue 
par ses nombres dérivés second généralisés extremes finis, and in Chapter VI he 
proposes the following problem and indicates the solution. 

Let F(x) be a continuous function such that D2F and DJF are finite at each 
point of an interval (a, c). Letf(x) be one of the generalized second deriva­
tives. Denjoy's Problem (U) relative to a set E in (a, c) is the calculation, 
starting with/(#)> of the second variation of F(x), 

(1.1) V(F, a, /?, 7) = (7 - /3) ^(a) + (a - 7) W) + (/} - a) F(y), 

for all a, ft, y in £ . After solving the problem in particular cases, Denjoy 
states at the end of the chapter that the rules for calculating V(Fy a, £, 7) on 
the whole interval (a, c) will be given in Chap. IX, but the volume containing 
this chapter has not yet appeared. 

The P2-integral solves Problem (U) on the whole interval (a, c). If h(x) = 
D2F where D2F is defined and finite and h(x) = 0 elsewhere, then V(F, a, fi, 7) 
is equal to 7 — a times the PMntegral of h(x) over (a, 0, 7). 

In §5 it is shown that a Cesàro-Perron integrable function is also P2-integrable 
[1], and that, in a certain sense the integrals agree. An example is given of a 
function which is PMntegrable but not Cesàro-Perron integrable. 

Section 6 is concerned with the application of the PMntegral to trigono­
metric series. Among other things it is proved that if a trigonometric series 
converges in the interval (0, 2T) to a function /(x), then f(x) is necessarily 
P2-integrable. Furthermore, with a suitable modification of the definition of 
the Fourier coefficients for the P2-integral, the trigonometric series is the 
Fourier series of f(x). Marcinkiewicz and Zygmund [5] introduced a trigo-
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nometric integral which is probably equivalent, in a certain sense, to the P2-
integral. The problem of the relationship between the two integrals will be 
considered in another paper. 

2. The new definition of the integral. Not all the restrictions placed on 
the major and minor functions M(x) and m(x) in §4 of [4] are strictly necessary. 
The point of the definition is to make sure that the difference M(x) — m(x) 
is a convex function in (a, c) and for this the following definition suffices. 

Let f(x) be defined in an interval (a, c). The functions M(x) and m(x) are 
called major and minor functions, respectively, of f(x) in (a, c) if 

(2.1) M(x) and m(x) are continuous in (a, c) ; 

(2.2) M(a) = M(c) = m(a) = m(c) = 0; 

(2.3) D2M è f(x) è D2m, D2M > - « , D2m < + a>, 
for all x in (a, c) with the possible exception of a denumerable 
set £ 0 ; 

(2.4) M(x) and m(x) are smooth for all x in Eo. 

The difference between this definition and the old one is simply that the 
condition of smoothness is imposed on the functions M(x) and m{x) only when 
x is in the exceptional set E0. The proof that M(x) — m(x) is convex follows 
as in [4]. By conditions (2.3), D2(M - m) â DJM - D2m è 0 for all x in 
(a, c) with the possible exception of a denumerable set E0. Since M (x) — m{x) 
is smooth for x in £0 , it follows from a lemma of Zygmund [8, p. 275] that 
M(x) — m(x) is convex. 

The definition of the integral now reads as it did in [4], but is here restated 
for convenience. 

DEFINITION 2.1. A function f{x) defined in an interval (a, c) is said to be 
integrable over (a, 6, c) where a < b < c, if, for every e > 0 there exist a major 
function M(x) and a minor function m(x) such that 0 ^ m(x) — M(x) < e. The 
notation for the P2-interval is Ja,b,cf(x) dx. 

No further changes are necessarv in the statements or proofs of the results 
of [4]. 

3. Modification of conditions (2.3). It is well known that in the correspond­
ing situation for the ordinary Perron integral the exceptional denumerable set 
for the first set of inequalities in (2.3) may be replaced by one of measure zero. 
A similar modification is possible for the P2-integral and it is not difficult to 
prove the following result. 

THEOREM 3.1. A function f(x) defined in an interval (a, c) is integrable over 
(a, by c), where a <b < c, if, and only if, for every t > 0 there exist functions 
T(x) and t(x) with the properties 
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(3.1) T(x) and t(x) are continuous in (a, c)\ 

(3.2) T{a) = T(c) = t(a) = t(c) = 0; 

(3.3) D?T ^ f(x) ^ DHfor all x in (a, c) except for a set E of measure zero; 

(3.4) D2T > — «>, DH < + co for all x in (a, c) with the possible excep­
tion of a denumerable set £ 0 ; 

(3.5) T(x) and t{x) are smooth for all x in £ 0 ; 

(3.6) 0 S t{b) - Tib) < €. 

