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CORRIGENDUM

Energy dissipation rate limits for flow through
rough channels and tidal flow across topography

– CORRIGENDUM

R. R. Kerswell

doi:10.1017/jfm.2016.650, Published by Cambridge University Press,
4 November 2016

1. The problem

The upper bound derived in Kerswell (2016) is incorrect. This is because the
I4 and I5 integrals centred at the top boundary are not exactly analogous to their
counterparts at the lower boundary, counter to what is written just under equation
(2.23) (in Kerswell 2016). Instead, in both cases, due to the roughness, the full
volume integrals must be included which scale differently with `. Specifically, the
estimates for the I4 and I5 integrals centred at the top boundary are

Itop
5 :=

〈∫ 1

1−`

∫∫∫
V(Λ)
|u ·∇2a| dV dΛ

〉
6 `

〈∫∫∫
V(1)
|u ·∇2a| dV

〉
−

〈∫ 1

1−`

∫∫∫
V(Λ)
|u ·∇2a| dΛ

〉
6 O(`

√
ε)+O(`5/2√ε),

where V(Λ) :=V(1)−V(Λ) so the last term can be estimated as in expression (2.23),
and

Itop
4 :=

〈∫ 1

1−`

∫∫∫
V(Λ)
|u · (u · ∇)a| dV dΛ

〉
6 `

〈∫∫∫
V(1)
|u · (u · ∇)a| dV

〉
−

〈∫ 1

1−`

∫∫∫
V(Λ)
|u · (u · ∇)a| dΛ

〉
6 O(`ε)+O(`3ε),

where again the last term can be estimated as in expression (2.22). The first term of
O(`ε) on the right-hand side in this modified estimate of Itop

4 is the key new addition
which breaks the bound. To see this, it is best to start with equation (2.16) rearranged
slightly as follows

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

76
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2017.761&domain=pdf
https://doi.org/10.1017/jfm.2017.761


Corrigendum 601

(1− `)Gr+
1
A

〈∫∫∫
V(1)

u · (u · ∇)a+ u ·∇2a dV
〉

=
1
A

〈
1
`

∫ 1

1−`

∫
S(Λ)

(a · u)u · n̂+ u · (n̂ · ∇)a− a · (n̂ · ∇)u dS dΛ

−
1
`

∫ `

0

∫
S(Λ)

(a · u)u · n̂+ u · (n̂ · ∇)a− a · (n̂ · ∇)u dS dΛ

+
1
`

∫ 1

1−`

∫∫∫
V(Λ)

u · (u · ∇)a+ u ·∇2a dV dΛ

+
1
`

∫ `

0

∫∫∫
V(Λ)

u · (u · ∇)a+ u ·∇2a dV dΛ
〉

(1.1)

to highlight the full volume integrals present (now on the left). Then the arguments
presented in the paper are correct to reach (2.24) which now reads

(1− `)Gr+
1
A

〈∫∫∫
V(1)

u · (u · ∇)a+ u ·∇2a dV
〉

6
1
`

{
(B1`

2
+ B4`

3)ε+ (B2`+ B3 + B5`
2)
√
`ε
}
. (1.2)

For `→ 0, this is (using the fact that Gr= ε/U)
1
U
+

〈∫∫∫
V(1)

u · (u · ∇)a dV
〉

〈∫∫∫
V(1)
|∇u|2 dV

〉
 ε6 B1`ε+ B3

√
ε/`+ h.o.t. (1.3)

since 〈∫∫∫
V(1)

u ·∇2a dV
〉
6 O(
√

Aε)� B3

√
ε/`. (1.4)

The right-hand side is minimised as before by `= ε−1/3 so that
1
U
+

〈∫∫∫
V(1)

u · (u · ∇)a dV
〉

〈∫∫∫
V(1)
|∇u|2 dV

〉
 ε6 Cε2/3, (1.5)

where C is an O(1) constant or rewriting

ε6 C3U3

/1+
U
〈∫∫∫

V(1)
u · (u · ∇)a dV

〉
〈∫∫∫

V(1)
|∇u|2 dV

〉


3

. (1.6)
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602 R. R. Kerswell

Since no lower bound is available on the denominator, this does not provide a bound
on ε. In fact, the better way to view (1.5) is that it presents an upper bound on the
denominator 1+

U
〈∫∫∫

V(1)
u · (u · ∇)a dV

〉
〈∫∫∫

V(1)
|∇u|2 dV

〉
6 O(Uε−1/3) (1.7)

rather than a bound on ε.

2. Why there is no quick fix
It became apparent that there must be a problem with the bound in Kerswell

(2016) when a connection was very recently made (Chernyshenko 2017) between
the ‘boundary layer’ method of Otto & Seis (Seis 2015) and the background
method (Doering & Constantin 1994). It is worthwhile illustrating this connection
in the simpler context of the smooth-walled channel flow problem before giving the
background velocity field corresponding to the Otto–Seis ‘boundary layer’ bounding
analysis presented in Kerswell (2016). This background field has shears throughout
the interior and so cannot ever satisfy the spectral constraint necessary to get a bound
in the background approach. This, unfortunately, makes it clear that there is no simple
fix of the flawed bound in Kerswell (2016).

We adopt Seis’s (2015) notation (see his § 4) so that if

(NS) :=
∂u
∂t
+ u · ∇u+∇p−∇2u−Grx̂ (2.1)

then (NS)= 0 and ∇ · u= 0 with u(x, y, 0)= u(x, y, 1)= 0 define the channel flow
problem.

