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Abstract

Completely regular semigroups CR are regarded here as algebras with multiplication and the unary
operation of inversion. Their lattice of varieties is denoted by £(CR). Let BB denote the variety of bands
and L(B) the lattice of its subvarieties. The mapping V — V N B is a complete homomorphism of
L(CR) onto L(B). The congruence induced by it has classes that are intervals, say VB = [V3, V2]
for V € L(CR). Here Vz = V N B. We characterize V2 in several ways, the principal one being an
inductive way of constructing bases for Vv-irreducible band varieties. We term the latter canonical. We
perform a similar analysis for the intersection of these varieties with the varieties BG, OBG and B.
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1. Introduction and summary

Completely regular semigroups are those that are unions of their (pairwise disjoint
maximal) subgroups. In the context of varieties, they are considered as algebras with
the binary operation of multiplication and the unary operation of inversion. If S is
such a semigroup and a € S, then a~! is the inverse of a in the maximal subgroup
of S containing a. They form the variety CR. We denote by L(CR) the lattice of all
subvarieties of CR.

The lattice L(CR) has attracted considerable attention. This is in view of the
importance of the class of completely regular semigroups (with or without the unary
operation) and the amenability of this lattice to various techniques. The principal
of these consists of copious decompositions of L(CR), whose classes promise a
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description usually in terms of varieties of groups or bands (idempotent semigroups).
This approach to the structure of L£(CR) has produced satisfactory results, but is by
no means exhausted. For the study of these decompositions, and the construction of
new ones, there is plenty of room for further research.

Denote by B the variety of bands. Our decomposition of L(CR) is the complete
congruence induced by the mapping V — V N B. Its classes are intervals with the
lower end V N B. We concentrate on V-irreducible band varieties since the others are
obtained as finite intersections of these, and this property carries over to upper ends
of these intervals. We characterize these in two ways and provide a single identity as
a basis for their system of identities. This identity is defined inductively starting with
two simple identities and their duals. This system of identities represents a variant of
the systems of identities for V-irreducible varieties of bands constructed by Gerhard
and Petrich [2]. A characterization of upper ends of these intervals in terms of Malcev
product was devised by Reilly and Zhang [13]. An interesting extension of these ideas
to a class of pseudovarieties was treated by Trotter and Weil [15]. We conclude the
paper with a similar analysis for intersections of upper ends with the varieties BG,
OBG and B, providing in each case a basis for their identities consisting of a single
identity.

We term the upper ends of intervals belonging to v-irreducible band varieties, with
a few exceptions at the bottom of the lattice, canonical. They play a seminal role in
the context of varieties of completely regular semigroups.

2. Notation and terminology

We state here the needed symbolism and a few concepts. A complete list of these
can be found in the book [7]. We shall refer to the book [7], as well as to its second
volume [8], which is in preparation. In the latter case, we shall also state the original
sources. Throughout we use set theoretic notation to describe and manipulate classes
such as varieties.

For p an equivalence relation on a nonempty set X and x € X, xp denotes the
p-class of x. In any lattice L, for a,b € L such that a < b, define the interval [a, b]
by{ceL|a<c<b}

Let S be a semigroup. Then E(S) denotes its set of idempotents and C(S) the
lattice of congruences on S. For p € C(S), the kernel and the trace of p are given by
kerp = {a € S | ape for some e € E(S)}, tr p = p|gs), and the left and the right
traces of p are ltrp = tr(p v £)° and rtrp = tr(p v R)°, where the join is taken
within equivalence relations on S. On S, the relations defined by

AKp <= kerd =kerp and AT,p <= ptri=ptrp,
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where p € {l, r}, are the kernel, left trace and right trace relations, respectively. Their
classes are intervals, and we write

pP:[pP1 pP], PE{Ka T}v I‘r}'

Finally let S be a completely regular semigroup. As S is a union of its (maximal)
subgroups, on S we have a unary operation a — a~!, where a~! is the inverse of a in
the maximal subgroup of § containing a. Hence for the purpose of studying varieties
of completely regular semigroups, they are considered with the binary operation of
multiplication and the unary operation of inversion. We write a® = aa~!(= a~'a) for
any element a of S.

