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Abstract

Completely regular semigroups CTZ are regarded here as algebras with multiplication and the unary
operation of inversion. Their lattice of varieties is denoted by C(CTZ). Let B denote the variety of bands
and C(B) the lattice of its subvarieties. The mapping V -*• V D B is a complete homomorphism of
C(C1Z) onto C{B). The congruence induced by it has classes that are intervals, say VB = [VB, V S ]
for V 6 £(CH). Here VB = V n B. We characterize Vs in several ways, the principal one being an
inductive way of constructing bases for v-irreducible band varieties. We term the latter canonical. We
perform a similar analysis for the intersection of these varieties with the varieties BQ, OBQ and B.
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1. Introduction and summary

Completely regular semigroups are those that are unions of their (pairwise disjoint
maximal) subgroups. In the context of varieties, they are considered as algebras with
the binary operation of multiplication and the unary operation of inversion. If S is
such a semigroup and a e S, then a"1 is the inverse of a in the maximal subgroup
of 5 containing a. They form the variety CTZ. We denote by C(CTl) the lattice of all
subvarieties of CTZ.

The lattice C(CTZ) has attracted considerable attention. This is in view of the
importance of the class of completely regular semigroups (with or without the unary
operation) and the amenability of this lattice to various techniques. The principal
of these consists of copious decompositions of C{CTZ), whose classes promise a
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description usually in terms of varieties of groups or bands (idempotent semigroups).
This approach to the structure of C{CR) has produced satisfactory results, but is by
no means exhausted. For the study of these decompositions, and the construction of
new ones, there is plenty of room for further research.

Denote by B the variety of bands. Our decomposition of C(CTZ) is the complete
congruence induced by the mapping V - > V n B . Its classes are intervals with the
lower end VnB. We concentrate on v-irreducible band varieties since the others are
obtained as finite intersections of these, and this property carries over to upper ends
of these intervals. We characterize these in two ways and provide a single identity as
a basis for their system of identities. This identity is denned inductively starting with
two simple identities and their duals. This system of identities represents a variant of
the systems of identities for v-irreducible varieties of bands constructed by Gerhard
and Petrich [2]. A characterization of upper ends of these intervals in terms of Malcev
product was devised by Reilly and Zhang [13]. An interesting extension of these ideas
to a class of pseudovarieties was treated by Trotter and Weil [15]. We conclude the
paper with a similar analysis for intersections of upper ends with the varieties BQ,
OBQ and B, providing in each case a basis for their identities consisting of a single
identity.

We term the upper ends of intervals belonging to v-irreducible band varieties, with
a few exceptions at the bottom of the lattice, canonical. They play a seminal role in
the context of varieties of completely regular semigroups.

2. Notation and terminology

We state here the needed symbolism and a few concepts. A complete list of these
can be found in the book [7]. We shall refer to the book [7], as well as to its second
volume [8], which is in preparation. In the latter case, we shall also state the original
sources. Throughout we use set theoretic notation to describe and manipulate classes
such as varieties.

For p an equivalence relation on a nonempty set X and x e X, xp denotes the
p-class of x. In any lattice L, for a, b e L such that a < b, define the interval [a, b]
by {c € L | a < c < b).

Let 5 be a semigroup. Then E(S) denotes its set of idempotents and C(S) the
lattice of congruences on 5. For p € C (5), the kernel and the trace of p are given by
ker/o = {a 6 5 | ape for some e 6 E(S)}, trp = p|£(s), and the left and the right
traces of p are ltr p = tr(p v £)° and rtrp = tr(p v TZ)°, where the join is taken
within equivalence relations on 5. On S, the relations defined by

XKp •$=* kerA. = kerp and kTpp <^^ ptrk = ptrp,
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where p e [l,r], are the kernel, left trace and right trace relations, respectively. Their
classes are intervals, and we write

pP = {pP, pp], P e [K, Th Tr).

