The bifurcation of periodic orbits of one-dimensional maps

LOUIS BLOCK AND DAVID HART

Department of Mathematics, University of Florida, Gainesville, Florida 32611, USA

(Received 5 May 1982)

Abstract. The bifurcation of C^1 -continuous families of maps of the interval or circle is studied. It is shown, for example, that period-tripling cannot occur. This yields topological properties of the stratification of $C^1(I, I)$ induced by the Sarkovskii order, and corresponding bifurcation properties.

1. Introduction

This paper deals with the bifurcation theory of maps of the interval and of the circle. We are interested in how the least period of a periodic point can change in a family which is continuous with respect to the C^1 topology. More precisely, if a map f_s in a C^1 -continuous family $\{f_i\}$ has a periodic point x_s of period k (which will always mean least period), we ask what may be the period of a periodic point x_t (of f_t) near x_s , where t is near s. If the period of x_t is 2k, but f_s has no 2k-periodic point near x_s , we say a period-doubling bifurcation occurs; if 3k, period-tripling, etc. Period-doubling bifurcations have been studied extensively (see for example [6], [7]). The first theorem of this paper implies that for C^1 -continuous families of maps of compact one-dimensional spaces, period-tripling, quadrupling, etc., bifurcations do not occur. This is easily seen to be false for families which are only C^0 -continuous.

THEOREM 1. Suppose (f_n) is a sequence of maps in $C^1(I, I)$ or $C^1(S^1, S^1)$ and (f_n) converges to f (in $C^1(I, I)$ or $C^1(S^1, S^1)$). Suppose each f_n has a periodic point x_n of period k (where k is a fixed positive integer). Suppose some subsequence of (x_n) converges to x. If k is odd, x is a periodic point of f of period k. If k is even, x is a periodic point of f of period k or $\frac{1}{2}k$.

Using theorem 1, we show that the Sarkovskii ordering provides a stratification of $C^{1}(I, I)$ and gives topological restrictions on one parameter families in $C^{1}(I, I)$. Let F(n) denote the set of maps in $C^{1}(I, I)$ which have a periodic point of period n. We will use the symbol \triangleleft to denote the Sarkovskii order,

 $2^n \triangleleft 2^{n+1} \triangleleft \cdots \triangleleft 2^{n+1} \cdot 5 \triangleleft 2^{n+1} \cdot 3 \triangleleft \cdots 2^n \cdot 5 \triangleleft 2^n \cdot 3.$

Sarkovskii showed that if $n \lhd m$ then $F(m) \subseteq F(n)$ ([5], [10], [12]). Let G(n) denote those $f \in F(n)$ such that $f \notin F(m)$ if $n \lhd m$. We may include the symbol ∞ by defining $k \lhd \infty$ if $k = 2^{j}$, for some integer $j \ge 0$, and $\infty \lhd k$, otherwise. Those maps in $F(\infty)$, but not F(m) for any m with $\infty \lhd m$, will be denoted $G(\infty)$.

The following corollaries follow immediately from theorem 1 and Sarkovskii's theorem. The second corollary was known to Misiurewicz [8].

COROLLARY 1. If n is not a power of 2, F(n) is a closed set.

126

COROLLARY 2. If n is a power of 2, the closure of F(n) is contained in $F(\frac{1}{2}n)$.

It follows at once from corollary 2 that $F(\infty)$ is closed. Hence the closure of the set of maps in $C^1(I, I)$ with positive topological entropy is contained in $F(\infty)$. The following result characterizes $F(\infty)$ as those maps whose set of periodic points is not closed.

THEOREM 2. Let $f \in C^{1}(I, I)$ or $f \in C^{1}(S^{1}, S^{1})$ and suppose the set of periodic points of f is a closed set. Then f has only finitely many periods.

In [11], Nitecki gives an example of a continuous $f \in G(\infty)$ whose periodic points are closed; the above theorem shows this is a pathology of $C^0(I, I)$. Also, theorem 2 and [11] imply that for any $f \in G(\infty)$ which is C^1 , there is a non-wandering point whose (infinite) orbit is 'separated to all orders.' If $f \in G(\infty)$ is C^3 and has negative Schwarzian derivative, the orbit structure of f is completely described by Misiurewicz in [8] under the assumption that f is unimodal.

Our final result uses theorem 1 and the stability theorem of [1] to obtain an intermediate value result for families in $C^{1}(I, I)$, in terms of the Sarkovskii ordering.

THEOREM 3. Let f_s be a continuous arc in $C^1(I, I)$, $0 \le s \le 1$, with $f_0 \in G(n)$ and $f_1 \in G(m)$. Then for any k such that $n \lhd k \lhd m$, there exists s_k such that $f_{s_k} \in G(k)$, and i < j implies $s_i < s_j$.

Note that n, m or k may be ∞ . It follows that any such arc with $h(f_0) = 0$ but $h(f_1) > 0$, where h denotes entropy, must pass through $G(\infty)$. Theorems 2 and 3 make the following strengthening of the remarks after corollary 2 seem reasonable.