We denote by CR the variety of all completely regular semigroups and by L(CR)
the lattice of its subvarieties. Via the usual antiisomorphism of the lattice of fully
invariant congruences on a free completely regular semigroup of infinite rank and
L(CR), the relations K, T, and T, defined above transfer to L(CR) in an obvious
way. We use the same notation for these relations on £L(CR) (and their intervals) as
for the corresponding ones on semigroups. For these operators, we write for example,
Vg, VET = (V)" and so on. For V € L(CR), L(V) denotes the lattice of all
subvarieties of V. '

If V € L(CR) has a basis {4, = v,}qes, We write V = [uy = Uglges, OF simply
V = [u = v] if A is a singleton. We shall mention a great number of subvarieties of
L(CR) using for the notation their standard acronyms, for a full name and bases, we

refer to the book [7].
Let X be a nonempty set. If x;,...,x, € X, then w = x; -- - x,, is a word over X,
h(w) = x; is the head of w, t(w) = x, is the tail of w, and c(w) = {x;, ..., x,} is

the content of w.

We start by describing the specific construction needed throughout. Let © be the
set of all (nonempty) words over the alphabet {7}, T,} of the form P, --- P,, where
P, e(T, T,}and P, # P, fori =1, ..., n — 1 with multiplication

Pl"'Ple"'Qn ime;éQla

(P Pp)(Q1--- Qn) = [Pl"'PmQ2"'Qn otherwise.

Clearly © is a semigroup. We adjoin the empty word @ to © to form ©'. We now
coordinatize © as follows.

For p € {I,r} and n > 1, let (p, n) be the product of n factors of alternating T;
and 7, starting with T,. We also write p = ¢, where {p,q} = {l,r}. For these
symbols, we have the product

{(p,m+n) if p=q,misevenor p # q,m isodd,
(p,m)(q,n) =

(p,m+n—1) otherwise,
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and the dual
(p,n) ifnisodd,

n) =
PomY =15 n) i nis even.

We now return to L(CR). Firstlet Ky = {(Vx | V € LCR)}. Then Ky isa
complete lattice whose joins coincide with those in L(CR). We adjoin three elements
to Ky by letting N = {L*, T*, R*}, K = K, U Nj with the ordering in Ky, and for
any V e Ky,

V>L">T"<R < V.
Alsolet N3 = (LNB,S, RNB} andNg = {LZ,T, RZ} UN,.

We may think of the elements L*, T* and R* as ‘markers’. In addition, we have
the following ‘markers’ for the operators of K upper and lower. For any V € L(CR),
we define
(Vi ifV ¢ N,

L* ifVe{lZ LNB},
T ifVe(T,S),
| R* ifVe(RZ, RN B},

VK‘=4

and forany V € K,
(VE iV ek,
LNB ifV=1L*
S if V=T
| RNB ifV = R*.
In particular, for any V € L(CR) and T € ©, we write
V‘!K’ = (VI)K' and VK‘I = (vK')r'

The set K®' of all functions ®! - K, ordered componentwise, is a complete
lattice. Recall that both ®! and K are partially ordered sets. We now identify a part
of K®'..

Let ® be the set of all functions ¢ : ®' — K satisfying the following condi-
tions:

(P1) Oyp € Ky.

(P2) ¢ is order preserving.

(P3) Ifre@andre =L* thent(t)=T,.

(P4) Ifre®and tg = R*, thent(r) =T,

(P5) Ifo € ®' and t € O are suchthat o¢ € K, and either 0 = @ or t () # h(1),
then (o ¢).x+ C (0T)p.

We retain the set theoretical symbolism for K.

VK =
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3. Preparation
We now state the results most frequently used throughout the paper; for infrequent

results we refer to the books [7, 8] or the original sources. The central theorem is due
to Poldk [10] which we state in the following form.