Finally let S be a completely regular semigroup. As 5 is a union of its (maximal)
subgroups, on 5 we have a unary operation a -> a~\ where a'1 is the inverse of a in
the maximal subgroup of 5 containing a. Hence for the purpose of studying varieties
of completely regular semigroups, they are considered with the binary operation of
multiplication and the unary operation of inversion. We write a° = aa~l {= a~la) for
any element a of 5.

We denote by CR the variety of all completely regular semigroups and by £(C7l)
the lattice of its subvarieties. Via the usual antiisomorphism of the lattice of fully
invariant congruences on a free completely regular semigroup of infinite rank and
C{CR), the relations K, Tt and Tr defined above transfer to C(CJl) in an obvious
way. We use the same notation for these relations on C(C1Z) (and their intervals) as
for the corresponding ones on semigroups. For these operators, we write for example,
VK, VKTr = (V*)7"', and so on. For V 6 C(CJl), £(V) denotes the lattice of all
subvarieties of V.

If V 6 C{CR) has a basis [ua = va}aeA, we write V = [ua = va]aeA, or simply
V = [u = v] if A is a singleton. We shall mention a great number of subvarieties of
C(CJZ) using for the notation their standard acronyms, for a full name and bases, we
refer to the book [7].

Let X be a nonempty set. If xx,..., xn e X, then w = xx • • • xn is a word over X,
h(w) = x \ is the head of w, t(w) = x n is the tail of w, and c(w) = {x\,.. .,xn) is
the content of w.

We start by describing the specific construction needed throughout. Let 0 be the
set of all (nonempty) words over the alphabet [Th Tr] of the form Pi-Pn, where
Pi e {T,,Tr} and P, ^ Pi+X for / = 1 , . . . , n - 1 with multiplication

\P\-PmQi-Qn otherwise.

Clearly 0 is a semigroup. We adjoin the empty word 0 to 0 to form 0 1 . We now
coordinatize 0 as follows.

For p 6 {/, r] and n > 1, let {p, n) be the product of n factors of alternating T,
and Tr starting with Tp. We also write p = q, where {/?, q) = {l,r}. For these
symbols, we have the product

l ( P > m + «) if P = 1' m is even or p £ q,m is odd,
(p,m){q,n) = \

I (p, m + n — 1) otherwise,
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(P,n) =
\{p, n) ifnisodd,

Up, n) if n is even.

We now return to C(Cll). First let /Co = {VK \ V e C(CTl)). Then /Co is a
complete lattice whose joins coincide with those in C(CTZ). We adjoin three elements
to /Co by letting N; = {L*, T*, R*}, JC = JC0\JM* with the ordering in /Co, and for
any V € /Co,

v > v > r < R* < v.
Also let N3 = {CMB, S, TIMS) and N6 = {CZ, T, 112} U N3.

We may think of the elements L', T* and R* as 'markers'. In addition, we have
the following 'markers' for the operators of K upper and lower. For any V e C(CR),
we define

V*. =
L*

T* { , } ,

R* ifVe {UZ,nMB},

V* =

and for any V € /C,

V*

CNB

S

7UTB

In particular, for any V e C(CR) and x 6 0 , we write

VzK'= (VZ)K' 3^d y*"r = o?K'y•

The set /Ce of all functions 0 1 -> /C, ordered componentwise, is a complete
lattice. Recall that both 0 1 and /C are partially ordered sets. We now identify a part
of/Ce'.

Let <J> be the set of all functions <p : © ' - > • K. satisfying the following condi-
tions:

(PI) 0q> e /Co.

(P2) <p is order preserving.

(P3) If x e 0 a n d r ^ = V, thenr(r) = Tr.

(P4) If T e 0 and x<p = R*, then t(x) = T,.

(P5) If o 6 0 1 and r 6 0 are such that o<p e /Co and either CT = 0 or t(p) ^ h{x),
then (cr<p)rK' c (or)^.

We retain the set theoretical symbolism for JC.
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3. Preparation

We now state the results most frequently used throughout the paper; for infrequent
results we refer to the books [7, 8] or the original sources. The central theorem is due
to Polak [10] which we state in the following form.