Proof. The statement of the theorem and its proof are modelled on Mc-
Shane's proof [6] of the corresponding result for the ordinary Perron integral. 

If f{x) is integrable, conditions (2.1)-(2.4) and Definition 2.1 show that 
T{x) = M(x) and t(x) = m(x) have the properties (3.1)-(3.6) with E = EQ. 
Hence it is only necessary to show that (3.1)-(3.6) imply the integrability of 

For every 5 > 0 there is a non-negative, non-decreasing, absolutely contin­
uous function <p(x) such that 

(3.7) ipf(x) = + oo for x in the set E of measure zero, and 

(3.8) 0 g <P(C) < B/(b - a). 

([7], §11.8. Lemma 1, with <p(x) = x W - x(a)>) Let 

(3.9) *(*) = fx
a <p(m - (x - a)/(c - a) f'a <p($ # . 

Since $(x) is the integral of a bounded non-decreasing function, it is convex 
([7], Ex. 8. p. 372), and 

(3.10) Z>2<ï> ^ D<p ^ 0. 

By (3.9), *(a) = Q(c) = 0, and, by (3.8), 

(3.11) 0 g - $(6) ^ (6 - a)/(c - a) j[ *({) d$ < Ô. 

It can be shown that the functions 

(3.12) M(x) = T(x) + $(*), m(x) = /(*) - $(*) 

are major and minor functions, respectively, of f(x) in (a, c), and that 

(3.13) 0 ^ w(6) - M(6) < e + 28. 

This will prove that / (x) is integrable over (a, 6, c). 
Clearly, (2.1) and (2.2) are satisfied and, since 

(3.14) D_2M ̂  D?T + £>2<ï>, D2m ^ DH - D2$, 

it follows from (3.4) and (3.10) that D2M > - « , Z?2w < + oo with the pos­
sible exception of the denumerable set E0. 
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Similarly, by (3.3) and (3.10), 

(3.15) D2M^f(x) ^ D2m 

for all x not in E. If x is in E, but not in £0 , then Z)2$ = + œ, D2T > — <», 
2>2/ < + « and 

D*M = +co ^ /(*) ^ - co = ~D2m. 

Thus, (3.15) holds for all x in (a, c) with the possible exception of the denumer-
able set Eo. 

Finally, m(b) - J|f(6) = /(6) - 3T(&) - 2*(6) and (3.13) follows from (3.12), 
(3.11), and (3.6). Hence/(x) is integrable over (a, 6, c). 

COROLLARY. If /(#) is integrable over ia,b, c) and /fo functions T(x) and 
t(x) satisfy (3.1)-(3.6), then 

-Kb) èja,*,cf(x)dx£ -T(b). 

Proof. Since M(x) and mix), defined by (3.12) are major and minor func­
tions, respectively, of fix) in (a, c), it follows that 

- {*(&)-*(&)} Û /..*.,/(*) dx£~ {T(b) + $(6)}. 

Hence, by (3.11), 

- t(b) - ô S ja,h,cf(x) dx^~ T(b) + Ô. 

Since ô is an arbitrary positive number, the inequalities stated in the corol­
lary must hold. 

4. Additional properties of the integral. 

THEOREM 4.1. If fi(x) is integrable over (a, b, c) and f2(x) = fi(x) almost 
everywhere in (a, c) thenfi(x) is integrable over (a, b, c) and 

fa,b,cf2(x) dx = fa,b,cfl(x) dx. 

Proof. The functions T(x) and t(x) which satisfy (3.1)-(3.6) for the func­
tion fi(x) clearly satisfy the same conditions for the function faix). Hence 
fî(x) is integrable over (a, b, c). From the corollary to Theorem 3.1, it follows 
that the integrals of f2(x) and/i(x) both lie in the interval (— t(b), — T(b)) of 
length less than e. Since € is arbitrary, the two integrals must be equal. 