THEOREM 3.1. The mappings x : V — xv, where xy : T — Vix.(t € ©) and
B — Vi, and & : ¢ — (\,c0(T9)X'T are mutually inverse isomorphisms between
[S,CR] and ®.

PROOF. See {8] or the original work [10]. O

It is convenient to think of xy, as a ladder in the form

Vk
/7 N\
Vr, k-

Vr. k-

V11, K+ Vr. k-

We start with statements concerning K.

LEMMA 3.2.

(i) The following intervals are K -classes: [T, B], [G, O], [CS, LO}.
(ii) ForanyV € L(CR), ‘

_|yng ifvco,
“Tlvnes i VecLwonco).
(iiiy ForanyU,V € L(CR) such thatl SV, we have Uy C V¢ and UX C VK.

PROOF. These statements follow from (8], for their origin, see {4, 6, 9, 11]. (]

We now consider 7,. The statements concerning T; are obtained by (left-right)
duality.
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LEMMA 3.3. (i) The following intervals are T,-classes:

[T, RG}, RG = [a = x"a],
[£LZ,C8], CS = [a = (ax)"a],
[S, RRO], RRO = [xa = a’xa],

[CNB, LRRO], LRRO = [yxa = (ya)’yxal.

(i) IfV = [4a = Vuluea € LCR), then V" = [ugx = (V4Xx)’aX]uea, Where
x & Uyen cava).

(i) IfV = [uy = Vuluea € [LRB,CR), then Vy, = [s* (Us) = 5*(Va) e k20-

(iv) ForanyU,V € L(CR) suchthatU CV, we have Uy, C Vi and U™ C VT

PROOF. These statements follow from [8], for their origin, see Petrich and Reilly
[7, Theorem IX.5.1], [4], [6] and [10]. O

Figure 1 depicts the lattice of proper band varieties as constructed in [2].

FIGURE 1. Proper band varieties
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4. Canonical varieties

We define the canonical varieties by means of their bases. We characterize some
of their 7;- and T,-classes and establish their relationship with the varieties in N;, as
well as their-ordering.

We start with two operations on the free unary semigroups Uy on X by stipulating

— 1

=x, vV=uv, ul=u" (xe€X, uvely),

x
0__ -1
w = ww (w € Uy).

It follows that w® = w°. The effect of the bar operation is to reverse the order of
variables in w, while respecting the parentheses and exponents. _

We introduce three systems of words G,, I, and H, for n > 2 inductively as
follows:

0
G, =xx;, L =xxx), H,=x,

and forn > 2,

Gn =ann—1, Pn = Gn(ann—l )0 (P € {1’ H})

We call the varieties

In =[Gn=1n]v I_n= [G_n=1_n]’ n=>2z
an[Gn=Hn]’ Fn=[_n=Fn]v n =3,
H, = LNO, H, = RNO

canonical, for they will play an essential role in much of the discussion that follows.

When using canonical varieties, we may consider the alphabet X = {x;, x2, ...},
or include further variables if it is convenient to change the notation.

We shall frequently have (left-right) duals of statements or formulae involving
terms with bars. These are obtained by putting a bar on P,, P.,G,, G,, P, or P, for
Pe{l, H where W = W.

In the next proposition we calculate T;- and T,-classes of canonical varieties. When
restricted to the lattice of proper band varieties, this result coincides with Gerhard and
Petrich [1, Corollary 7.10] and exhausts all 7;- and 7,-classes of proper band varieties
within £(B).

PROPOSITION 4.1. Let P, =Z, forn > 2 and P, = H, forn > 2.