THEOREM 3.1. The mappings x '• V -> Xv, where Xv '• * -*• V T ^ . ( T e &) and
0 —> VK, and f : cp —> f]zeei(^<p)Kz are mutually inverse isomorphisms between
[S, CU\ and <t>.

PROOF. See [8] or the original work [10]. •

It is convenient to think of xv a s a ladder in the form

We start with statements concerning K.

LEMMA 3.2.

(i) The following intervals are K-classes: [T, B], [Q, O], [CS, LO].
(ii) For any V e C(CU),

v = (

* [VnCS if V e C(LO)\C(O).

(iii) For any W,Ve C{CTl) such thatU C V, we have UK c V^ and UK c VK.

PROOF. These statements follow from [8], for their origin, see [4, 6, 9, 11]. •

We now consider Tr. The statements concerning Tt are obtained by (left-right)
duality.
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LEMMA 3.3. (i) The following intervals are Tr-classes:

[6]

= [a=x°a],

[CZ, CS], CS = [a = (ax)°a],

[s, nnoi nno = [xa = a°xa],

[CMB, LiinO], LTinO = [yxa = (yafyxa].

(ii) IfV — [ua = va]aeA 6 C(CU), then VT' = [uax = (vax)°uax]a€A, where

(iii) IfV = [ua = va]aeA e [OZB, CTZ], then VTr = [sk(ua) = sk(va))aeA,k>o-
(iv) For any U, V e £(CH) such that U<zV,we have UTr c VTr and UT- c VTr.

PROOF. These statements follow from [8], for their origin, see Petrich and Reilly
[7, Theorem K.5.1], [4], [6] and [10]. •

Figure 1 depicts the lattice of proper band varieties as constructed in [2].

Bnn4

enl3

Bnl2

CZ

FIGURE 1. Proper band varieties
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4. Canonical varieties

We define the canonical varieties by means of their bases. We characterize some
of their Tr and Tr-classes and establish their relationship with the varieties in N3, as
well as their ordering.

We start with two operations on the free unary semigroups Ux on X by stipulating

jc = JC, Tfv = uv, u~x = u~l (x e X, u,ve Ux),

w° = ww~l (w e Ux)-

It follows that w° = w°. The effect of the bar operation is to reverse the order of
variables in w, while respecting the parentheses and exponents.

We introduce three systems of words Gn, /„ and Hn for n > 2 inductively as
follows:

Gi = x2x\, h =
and for n > 2,

G n = x n G ^ [ , Pn = G n { x n P ^ ) ° ( P e {

We call the varieties

£, = [Gn = / „ ] , Tn = [G~n=Tn], n>2,

nn = [Gn = Hni wn = [G~n = irni « > 3 ,

H2 = CMO, W2 = UNO

canonical, for they will play an essential role in much of the discussion that follows.
When using canonical varieties, we may consider the alphabet X = [x\,x2,. •.},

or include further variables if it is convenient to change the notation.
We shall frequently have (left-right) duals of statements or formulae involving

terms with bars. These are obtained by putting a bar on Vn,Vn,Gn,Gn, Pn or Pn for
P e {/,//} where W = W.

In the next proposition we calculate Tr and Tr-classes of canonical varieties. When
restricted to the lattice of proper band varieties, this result coincides with Gerhard and
Petrich [1, Corollary 7.10] and exhausts all Tr and Tr-classes of proper band varieties
within £(#) .

PROPOSITION 4.1. Let Vn =lnfam>2 and Vn = Hn for n > 2.

(i) The following intervals are T,-classes: [S, I2], [TlMB, HA \V~n, Vn+i].