THEOREM 4.2 (GENERALIZATION OF THEOREM 13 OF [1]). Suppose that Fix) 
is continuous in (a, c), that D2F is defined for all x in (a, c) except for a set E of 
measure zero, and that D2F, D2F are finite for all x in (a,c) with the possible 
exception of a denumerable set EQ, where, however, Fix) is smooth. If fix) = D2F 
where D2F is defined and fix) = 0 elsewhere, then fix) is integrable over (a, b, c) 
and 

(4.1) (C - a) Ja,6,c/(x) dx = ic- b) Fia) + (a - c) Fib) + (& - a) F(c) 
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Proof. If the functions T(x) and t(x) are defined by 

T(x) - t(x) = F{x) - (C " X) m + {x~a) F{C) , 
(c - a ) 

all the conditions of Theoerem 3.1 are satisfied for the function f(x). Thus 
f(x) is integrable over (a, b, c) and, by the corollary to Theorem 3.1, Ja,b,qf(x)dx 
is equal to — T(b) = — t(b). Formula (4.1) follows at once. 

The right-hand side of (4.1) is the second variation of F(x) over (a}b,c) 
and Denjoy [3] denotes it by V(F, a, ô, c). Thus the formula of the theorem 
may be written 

(4.2) (c - a) ja,i>,cf(x) dx = V(F, a, 6, c). 

COROLLARY. Suppose that Fi(x) and F2(x) are two functions satisfying the 
hypotheses of Theorem 4.2, and that D2F\ = D2F2 almost everywhere in (a, c). 
Then Fi(x) and F2(x) differ only by a linear function in (a, c). 

Proof. For i = 1,2, let /,-(*) = D2Fi where D2Fi is defined and let/*(x) = 0 
elsewhere. By (4.2) 

(4.3) (c - a) ja.b.cMx) dx = V(Fif a, 8, c). 

Since fi(x) = /2W almost everywhere, it follows that the integrals in (4.3) are 
equal. Hence V(Fu a, b, c) = F(F2, a, 8, c) and this means that 

F2(x) - F1(x) = ^ = - ^ {F2(a) - F1(a)} + Ï - H ? {F2(c) - F1(c)}. 
c — a c — a 

The expression on the right is a linear function. 
If F(x) is a function satisfying the conditions of Problem (U) as stated in 

the introduction, and if f(x) is one of the generalized second derivatives of 
F(x), Denjoy shows in Chap. V [3] that f{x) = D2F almost everywhere in 
(a, c). Thus, it follows from Theorems 4.2 and 4.1 that f{x) is integrable 
over (a, 6, c). By Theorem 8 of [4], f(x) is integrable over (a, 0, 7) where 
a ^ a < 0 < 7 ^ c , and, from (4.2), 

(4.4) (7 - a) ja,0,y f(x)dx = V(F, a, 0, 7). 

Thus the PMnterval provides a solution to Problem (U) over the entire in­
terval (a, c). 

5. The generality of the integral. It will be shown in this section that a 
function/(x) which is CP-integrable over (a, c) is P2-integrable over (a, 6, c), 
where a < 6 < c. The definitions which Burkill [1] gives for C-continuity and 
C-derivates are equivalent to the following: 

A function g(x) is C-continuous at x = Xo if 
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(5.1) lim ~ 
[h 

{g(xo+$ ~g(xo)}d£ 

= lim ~ 
h->0+ rl 

{g(xo) - g(xo - £)} d£ = 0. 

The larger of the upper limits, as h —> 0 + , of 

(5-2) ^J*{f(*o + «-«(*o)}d{ 

and 

(5.3) 
2 P 
^Jo { ^ o ) g(x0 - 1 ) \ dt 

is the upper C-derivate of g(x) at x = x0, and is denoted by CZ?g. The smaller 
of the lower limits, as h —> 0 + , is the lower C-derivate, denoted by ÇDg. 

A function f(x) is CP-integrable over (a, c) if, and only if, for every e > 0 there 
exist major and minor functions M(x) and m(x), respectively, such that 

(5.4) M (x) and m(x) are C-continuous in (a, c) ; 

(5.5) M{a) = m(a) = 0; 

(5.6) CD M ^ /(^) ^ CDmfor all x in (a, c) except for a set E of measure 
zero; 

(5.7) CDM > — oo, CDw < + oo /or all x in (a, c) with the possible 
exception of a denumerable set EQ ; 

(5.8) 0 ^ M(c) - m(c) < e. 