(i) The following intervals are T;-classes: [S, T,], [RN B, H;], [77,., Pn+1]~
(ii) The following intervals are T,-classes: [S , z], [EN B, E] [Pn7 Pasi ]
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PROOF. By duality, it suffices to prove part (ii). That [S, T,1is a T,-class is part of
Lemma 3.3 (i). By Petrich and Reilly [7, Theorem IX.5.1 (iv)], we have LRRO = H,
and Lemma 3.3 (i) implies that [CNB, 73] is a T,-class. We verify first the lower
end P,. To apply Lemma 3.3 (iii), we must check that LRB C P,. By Petrich and
Reilly [7, Lemma V.1.4] we have that LRB is generated by L), the 2-element left
zero semigroup with an identity adjoined. For this, it suffices to show that L] satisfies
the identity G, = P,. The form of this identity is x,x; = x,x,x2 for P, = Z, and
G, = Gu(x,P,_;)° otherwise. Hence these identities are of the form G, = G, W for
a word W with c¢(W) C ¢(G,). It is now obvious that L} satisfies G, = P,. It follows
by Lemma 3.3 (iii) that (P,)7, = P,. For the upper end, by Lemma 3.3 (ii) we get

,PnT' = [ann-H = (ann+1)0ann+l]

= I_xn+1G_n = xn+lG_n(xn+an)oJ = [Gn+l = n+l] = Pas1,

which proves that [P,, P,y | is a T-class. O

It is easy to check that

[S, T,] is the Tj-class of H,, [RN'B, Hs)is the T;-class of H,,
[S,T;]is the T,-class of H,, [LNB,Hj;]is the T,-class of H,.

Hence Proposition 4.1 takes care of all T;- and T,-classes of canonical varieties.
The next lemma characterizes S?, LN B" and RN B’ in terms of canonical vari-
eties. By turning things around, the lemma could be used to define canonical varieties

in terms of S*, LN B’ and RNB".
LEMMA 4.2. Letn > 1.
T..d if n isodd,

a+1 if n is even.

@ St =LNBY™ = [

(i) Srm = RNB" — [In+ld if n is odd,
Zo1  if n iseven.
H,y2 if n isodd,
a2 if n iseven.
Hav2 if n isodd,

Hns2 if n iseven.

(iii) RNB™ = [

(iV) ENB(”") = {

PROOF. The proof is by induction on n.
(i) For n = 1, by the dual of Lemma 3.3 (i), we have ST = 7,. Assume the
statement is true for n. If n is odd, then by Proposition 4.1 (ii), ‘we get

I.n+1 1,n)\T, T T
Slath = (SeM = 1% =T,
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and if n is even, then by Proposition 4.1 (i), we have
Stmh = (S(l’"))rl = In+1T' = T2

This establishes the assertion for S*®. Since LA/B" = ST, the remaining equality
also holds.

(ii) This is the dual of part (i).

(iii) The argument here follows the same lines as in the proof of part (i) and is
omitted.

(iv) This is the dual of part (iii). O

We determine next the ordering of canonical varieties.

LEMMA 4.3. Letn > 2.

(i) ForP e {H,I},we have P, CP,rrand P, gﬂ,+,._
(ll) We have In g Hn+1: In g Hn+l, Hn g In and Hn g In-

PROOF. (i) This follows directly from Proposition 4.1.

(ii) The proof is by induction on n. Since S € RN B, by the dual of Lemma 3.3 (iv),
we have ST € RN B”, which by Lemma 4.2 implies that Z, € H;. Dually, we get
that Z, € H;. This establishes the statements for n = 2. Suppose the validity of
both inclusions for n. Then by Lemma 3.3 (iv) and its dual, we get I7 C 'H,T'H and
T,, I c mﬂ, which by Lemma 4.2 yields 7,',,_“ - ’H_,,;;, as required.

The argument for the remaining formulae is similar by noting that H, C Z; and
starting with RAVB ¢ RRQO instead of S ¢ RN B. O

The inclusions in Lemma 4.3 are in concordance with implications in Gerhard and
Petrich [2, Lemma 6.2].

For some varieties V of completely regular semigroups, we compare here the
varieties V,, ,, with certain varieties in Ng. The first lemma concerns varieties of
completely simple semigroups.

LEMMA 4.4. Let V € L(CS).
. RZ ifn=1andV D RZ,
)] V(l,n) = [ i i
T otherwise.