CONJECTURE. The closure of the maps in $C^{1}(I, I)$ which have positive entropy is exactly $F(\infty)$. The boundary of that set, and of the set of maps in $C^{1}(I, I)$ with only finitely many periods, is exactly $G(\infty)$.

Of course, the above results do not exhaust the bifurcation behaviour of interval maps. The 'particle-antiparticle' bifurcation (which is sometimes called 'saddle-node' in higher dimensions) which occurs as a segment of the graph of f (or of f^k) moves across the diagonal is the most obvious additional phenomenon. The cluster of bifurcations which occurs as f_s moves into the positive-entropy region which results in homoclinic orbits is another (which we shall address in another paper).

2. Proof of theorem 1

We begin the proof of theorem 1 by proving two lemmas.

LEMMA 1. Let $\{p_1, p_2, \ldots, p_k\}$ be a periodic orbit of $f \in C^1(I, I)$ of period k where k > 2 and $p_1 < p_2 < \cdots < p_k$. There are points y and z in the interval $[p_1, p_k]$ with f'(y) > 0 and $f'(z) \le -1$.

Proof. For some integer m with 1 < m < k, either $f(p_m) = p_1$, or $f(p_m) = p_k$. If $f(p_m) = p_1$, there is a point $y \in [p_m, p_{m+1}]$ with f'(y) > 0. If $f(p_m) = p_k$, there is a point $y \in [p_{m-1}, p_m]$ with f'(y) > 0.

Now, let *i* be the smallest element of $\{1, 2, ..., k\}$ with $f(p_i) < p_i$. Then i > 1, $f(p_i) \le p_{i-1}$, and $f(p_{i-1}) \ge p_i$. Hence by the Mean Value Theorem, there is a point $z \in (p_{i-1}, p_i)$ with $f'(z) \le -1$.

LEMMA 2. Suppose (f_n) converges to f (in $C^1(I, I)$ or $C^1(S^1, S^1)$) and suppose that for each n, x_n is a periodic point of f_n of period k, where k is a fixed positive integer with k > 2. If (x_n) converges to x then x is a fixed point of f^k but not a fixed point of f.

Proof. By continuity, x is a fixed point of f^k , so it suffices to prove that x is not a fixed point of f. We assume that x is a fixed point of f and obtain a contradiction.

First suppose that (f_n) converges to f in $C^1(I, I)$. Let p_n denote the smallest element and q_n the largest element of the orbit of x_n . By taking subsequences, we can assume that (p_n) converges to p and (q_n) converges to q. There are positive integers i and j such that

$$(f_n)^{i}(x_n) = p_n$$
 and $(f_n)^{j}(x_n) = q_n$

for infinitely many n. Hence, by continuity,

$$f'(x) = p$$
 and $f'(x) = q$.

Since f(x) = x, we have x = p = q. By lemma 1, $f'(x) \ge 0$ and $f'(x) \le -1$, a contradiction.

Now suppose that (f_n) converges to f in $C^1(S^1, S^1)$. Since f(x) = x, there are proper closed intervals K and J on S^1 with $K \subset int(J), f(K) \subset int(J)$, and $x \in int(K)$. For n sufficiently large, the orbit of x_n will be contained in K and $f_n(K)$ will be contained in J. Hence, we can look at the restrictions of f_n and f to the interval Kand apply lemma 1, as in the preceding paragraph, to show that f'(x) > 0 and $f'(x) \leq -1$, a contradiction.

Proof of theorem 1. We have three cases.

Case 1. k is odd and $k \ge 3$. If k = 3 the conclusion follows from lemma 2. Proceeding by induction, we assume the conclusion is true for all odd numbers less than k. By lemma 2, x is a periodic point of f of period r where $1 < r \le k$ and k is a multiple of r. Hence, $k = r \cdot s$ where s is an odd positive integer.

Let $g_n = (f_n)^r$ and $g = f^r$. Then (g_n) converges to g and x_n is a periodic point of g_n of period s (for each n), but x is a fixed point of g. By our induction hypothesis, s = 1 and k = r.

Case 2. $k = 2^s$ for some integer $s \ge 0$. If k = 1 or k = 2 the conclusion is immediate, so we assume $k \ge 4$. Let $g_n = (f_n)^{\binom{1}{4}k}$. Then for each n, x_n is a periodic point of g_n of period 4. By lemma 2, x is a periodic point of g of period 2 or 4. Hence, x is a periodic point of f of period k or $\frac{1}{2}k$.

Case 3. $k = m \cdot r$ where $r = 2^s$ for some $s \ge 1$ and m is odd with $m \ge 3$. Note that the sequence $(f_n)^r$ converges to f^r and (for each n) x_n is a periodic point of $(f_n)^r$ of period m. Hence, by case 1, x is a periodic point of f^r of period m.

On the other hand, the sequence $(f_n)^m$ converges to f^m , so x is a periodic point of f^m of period r or $\frac{1}{2}r$ by case 2.