The main result of this section is 

THEOREM 5.1. If f(x) is CP-integrable over (a, c), then it is P2-integrable 
over (a, 6, c), where a < b < c. 

Proof. Let the functions T(x) and t{x) be defined by 

(5.9) T(x) -

(5.10) '(*) - c a j a 

Since M(x) and m(#) are C-continous, the integrals in (5.9) and (5.10) exist as 
Perron integrals. Clearly, T(x) and t(x) satisfy conditions (3.1) and (3.2) of 
Theorem 3.1. Since 

(5.11) A,2 T = T(x + h) - 2 7 » + T(x - h) 

{M(* + £)-M(x)}<f£ + {M{x)-M(x-Q\di, 
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àh
2T 

it follows from (5.1) that > 0 as h —» 0. Hence T(x), and similarly t(x)y 

h 

is smooth for all x in (a, c). 

By (5.11), 

^hf = j£ [jo {M(X + ° " MW^ J*+ jo ̂ M(JC) " M(* " ̂  ̂  ] 
and therefore, if x is not in E, it follows from (5.2), (5.3) that 

(5.12) Ç T ^ i J Ç D M + CDlf} ^ / ( * ) . 

Similarly, if x is not in £ , 

(5.13) P2 / g £ {CDm + CÔm } S f(x) 

and conditions (3.3) are satisfied. It also follows from the first parts of (5.12) 
and (5.13) that (3.4) is satisfied. 

Finally, the function T(x) — t(x) is equal to the integral of the non-decreas­
ing function M(x) — m{x) minus a linear function, and is therefore convex in 
the interval (a, c). Since T(a) — T(c) = t(a) — t(c) = 0, it follows from 
(5.9), (5.10), and (5.8) that 

(5.14) 0 g t(b) - T(b) < Ï-ZJL \ {M(0 - m(Z)} d£ < (b - a) e. 
c — a J a 

Thus, the final condition (3.6) is satisfied and/(x) is P2-integrable over (a, b, c). 

COROLLARY 1. Iff(x) is CP-integrable over (a, c) and G(£) = (CP) Jlf(x)dx, 
a ^ £ Û c, then 

(5.15) f(x)dx = b ~ a - j : < G«) dt - Gft) di 
a,b,c C — d , 

The integrals on the right-hand side of (5.15) are Perron integrals. 

Proof. Let major and minor functions M(x), m(x), T(x), and t(x) be de­
fined as in the proof of Theorem 5.1. Let 

(5.16) F(x) = 
c — a J 

G(t)di--^-z\ G(X)dt. 

The integrals are Perron integrals since G(x) is C-continuous. 
The function T(x) — F(x) is equal to the integral of the non-decreasing 

function M(x) — G{x) minus a linear function, and is therefore convex in (a, c). 
Since T(a) = T(c) = F(a) = F(c) = 0, it follows that T(b) - F(b) ^ 0. Simi­
larly, it can be shown that 0 g t(b) — F(b). Hence 

(5.17) - t(b) ^ - F(b) Û - T(b). 
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But T(x) and t(x) are major and minor functions, respectively, in the P 2 sense, 
and by the Corollary to Theorem 3.1, 

(5.18) -/(ft) ^ Ja.6.c/(*) dx ^ - r (6) . 

It follows from (5.16), (5.17), and (5.18) that the right and left-hand sides 
of (5.15) lie in the same interval of length t(b) — T(b) < (b — a) e. Since e 
is arbitrary the two sides must be equal. 

COROLLARY 2. If f(x) is CP-integrable, if G(£) = (CP)Jlf(x) dx, and if 
F(x) = — Ja,x,cf(x) dx then Ff(x) exists for all x in (a, c) and 

1 
F'(x) = G(x) -

c — a J 
G(& di. 

Proof. By (5.16), 

F(x + h) - /?(*) 
*G(x + {)d{ — 
o c — a J 

Gtt) ^ 

and the first term on the right tends to G(x), since G(x) is C-continuous. 
The following is an example of a function which is PMntegrable, but not 

CP-integrable. Let 

F(x) = 
«cos (l/x), i ^ O , 

o, 0; 

f — cos (l/x) 
X6 

o, 

, * 5*0, 

x = 0. 