LZ ifn=1andV 2 LZ,

T  otherwise.

(11) V(r.n) = [

PROOF. According to Lemma 3.3 (i) and its dual, we have

o _|T ivers |, _ [T iVeRrg,
"TIrz #VORZ, " |cz ifVoLZ
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We consider two cases.
(1)V € LG. Then V; =T and

V‘r =

r

T ifVvcg,
LZ fV2DLZ,

and thus VT,T, =17.
(2)V 2 RZ. Then V5, = RZ, whence Vg7, = 7, and

V. = T if YV CRG,
"T ez fvocz,
whence V5, = 7.
The assertion of the lemma follows. d

The next three lemmas concern arbitrary varieties of completely regular semigroups.

LEMMA4.5. Let Y € L(CR) andn > 1.

(l) V(I',,) =S ifandonly lf S SV c z:lﬂ
(ll) v(r,n) =8 lfand 0"1}’ lf S o % - In+1-

PROOF. The argument is by induction on n for both statements simultaneously. For
n = 1, by Lemma 3.3 (i) and its dual, we have

Vi=S<=ScVcI, V,=8S<ScVcT,.
Assume that the above statements are true for n. Then

Vinry =S &= V5l =S

= ScV,cTa by the induction hypothesis
= ST C (V)" C (Z,11)" by Lemma 3.3 (iv)
=L cVicT,, by Proposition 4.1 (i)

= VcVicTl,
and also § = Vi 541y € V, sothat S C V € Z,,,. Conversely,

S - 1% < In+2 = Sﬂ < le c (In+2)T1 by Lemma 3.3 (1V)
=S CV;, < by Proposition 4.1 (i)
= V5)emy =S by the induction hypothesis

= Vit =S.

This proves the statement for V ,); adual argument is valid for V. ,. O
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LEMMA 4.6. LetV € L(CS) and n > 1.

(1) V(l,n) < S lfand only lf V - In+1-

(i) Viyn €S implies V C1,,,.

PROOF. (i) By Lemmas 4.4 and 4.5, we obtain

V(l',,) C S = V([‘,,) =S8 or V(l,,,) =T
S SCVCTl,,or VCLGandn=1, or VCCSandn > 1
=V CIly,

since LG CL,andCS C 7, forn > 1.
(ii) This is the dual of part (i). O

LEMMA 4.7. Let V € L(CR) and t € ©. Then V,x. = T* ifand only if V C S7.
PROOF. By Lemma 4.2 (i)—(ii) and Lemma 4.6, we get

V(z,,,)xc =T V(l,,,) cCS=VcC I,,+1

Y c S if nisodd
Y c 8 if niseven

= Vst

and dually for V, »k-. a

5. The variety V?

The mapping V — VN B is a complete retraction of L(CR) onto L(B). The classes
of the congruence induced on L(CR) by it are intervals of the form [VN B, (VN B)”].
The main result of this section is the determination of the variety (V N B)5.

We start with two lemmas and a figure depicting the ladder of a canonical variety. By
Lemma 3.2 (i), we have 7% = B and by Lemma 3.3 (iii) and its dual, By, = By, = B.
It follows that all the vertices of the ladder of B are labelled by 7. Let V € [S, CR].
If a vertex of the ladder of V is labelled by an element of Xy, then the corresponding
vertex of the ladder of V N B is labelled by 7. The remaining vertices of the ladders
of V and V N B are the same (and are labelled by elements of N3).

LEMMA 5.1. Letn > 2.

@ o) un-nx- =__(Tn)(r,n—l)l(' =T"
() @emr = Tdymxr =T
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PROOF. (i) The proof is by induction on n. For n = 2, we have by Lemma 3.3 (i)
that (Z;)7,x+ = Sk. = T* and dually for the second statement. Assume the statements
are true for n. By Proposition 4.1 (i), we get (Zn+1)y.mks = (f,,)m,,,,_.),(. = T* by the
induction hypothesis. The statement (m)(,_,,) x- = T* follows dually.