(ii) The following intervals are Tr-classes: [S,T2\ [CA/B, H~3], [Vn,Vn+i].
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PROOF. By duality, it suffices to prove part (ii). That [S, 12] is a Tr-class is part of
Lemma 3.3 (i). By Petrich and Reilly [7, Theorem LX.5.1 (iv)], we have LTZTZO = %,
and Lemma 3.3 (i) implies that [CAfB, 7i3] is a Tr-class. We verify first the lower
end Vn- To apply Lemma 3.3 (iii), we must check that CUB c p , . By Petrich and
Reilly [7, Lemma V.1.4] we have that CUB is generated by L\, the 2-element left
zero semigroup with an identity adjoined. For this, it suffices to show that L\ satisfies
the identity Gn = Pn. The form of this identity is x2x\ = x2xix° for V2 = T2 and
Gn = Gn{xJ>n-.{f otherwise. Hence these identities are of the form Gn = GnW for
a word W with c(W) c c(Gn). It is now obvious that L\ satisfies Gn = Pn. It follows
by Lemma 3.3 (iii) that (Vn)Tr = Vn. For the upper end, by Lemma 3.3 (ii) we get

VT
n' = [Gnxn+i = (Pnxn+i

= ucn+iGn = xn+iGn(xn+iPn)°\ = [Gn+i = Pn+\ J = Vn+\,

which proves that [Vn, Vn+\ ] is a Tr-class. D

It is easy to check that

[S, 12] is the r,-class of 7i2, [TlMB, H{[ is the 7,-class of TC2,

[S, T2 ] is the Tr-class of %, [CMS, % ] is the Tr-class of H2.

Hence Proposition 4.1 takes care of all 7}- and Tr-classes of canonical varieties.
The next lemma characterizes <ST, CNBX and ~RJ\fBz in terms of canonical vari-

eties. By turning things around, the lemma could be used to define canonical varieties
in terms of Sz, CMBr and HNB\

LEMMA 4.2.

(i) £<'•">-

(ii) <S<rn> =

(iii) UhfB{l

(iv) CMB(r'

Letn

CAfE

UNI

n ) = •

> 1.

}</,«> =

fin+2

nZ

d if n

ifn

[ Jn+1 J/ n

// n is even.

ifn
ifn

is odd,

is even.

is odd,

is even.

is even.

PROOF. The proof is by induction on n.
(i) For n = 1, by the dual of Lemma 3.3 (i), we have ST' = T2. Assume the

statement is true for n. If n is odd, then by Proposition 4.1 (ii), we get
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and if n is even, then by Proposition 4.1 (i), we have

O = ( o ' ) = -i-,,+1 = -Ln+2-

This establishes the assertion for <S(/•n>. Since CMBT' = STl, the remaining equality
also holds.

(ii) This is the dual of part (i).
(iii) The argument here follows the same lines as in the proof of part (i) and is

omitted.
(iv) This is the dual of part (iii). D

We determine next the ordering of canonical varieties.

LEMMA4.3. Letn > 2.

(i) For V e [H, X), we have Vn <zV~^[ and V~n ^_Pn+i. _
(ii) We have Xn c Hn+h Xn c Hn+l, Hn c Xn and Hn c Xn.

PROOF, (i) This follows directly from Proposition 4.1.
(ii) The proof is by induction on n. Since S c IZAfB, by the dual of Lemma 3.3 (iv),

we have <Sr' c KMBTl, which by Lemma 4.2 implies that T2 ^ W3. Dually, we get
that J2 c HT, . This establishes the statements for n = 2. Suppose the validity of
both inclusions for n. Then by Lemma 3.3 (iv) and its dual, we get ZJ' c H*r

+l and
XJ' c Tin+iTl, which by Lemma 4.2 yields Xn+l c Hn+2, as required.

The argument for the remaining formulae is similar by noting that H2 C X2 and
starting with TlMB C TIUO instead of S c TIN'S. •

The inclusions in Lemma 4.3 are in concordance with implications in Gerhard and
Petrich [2, Lemma 6.2].

For some varieties V of completely regular semigroups, we compare here the
varieties V(p,n) with certain varieties in N6. The first lemma concerns varieties of
completely simple semigroups.

LEMMA 4.4. Let V e C(CS).

UZ if n = \ and V 2 HZ,

T otherwise.