2.1. The background method
The background method is to construct the functional

L[u, ν] :=
〈∫ 1

0
|∇u|2 dz

〉
− α

〈∫ 1

0
ν · (NS) dz

〉
, (2.2)

where α is a balance (scalar) parameter (usually ‘a’ in past work), ν(x, t) is a
Lagrange multiplier field and

(·) :=
1

LxLy

∫ Lx

0

∫ Ly

0
(·) dy dx (2.3)

is an average over the rectangle (x, y) ∈ [0, Lx] × [0, Ly]. The key step is to restrict
the difference between u and ν by defining a background field φ(z) such that

u(x, t)= φ(z)x̂+ ν(x, t), (2.4)

where φ carries the mass flux of the flow but vanishes at the boundaries. In particular,
if the energy dissipation rate is sought in terms of the mean flow U rather than the
imposed pressure gradient (Gr) then

U :=
∫ 1

0
u · x̂ dz=

∫ 1

0
φ dz (2.5)
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(see (2.29), Kerswell 2016). Rewriting L in terms of ν and φ, and then integrating
by parts, the boundedness of the kinetic energy and the fact that both φ and ν vanish
on z= 0 and 1 leads to the simplified expression

L[ν, φ] =
∫ 1

0
φ′2 dz− 〈G(ν; φ, α)〉, (2.6)

where

G :=
∫ 1

0
(α − 1)|∇ν|2 + αν1ν3φ′ − (α − 2)ν1φ′′ dz. (2.7)

Then the background method (Doering & Constantin 1994) is the observation that

L6
∫ 1

0
φ′2 dz−min

ν
G(ν; φ, α), (2.8)

where only steady fields now need to be considered. The important point is minG only
exists for α > 1 and φ which satisfy the spectral constraint (Doering & Constantin
1994). The best bound is found by then minimising the whole right-hand side over
the (convex) set of such φ and α.

2.2. The Otto–Seis ‘boundary layer’ method
The starting point for the Otto–Seis ‘boundary layer’ approach is again (2.2) and the
same decomposition u = φ(z)x̂ + ν is used. The key difference now is that L is re-
expressed in terms of u and φ rather than ν and φ. So

L[u, φ] =
〈∫ 1

0
|∇u|2 dz

〉
− α

〈∫ 1

0
(u− φ(z)x̂) · (NS) dz

〉
=

〈∫ 1

0
|∇u|2 dz

〉
− α

〈
d
dt

∫ 1

0

1
2

u2 dz+
∫ 1

0
|∇u|2 dz−GrU

〉
−α

〈∫ 1

0
φ′(uw− uz) dz

〉
− αGrU (2.9)

= (1− α)
〈∫ 1

0
|∇u|2 dz

〉
− α

〈∫ 1

0
φ′(uw− uz) dz

〉
. (2.10)

At this point, the Euler–Lagrange equations

δL
δu
= 0 and

δL
δφ
=
δL
δα
= 0 (2.11)

contain the background method bound as a solution but there is no means to identify
it as such (i.e. appreciate that the associated value of L is a bound on the dissipation
rate). Instead, the Otto–Seis approach appears to be to select a simplifying value of
α = 1 so that the right-hand side reduces to

ε=−

〈∫ 1

0
φ′(uw− uz) dz

〉
(2.12)
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604 R. R. Kerswell

and then to choose a simple trial function

φ(z) :=
U

1− `
×

(1− z)/` 1− `6 z 6 1
1 `6 z 6 1− `
z/` 0 6 z 6 `

(2.13)

(designed so that
∫ 1

0 φ dz = U with boundary layers of size `). This converts (2.12)
into

(1− `)Gr=
1
`

∫ 1

1−`
(uw− uz) dz−

1
`

∫ `

0
(uw− uz) dz (2.14)

(after using ε=UGr) which is (4.10) in Seis (2015) and then the strategy is to bound
the terms on the right-hand side using powers of ε. The fundamental observation is
that the derivative of the background field is what appears in the Otto–Seis ‘boundary
layer’ method (Chernyshenko 2017).

2.3. Background field for the rough problem
In the rough channel flow problem, the background (vector) field corresponding to
the ‘boundary layer’ method as applied in Kerswell (2016) is φ(λ)a (generalised from
φ(z)x̂ in the smooth-walled problem) where

λ :=
z− f (x, y)

g(x, y)− f (x, y)
, a :=

x̂+ Fx(x, y, λ)ẑ
g(x, y)− f (x, y)

and F(x, y, λ) := (1− λ)f (x, y)+ λg(x, y).

For example∫∫∫
V(Λ)

φ(λ)a · (NS) dV =
∫ 1

0
φ(λ)

∫ Ly

0

∫
C(λ,y)

ŝ · (NS) ds dy dλ, (2.15)

where the right-hand side is (2.6) of Kerswell (2016) before integrating with a
general weight φ(λ) over λ ∈ [0, 1]. Taking φ(λ) again as the piecewise-linear trial
function defined in (2.13) allows the shears associated with it to be controllable.
However, a varies spatially throughout the domain and so the shears associated with
the combination do not vanish at some controlled distance from the boundary. This
is what prevents the background method working and also has to break the boundary
layer method. Unfortunately, this is a known limitation of the background method
with no work-around currently on the horizon.
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