(ii) For n = 2, we have by Proposition 4.1 (ii) and Lemma 3.3 (i),

@)k = D)ygr =S+ =T"
and for n > 2, by part (i) and Proposition 4.1 (ii), we have that
) emxr = (T n)an-ng = ndyn-ng- =T*

and dually for the second statement. O

The following lemma is crucial for the main result of the paper.

LEMMAS5.2. LetU be a canonical varietyandV € (S, CR]) be suchthat VNB C U.
ThenV CU.

PROOF. For the four choices for U, namely Z,, Z,, H, and H,, we consider only
7. when n is even; the other cases are treated by the same method, but with different
details. 'We let ¢ = xz, with n even and ¥ = yy. The hypothesis implies that for any
T € O, t¢ € N; implies that Ty = t¢. In view of Theorem 3.1, it suffices to prove
that Ty C t¢ whenever 7¢ € K,.

The proof utilizes condition (P5) to obtain bounds on the values of y, which turns
out to be just the corresponding values of ¢. Recall that (P5) is of the form

(i) T € © implies (BY )k S TV,

(i) ot €O,0y € Ky, t(o) # h(r) implies (¥).x- C (6T)Y.

According to the above, we need only consider the case oy € K. By Lemma 5.1,
we have (I, n — 1) = T* and thus (I, n — 1)y = T*, which by condition (i) yields

@V)gn-ne S Uyn - )y =T".

We shall use condition (ii) in the cases: ot = (I, n—1) and ot = {r, n). According
to Lemma 5.1, we have (6 7)¢ = T*and thus also (ot)y = T* in both cases. Hence
(0¥)exs € (0T)Y = T*, which by Lemma 4.7 gives oy € S7. Now considering all
relevant factorizations of (/, n — 1) and (r, n), we obtain the following results which
we present in the form of a table.

i c T ¥ I [
A, oon=2[0LGn—1-0 @iy cS™ T T . [ie
L3,....,n=3|{i)|(nn=1=0|@ ipcSm1=-0| T | ie
2,4,....n=2|{ni)| (rnn-i) |({rnipcStd T, (nie
L3,...,n=1|(ni)| ({n-i) |(riwcSr— [T, |rie
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The first column of the table gives the range for i, the second the choice of o,
the third the choice for t, the fourth uses condition (ii) above and Lemma 4.7, the
fifth equals the bound in the fourth column by Lemma 4.2 (i)-(ii), the sixth the
corresponding values of . That the fifth and the sixth columns are equal follows by
an easy inductive process, see Figure 2.

(Tn)k

SN
(I")K (In—l)K

FIGURE 2. The ladder of Z,, for n even
We have thus proved that o C o for all o € @' for which oy € Ky; for the

remaining o we have oy = o¢. Therefore ¥ C ¢ which by Theorem 3.1 implies
that V C U. Od

We first define a relation B by

UBYV e UNB=VNBU,V e LCR)).
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We also define the correspondence V — V& = (W N B)2 (V € L(CR)) as follows:
VnB?=V if VelG LG RGCS,P,XNY,CR},

where P is canonical, P # H,, H,, and
(X, y) € {(Im Hn+l)s (Im fn)’ (Hn+11 l_'n)

U {(Ha T, (Mo o), (T F)

n2_2}

n>2].

According to Figure 1, V2 is defined for all V € £L(CR) and is thus a function on
L(CR) into itself.

The part of the ladder L labelled by elements of Nj including its position in L is
‘the socle of L to be denoted by soc(L). We are now ready for the principal result of
the paper.

THEOREM 5.3. The mapping n : V = VNB(V € L(CR)) is a complete retraction
of L(CR) onto L(B), which induces B. Moreover, forany U,V € L(CR), we have

(i) U BV ifand only if soc(xu) = soc(xv),
) VB=[VNB, (VnNnB)2.