CZ if n =

T otherwise.

( 0 V(,,n) =

(") V(r,n) =

PROOF. According to Lemma 3.3 (i) and its dual, we have

T'~ \nZ if V 2 HZ, Tr~ \CZ if V 2 HZ.
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We consider two cases.
(1) V c CQ. Then VTl = T and

and thus VTrTl = T.
(2) V 2 ft.2. Then VTl = KZ, whence VTlTr = T, and

J
r' \CZ ifV 2 CZ,

whence VTlTr = T.
The assertion of the lemma follows. D

The next three lemmas concern arbitrary varieties of completely regular semigroups.

LEMMA 4.5. Let V 6 C(CTl) andn > 1.

(i) V(/,n) = S if and only if S C V c 1 ^ .
(ii) V(r,n) = 5 (f

PROOF. The argument is by induction on n for both statements simultaneously. For
n = 1, by Lemma 3.3 (i) and its dual, we have

c V c l 2 , VTr=S

Assume that the above statements are true for n. Then

(Vr,)(r,n) = S

5 c VT, c IB+, by the induction hypothesis

=>• ST' ^ (Vr/)
T| c (Jn+1)r ' by Lemma 3.3 (iv)

==>• X2 c V7"' c In+2 by Proposition 4.1 (i)

= > V c V7"' c 2n+2

and also 5 = V(/,n+i) c V, so that S c V c Jn+2. Conversely,

5 c V c Jn+2 = » 5r , c VTl C (Zn+2)r, by Lemma 3.3 (iv)
5 c Vr, c Jn + 1 by Proposition 4.1 (i)

= S by the induction hypothesis

This proves the statement for V(/,n>; a dual argument is valid for V<rn). D
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LEMMA 4.6. Let V e C(CS) andn>\.

(i) V(/,n) c S if and only if V j JB+I.
(ii) V(r,n) c S implies V c Jn+I.

PROOF, (i) By Lemmas 4.4 and 4.5, we obtain

V(/,n) c 5 ^ V(,,n) = 5 or V(;,n) = T

5 c V c Jn+1, or V £ Cg and n = l, or V c CS and « > 1

since £<? c J2 and CS c Jn+1 for n > 1.

(ii) This is the dual of part (i). •

LEMMA 4.7. Let V e C(CTZ) and x e 0. 77ien VrAr. = T* if and only if V c 5 r .

PROOF. By Lemma 4.2 (i)-(ii) and Lemma 4.6, we get

VMK. = T*

V C £<'•"> if n is odd

yc<S<'.'1> if n is even

and dually for V^n)K.. D

5. The variety VB

The mapping V -> VnH is a complete retraction of £(C1Z) onto £(-B). The classes
of the congruence induced on C(CTZ) by it are intervals of the form [VC\B, (VnB)8].
The main result of this section is the determination of the variety (V C\B)B.

We start with two lemmas and a figure depicting the ladder of a canonical variety. By
Lemma 3.2 (i), we have TK = B and by Lemma 3.3 (iii) and its dual, BTl = BTr = B.
It follows that all the vertices of the ladder of B are labelled by T. Let V e [S, CTZ].
If a vertex of the ladder of V is labelled by an element of K.o, then the corresponding
vertex of the ladder of V n B is labelled by T. The remaining vertices of the ladders
of V and V fl B are the same (and are labelled by elements of N3).

LEMMA 5.1. Letn > 2.

0) (£n)(l.n-\)K' =

https://doi.org/10.1017/S1446788700036405 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700036405


98 Mario Petrich [12]

PROOF, (i) The proof is by induction on n. For n = 2, we have by Lemma 3.3 (i)
that (I2)TIK' = SK- = T* and dually for the second statement. Assume the statements
are true for n. By Proposition 4.1 (i), we get (ln+\)(i.n)K' = (In)T,(r,n-i)ic = T* by the
induction hypothesis. The statement (Xn+i)(r,n)Ar. = T* follows dually.