Then P(#) is continuous and smooth, and D2F = /(#) for all values of x in­
cluding x = 0. Hence /(#) is P2-integrable over an interval (a, c) which in­
cludes the origin, and 

F(x) = - ja.*.cf(x) dx + °-^ F(a) + ?—2 F(c). 
c — a c — a 

If f(x) were CP-integrable, the function F(x) would, by Corollary 2, have a 
derivative at x = 0. But, (F(A) — F(0))/h = cos (1//*) does not tend to a 
limit as h —• 0. It follows that / (x) is not CP-integrable. 

6. Trigonometric series. Before the main result of this section can be 
stated, some preliminary definitions and theorems are needed. Throughout 
the section,/(x) and g(x) denote periodic functions with period 2TT. 

THEOREM 6.1. If g(x) is CP-integrable over (— 2ir, 2*-) it is P^-integrable 
over ( — 27T, 0, 2-K) and 

(6 .1) J-2x,0,2x g(x) dx = 7T / ' _ , g (*) <fc. 

TAe integral on the right is a CP-integral. 

Proof. Let G(£) = j _2xg(x) dx. By Theorem 5.1 and the first corollary, 
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(6-2) 

But 

S-uxu g(x) dx = i / 2 ; n G({) d* - f_u G({) # 

G({ + x) - G({ - T) = / £ *(*) d* = J"_w g(*) dx, 

and (6.1) follows at once from (6.2). 

DEFINITION 6.1. If fix) cos kx and fix) sin fejc are F*-integrable, the Fourier 
coefficients of fix) are defined by 

1 

(6.3) 

0>k = 

bk = —o 

- 2x, 0, 2x 
f(x) cos &# dx, 

-2r, 0, 2T 
/(#) sin fex dx. 

The definition is justified by Theorem 6.1. If g(x) is replaced by f(x) cos kx 
in (6.1), then 

/(*) cos kx dx = -
- 2 T , 0, 2 T IT 

/(#) cos kx dx. 

The expression on the right is the usual one for the Fourier coefficients ak. 

THEOREM 6.2. Suppose that the trigonometric series 

(6.4) •g- #o + £ (an cos nx + bn sin nx). 

where an—> 0, 6n—» 0, has upper and lower Riemann sums R(x) and Rix), respec­
tively, which are finite for all x in (— 2ir, 2TT) with the possible exception of a de-
numerable set. Let f(x) denote either one of the functions Rix), Rix). Then 
fix) cos kx and fix) sin kx are integrable over (— 2T, 0, 2TT) and ak, bk are given 
by (6.3). 

Proof. It is well-known [8, pp. 270-271] that when an —> 0, bn —> 0 the series 

(6.5) 
1 ^ an cos wx + &n sin nx 
- a0x

2 — 2^ n => 1 

converges absolutely and uniformly to a continuous and smooth function F(x) 
In addition, D2F = Rix) and P 2 ^ = Rix). Hence, by the same argument 
that proved (4.4), fix) is P2-integrable over ( — 2x, 0, 2ir) and 

F(F, - 2T, 0, 2TT) = 4 T J"_2,.o. *r/(*) d*. 

The left-hand side reduces to 47r3a0, which proves the first of the formulas 
(6.3) for k = 0. 

If the series (6.4) is multiplied by cos kx and the products cos nx cos kx, 
sin nx cos kx replaced by sums of cosines and sines, it follows from the Rajch-

https://doi.org/10.4153/CJM-1950-027-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1950-027-4


306 R. D. JAMES 

man theory of formal multiplication of trigonometric series [8, Sec. 11.42,(d)] 
that the upper and lower Riemann sums of the new series are R(x) cos kx and 
R(x) cos kx, respectively, if cos kx > 0 and R(x) cos kx and R(x) cos kx, re­
spectively if cos kx < 0. The constant term of the new series is \ak and the 
first of formulas (6.3) is established for k ^ 1 by the same argument as that 
for k = 0. The proof of the second of (6.3) is similar. 

COROLLARY. If the trigonometric series (6.4) converges to zero for almost all x 
in ( — 2TT, 2TT) and if R(x) and R(x) are finite for all x in ( — 2T, 2T) with the pos­
sible exception of a denumerable set, then au = 6/c = 0 for every k. 

Proof. If (6.4) converges to zero, it is also summable (R) to zero [8, Sec. 
11.2, (i)] and hence R(x) and R(x) are zero for almost all x in (— 2r, 2T). The 
conditions of Theorem 6.2 are satisfied, and the result follows from (6.3). 
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