PROOF. By [8], (and of origin [12, 14]), B is a neutral element of L(CR). This
implies that the mapping # is a homomorphism of £(CR) into £(B). Evidently, n
leaves the members of £(B) fixed. We have seen in Figure 1 that the lattice L(B) is
of finite width. Hence the join of an arbitrary family F of band varieties equals the
join of a finite subfamily of F. It follows that » is a complete V-homomorphism and
is trivially a complete N-homomorphism. Clearly n induces the relation B.

(i) From the discussion at the beginning of this section, we immediately see that
any two varieties have the same intersection with B if and only if their ladders have
the same socle.

(i1) Given V € L(CR), it is obvious that V N B is the least variety having the same
intersection with B as V. For the upper end of the interval V B, we proceed as follows.

We show first that for all W € L(B), we have W2 N B = W. This obviously holds
for W € L(RB). For a canonical variety P and W = P N B, we get

WENB=PnNBINB=PNB=W,
and for the remaining varieties W =X N )Y N B,
WENB=XNYNBENB=XNYNB=W.
We still have to show the required maximality.

LetW e L(B)and V € L(CR) besuch that V N B = W. We show that V € W?
by starting from the bottom of Figure 1. The required statement holds if W € L(RB).
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Lemma 5.2 takes care of the case W = P N B where P is a canonical variety. For the
remaining varieties, let X and ) be canonical varieties and consider the band variety
W =X NY N B. We have seen above that B is a neutral element of L(CR). Hence

VvEnBInB=WYnB)v@XnB)=XNB.

Since X is a canonical variety, by the above we obtain that V v (X N B) € X/, and

thus V € X. Analogously, we get V € Y whence V € X' N ), as required.
Therefore VW2 has the requisite properties, which implies that forany V € L(CR),

we have VB = [V N B, (V N B)?], as asserted. O

If, for V € £L(B), we let V3 = V, we obtain the familiar form VB = [Vg, VZ]. We
now relate the ladders with the variety V5.

PROPOSITION 5.4. Let V € [S, B] and U be the intersection of all canonical
varieties containing V. Then VB =U =N {(th)"'f | TXy € N;}.

PROOF. Let {4, | « € A} be the set of all canonical varieties containing V.
According to Figure 1, V = [, , . N B) and thus, by the dual of Pastijn and Petrich
[3, Lemma 4.10], we obtain

B
Ve = (ﬂ(ua nB)) =(UNB)’ =[ U =U.

a€A acA a€A

This proves the first equality in the statement of the proposition. For the second, we
proceed as follows.

If txy € NI, then (T xv)*" € N; and thus, by Lemma 4.2, we have that (t x)%"®
is canonical. Hence

(5.1) U (@)™ | exv e N3}

For the opposite inclusion, let W be a canonical variety such that V € W. By the
cited reference, W = X" for some X € N3 and r € ®. Lemma 3.3 (iv) implies that
Vr C (X7)¢ which, by [8], (of origin [10]) yields that Vr is contained either in Ay, or
in X7,. In either case, we get V- € N3 whence Vzx. € Nj. Further, using the cited
references, we get (Txy)X" = Vex)¥'" € ((X%)ex-)*’" € X* = W. The opposite
inclusion in (5.1) follows. This proves the second equality in the statement of the
proposition. g

If we include the varieties G, LG, RG, CS and CR in the set of canonical varieties,
then by Proposition 5.4, for any ¥V € L(B), V?® is the intersection of all canonical
varieties containing V.
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COROLLARY 5.5. The mapping V — V2 (V € L(CR)) is a complete N-endo-
morphism but is not a V-homomorphism of L(CR).

PROOF. The first assertion follows easily from the first equality in Proposition 5.4
and the above remark. For the second,

LZPVRZ? = LGVRG =ReG, (LZVRZ) =RB*=CS. O

6. Intersections with BG, OBG and B

For any canonical variety P, we provide here a single identity that serves as a basis
of identities for P, N BG, P, N OBG and P, N B, respectively. These identities are
variants of G, = P, with suitable interspersing of x instead of x; and G and P?,
instead of G, and P,, respectively. We also characterize the first two intersections.