(ii) For n = 2, we have by Proposition 4.1 (ii) and Lemma 3.3 (i),

(I2)TrTiK' = C^2)TIK' = $ic = T*

and for n > 2, by part (i) and Proposition 4.1 (ii), we have that

(Xi)(r,n)Jr« = ((2n)r,)(/,n-l)*:« = (In)(l,n-l)K' = T*

and dually for the second statement.

The following lemma is crucial for the main result of the paper.

•

LEMMA 5.2. Letlibea canonical variety and V 6 [S, CTZ] be such that VnB c U.
Then V c W .

PROOF. For the four choices for U, namely Xn,Xn, Hn and Hn, we consider only
Xn when n is even; the other cases are treated by the same method, but with different
details. "We let <p = xxn with n even and \[r = xv- The hypothesis implies that for any
r € ©, r<p 6 N3 implies that xty = x<p. In view of Theorem 3.1, it suffices to prove
that x\js Qrcp whenever xcp e K.o.

The proof utilizes condition (P5) to obtain bounds on the values of ̂ , which turns
out to be just the corresponding values of (p. Recall that (P5) is of the form

(i) r € 0 implies (0^)t«-« C r\jr,
(ii) ox 6 0 , cnjr € /Co, t(o) ^ h{x) implies (oijf)zK. C {ax)f.

According to the above, we need only consider the case en]/ e JCQ. By Lemma 5.1,
we have (/, n — \)<p = T* and thus (/, n — \)\j/ = T*, which by condition (i) yields

We shall use condition (ii) in the cases: ax = (/, n — 1) and err = (r,n). According
to Lemma 5.1, we have (ar)<p = T* and thus also (<rx)\j/ = T* in both cases. Hence
(<T\fr)Tx' c (ox)yjf = T*, which by Lemma 4.7 gives ayj/ c ST. Now considering all
relevant factorizations of (/, n — 1) and (r, n), we obtain the following results which
we present in the form of a table.

i
2 , 4 , . . . . n - 2
l , 3 , . . . , n - 3
2,4 n-2
1,3 n - l

a

(I, i)
(I, i)
(r, i)
(r, i)

X

(l,n-\-i)
( r . n - l - i )

(r, n - i)
(I, n - i)

f
(/,l)l(rC5(i'"-W|

J (p

(/, 0^
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The first column of the table gives the range for /, the second the choice of a,
the third the choice for r, the fourth uses condition (ii) above and Lemma 4.7, the
fifth equals the bound in the fourth column by Lemma 4.2 (iMii), the sixth the
corresponding values of tp. That the fifth and the sixth columns are equal follows by
an easy inductive process, see Figure 2.

\
{Tn)K (In-l)iC

(Zn-2)/C (In-l)if

G =

G = (X2)ic

FIGURE 2. The ladder of !„ for n even

We have thus proved that aty c o<p for all a e 0 1 for which o\j/ e K,o\ for the
remaining a we have a\jr = acp. Therefore ifr c <p which by Theorem 3.1 implies
that V c W . D

We first define a relation B by

U BV *=*UnB = VnB{U,Ve C(CU)).
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We also define the correspondence V->V B = (Vn B)B (V e C(CTl)) as follows:

(VnB)B = v if ve{g,£Q,ng,cs,r,xny,cn},
where V is canonical, V =£ H2, ^2, and

(X, y) E [(In, HnTl), (In, X,), (Hn+lX) | « > ?\

U {(WB, 2^), (W., H j , (X», K ) I « > 2 } .

According to Figure 1, VB is defined for all V e £{CR-) and is thus a function on
£(C7£) into itself.

The part of the ladder L labelled by elements of N3 including its position in L is
•the socle of L to be denoted by soc(L). We are now ready for the principal result of
the paper.