We consider only P, ; the statements for P, are dual. There is nothing to say about
'H,, while 7, requires a somewhat different treatment. Hence we start with Z, and
then treat the remaining cases in a unified way.

PROPOSITION 6.1.
@) L,NBG=I,NOBG = [(xx))° = x3xx31 = LRBG = LRB Vv G.

(ll) Iz NB = [x2x1 = .szle].

PROOF. (i) The first equality follows from the well-known fact that Z, € O. The
identities for Z, and OBG yield (x;x1)° = (x2x;x9)° = xIx{x, proving that the
second variety is contained in the third. The third, fourth and fifth equalities form part
of Petrich and Reilly [7, Lemma V.5.2]. The last variety is obviously contained in the
first.

(ii) This is well-known. O

For the remaining cases, it is convenient to use the following notation:

(i) foraword w, possibly involving products, inversion and parentheses, we write
w for the word obtained from w by deleting all powers of words, positive, negative or
zero, as well as all parentheses;
(ii) Go = Py = 0, the empty word, for P € {H, I};
(iii) G,,(x?) stands for the word G,, in which every variable x; is replaced by x? .

THEOREM 6.2. For P € {H,Z} and n > 2, the following equalities hold. Set
G] = Xi.

(l) Pn N Bg = [(x,(,)Gn—2x2_1)o = P,?] = [Gg = (Py(xy, ..., X2, x,?_p x,(,)))o]
= (P, N B)-band of groups.
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i) P,NnOBG = [G,,(x?) = P,?] =P.NnB)vg.
(i) P,NB =[G, = P,

PROOF. (i) Denote these four varieties by U, V, W and &, respectively.
U C V. First

(61) G —xn n—1 = XpXp— IGn 2 —ann—an—lv
which together with the identity of BG yields
Gy = (XaGnooXn-1)’ = ()G ox) )"

It remains to observe that G, = P, implies G = P?.

V € W. We consider first the case n = 3. The substitution x; — x7 in the identity
of V yields the identity of BG. The two together immediately imply the identity of WW.
Hence assume that n > 3. Then

(62) P, = Gn (xn?)n_—l_)o = Gn (xn (Gn—l(xn—an—Z)O)O
= Gn(xn(Pn—an—l)oGn—l)o

= ann—Z-xn—l(xn(Pn—2xn—l)0Gn—2xn—1)0-
The substitution x; — x,_; fori = 1,2, ..., n—2 inthe identity given by (6.2) yields

(x,, n— 1)0 (xnxn—l(xnx,?_lxn-l)o)o = (xnxn—l)ov
the identity of BG. Now using (6.1) and (6.2), we obtain

Gg = (ann—Z-xn—l)O = (ng,,_zx’?_l)O = P,?

0 0410
= (Pn(xh veey Xp—2s x,,_l’ xn)) .

W C X. The same substitution as above in the identity given by (6.1) and (6.2)
yields

(63) (x,,x,. 1)0 (xnxn I(x xn lxn 1)0) (xn n— 1)0

the identity of BG. Hence if S € W, then § € BG and S/H € P, N B and thus
SeX.

X C U. This case follows from Lemma 5.2.

(ii) Denote these three varieties by U, V and W, respectively. In the case n = 3, the
identity for OBG implies that if = V = W using similar arguments as those above.
So assume that n > 3.
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U < V. This is a direct consequence of OBG = [a°x® = (ax)°].

VY C W. The same substitution as above now yields x°x?_, = (x,x,-1)°, see (6.3),
giving the identity of OBG.

By Petrich [5], weobtain V = WV NB) vV NGy =P, NB)vVG=W.

W C U. This is obvious.

(iii) Denote these two varieties by U and V, respectively.

U C V This is trivial.

V C U. The substitution x; — x2 fori = 1,2,...,n— 1by (6.1) and (6.2) yields
X, = x2. The identity now gives G, = P, also. O
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