THEOREM 5.3. The mapping t] : V -» VC\B (V e C(CR.)) is a complete retraction
of C(CH) onto C(B), which induces B. Moreover, for any U,V e C(C1Z), we have

(i) U B V if and only ifsoc(xu) = soc(xv).
(ii) VB = [V n B, (V n B)B\

PROOF. By [8], (and of origin [12, 14]), B is a neutral element of £(C1l). This
implies that the mapping r\ is a homomorphism of C(C1Z) into £(<8). Evidently, rj
leaves the members of C(J5) fixed. We have seen in Figure 1 that the lattice C(B) is
of finite width. Hence the join of an arbitrary family T of band varieties equals the
join of a finite subfamily of T. It follows that r) is a complete v-homomorphism and
is trivially a complete D-homomorphism. Clearly -q induces the relation B.

(i) From the discussion at the beginning of this section, we immediately see that
any two varieties have the same intersection with B if and only if their ladders have
the same socle.

(ii) Given V 6 C(C7Z), it is obvious that V n B is the least variety having the same
intersection with B as V. For the upper end of the interval VB, we proceed as follows.

We show first that for all W e £ ( B ) , w e have WB C\B = W. This obviously holds
for W e £(TZB). For a canonical variety V and W = V n B, we get

and for the remaining varieties W = X D y D B,

We still have to show the required maximality.
Let W 6 £(B) and V € £(CU) be such that V D B = W. We show that V c WB

by starting from the bottom of Figure 1. The required statement holds if W 6 £(JZB).
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Lemma 5.2 takes care of the case W = V D B where V is a canonical variety. For the
remaining varieties, let X and y be canonical varieties and consider the band variety
W = X n y n B. We have seen above that B is a neutral element of C(CTZ). Hence

[V v (X n B)]n B = (V n B) v (X n B) = x n B.

Since X is a canonical variety, by the above we obtain that V v (X C\B) c. X, and
thus V c X. Analogously, we get V c ^ whence V c X n y, as required.

Therefore WB has the requisite properties, which implies that for any V e C(CR,),
we have Vfl = [V n B, (V D B)B], as asserted. •

If, for V e C(B), we let VB = V, we obtain the familiar form VB = [VB, VB]. We
now relate the ladders with the variety Vs.

PROPOSITION 5.4. Let V e [<S, B] and U be the intersection of all canonical
varieties containing V. Then VB = U = f~\ {(rxv)KT \ *Xv e N3}.

PROOF. Let [Ua \ a e A} be the set of all canonical varieties containing V.
According to Figure 1, V = C\aeA (Ua n B) and thus, by the dual of Pastijn and Petrich
[3, Lemma 4.10], we obtain

Vs = l(~)(Ua n B) j = p\(JAa nB)B = f]Ua= U.

This proves the first equality in the statement of the proposition. For the second, we
proceed as follows.

If rxv ^ N3, then (rxv)** 6 N3 and thus, by Lemma 4.2, we have that (rxv)KT

is canonical. Hence

(5.1) K

For the opposite inclusion, let W be a canonical variety such that V c W. By the
cited reference, W = XT for some ^ e N 3 and r e © . Lemma 3.3 (iv) implies that
Vj c (XT)T which, by [8], (of origin [10]) yields that W is contained either in XTl or
in XTr. In either case, we get Vr e N3 whence VW« € N3. Further, using the cited
references, we get (TXV)**' = (VTif.)*'r £ ((XZ)TK')K'Z £XT =W. The opposite
inclusion in (5.1) follows. This proves the second equality in the statement of the
proposition. •

If we include the varieties Q, LQ, TZQ, CS and CTZ in the set of canonical varieties,
then by Proposition 5.4, for any V € C(B), VB is the intersection of all canonical
varieties containing V.
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COROLLARY 5.5. The mapping V -> Vs (V e £(CR)) is a complete D-endo-
morphism but is not a v-homomorphism ofOCTZ).

PROOF. The first assertion follows easily from the first equality in Proposition 5.4
and the above remark. For the second,

czB v nzB = cQwng = neg, (cz v nz)B = TZBB = cs. •

6. Intersections with BQ, O&Q and B

For any canonical variety Vn we provide here a single identity that serves as a basis
of identities for Vn n BQ, Vn n OBQ and Vn n B, respectively. These identities are
variants of Gn — Pn with suitable interspersing of xf instead of *, and G°n and Pn°,
instead of Gn and Pn, respectively. We also characterize the first two intersections.

We consider only Vn\ the statements for Vn are dual. There is nothing to say about
H2, while J2 requires a somewhat different treatment. Hence we start with J2 and
then treat the remaining cases in a unified way.

PROPOSITION 6.1.

(i) 12 n BQ = 12 n OBQ = [(*2xi)° = x°x°x°] = OIBG = CUB v Q.
(ii) X2 n £ = [*2x, = jc2xi^2].

PROOF, (i) The first equality follows from the well-known fact that J2 c O. The
identities for J2 and OBQ yield (^2^i)° = (*2*i*2)

0 = ^2x?^^, proving that the
second variety is contained in the third. The third, fourth and fifth equalities form part
of Petrich and Reilly [7, Lemma V.5.2]. The last variety is obviously contained in the
first.

(ii) This is well-known. •

For the remaining cases, it is convenient to use the following notation:

(i) for a word u>, possibly involving products, inversion and parentheses, we write
w for the word obtained from w by deleting all powers of words, positive, negative or
zero, as well as all parentheses;

(ii) Go = Po = 0, the empty word, for P e {H, I);
(iii) Gn(xJ) stands for the word Gn, in which every variable *, is replaced by xf.

THEOREM 6.2. For V e {H, 1} and n > 2, the following equalities hold. Set
Gx=xx.

(i) V n n B G = [{x°nGn-2xl_xf = P°] = [G° = (Pn(xu ...,*n_2,x°n_v*°))°]
= (Pn H B)-band of groups.
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(ii) vn n OBQ = [Gn(xf) = p°] = (Pn nB)vg.
(iii) Vn n B = [Gn = pn].

PROOF, (i) Denote these four varieties by U, V, W and X, respectively.

W c V . First

(6.1) Gn = xnGn_\ = xnxn-\Gn_i = xnGn-iXn-\,

which together with the identity of BQ yields

G°n = (xnGn-2xn^)° = (x^G^xl,)0.

It remains to observe that Gn = Pn implies G°n = Pn°.

V c W. We consider first the case n = 3. The substitution x\ —> x° in the identity
of V yields the identity of BQ. The two together immediately imply the identity of W.
Hence assume that n > 3. Then

(6.2) Pn = Gn{XnPn_Xf =

The substitution *, -» xn_x for / = 1, 2 , . . . , n — 2 in the identity given by (6.2) yields

(XnXn_\) = (XnXn-\(XnXn_lXn-i) ) — (XnXn-\) ,

the identity of BQ. Now using (6.1) and (6.2), we obtain

= (Pn(xl,...,xn.2,x
0

n_vx
0

n))°.

W c. X. The same substitution as above in the identity given by (6.1) and (6.2)
yields

(.0.3) (xnxn-i) — ^n^n_,(xnj;n_1^n_1) ; — \.xnxn_x) ,

the identity of BQ. Hence if S 6 W, then 5 e £ £ and S/H e Vn n £ and thus

-f c W. This case follows from Lemma 5.2.
(ii) Denote these three varieties by U, V and W, respectively. In the case n = 3, the

identity for 05C? implies that U = V = W using similar arguments as those above.
So assume that n > 3.
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U c V. This is a direct consequence of OBQ = [a°x° = (ax)0].

V C W. The same substitution as above now yields x°x°_x = (^n^n_i)°, see (6.3),
giving the identity of OBQ.

By Petrich [5], we obtain V = (V n B) v (V D Q) = (Pn n B) v Q = W.

W C.U. This is obvious.

(iii) Denote these two varieties by U and V, respectively.
U C.V This is trivial.
V c U. The substitution xt; -> x° for i = 1, 2 AI - 1 by (6.1) and (6.2) yields

xn = x\. The identity now gives Gn = Pn also. D
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