Let t denote the period of x as a periodic point of f. Then $\frac{1}{2}r$ and m are relatively prime, $\frac{1}{2}r$ and m divide t, and t divides k. Hence, t = k or $t = \frac{1}{2}k$ and the proof of theorem 1 is complete.

3. Proof of theorem 2

We need the following lemma for the proof of theorem 2.

LEMMA 3. Let $f \in C^{1}(I, I)$ have a periodic orbit $\{x_{1}, x_{2}, \ldots, x_{n}\}$, where $x_{i} < x_{i+1}$ and $4 \le n = 2^{k}$, for some k. Suppose this orbit is 'separated to first order' [10] i.e. if $f(x_{i}) = x_{i}$ then $i \le \frac{1}{2}n$ if and only if $\frac{1}{2}n < j$. Then there are points y and z in the interval $[x_{1}, f(x_{1})]$ with $f'(y) \le -1$ and $f'(z) \ge 0$. (The same statement holds for $[f(x_{n}), x_{n}]$). Proof. Let $j = \frac{1}{2}n$. Then $f(x_{j}) \ge x_{j+1}$ and $f(x_{j+1}) \le x_{j}$, by hypothesis, so $\exists y \in [x_{j}, x_{j+1}] \subseteq [x_{1}, f(x_{1})]$ such that $f'(y) \le -1$. Next let $f(x_{i}) = x_{n}$, so $1 \le i \le j$. If i = 1 the desired z exists by lemma 1. If i > 1, then $f(x_{i-1}) < f(x_{i})$ implies such a point exists in $[x_{i-1}, x_{i}] \subseteq [x_{1}, f(x_{1})]$. (The final remark follows by taking the 'mirror image' g(x) = 1 - f(1 - x).)

Proof of theorem 2. We first consider the interval case, $f \in C^{1}(I, I)$. Since the set of periodic points is closed, every period is a power of 2 ([4], [11]). Therefore, [3], any periodic orbit of f^{k} is separated to order one under f^{k} , for any $k \ge 0$ (in [3] this is called 'simple').

Suppose now that all powers of 2 are periods of periodic points of f. Let p_n be the least point in an orbit of period 2^n , for each n. A subsequence of these must converge, say to p. Since the periodic points are a closed set, p is periodic of some period s (a power of 2). Let $g = f^s$, so g(p) = p, and note that for all n, p_n is an endpoint of a periodic orbit of g (separated to order one under g). Moreover, a subsequence of $\{g_n(p_n)\}$ converges to g(p) = p, but then (since $g \in C^1(I, I)$) lemma 3 implies that $g'(p) \le -1$ and $g'(p) \ge 0$. Hence not all powers of 2 can be periods if the set of periodic points is closed, and so by the theorem of Sarkovskii, f has but finitely many periods.

We next take up maps of the circle, $f \in C(S^1, S^1)$. We may assume f has a fixed point (the set of periodic points of f and of f^k coincide). Were some period of f not a power of 2, f would have positive topological entropy [5], and the set of periodic points would therefore not be closed [9]. Hence every periodic point of f has a power of 2 as its period.

Choose an orientation of S^1 , and let $\{p_1, \ldots, p_k\}$ be a periodic orbit, labelled in consecutive order so there are no points of that orbit interior to any of the intervals $M_1 = [p_1, p_2], M_2 = [p_2, p_3], \ldots, M_k = [p_k, p_1]$. By theorem A_1 of [2], some M_j is not f-covered by any M_i for $i \neq j$, i.e. $M_j \neq f(L)$ for any interval $L \subseteq M_i$. By renumbering, we may assume j = k. Denote by I the complement (in S^1) of the interior of M_k . Then as in theorem A_2 of [2], f restricted to I is differentiably 'conjugate' to a map $g: I \to \mathbb{R}$. We may consider $\{p_1, \ldots, p_m\}$ to be a periodic orbit of g; it is separated to order one, and the 'endpoint' is well defined, so lemma 3 produces y, z between p_1 and $f(p_1)$ with $f'(y) \le -1$, $f'(z) \ge 0$. Proceeding as above, f has finitely many periods.

4. Proof of theorem 3

We conclude by proving theorem 3. We will use a theorem of [1], which states that if $f \in C^0(I, I)$ and f has a point of period n, then there is a neighbourhood N(f) in $C^0(I, I)$ such that for all $g \in N(f)$ and all k with $k \triangleleft n$, g has a periodic point of period k.

Proof. Let $t_k = \inf \{s \in [0, 1] : f_s \in F(k)\}$. Note that this set is non-empty by the theorem of Sarkovskii, since $n \triangleleft k \triangleleft m$.

First suppose that k is not a power of 2. Let $s_k = t_k$. By corollary 1 (or if $k = \infty$ by corollary 2), $f_{s_k} \in F(k)$, so by the theorem of [1], $f_{s_k} \in G(k)$.

Now suppose that $k = 2^{j}$ where $j \ge 1$. Let

$$r = t_{2k} = \inf \{s \in [0, 1]: f_s \in F(2k)\}.$$

Then $f_r \notin F(4k)$ (by the theorem of [1]), but $f_r \in F(k)$ (by corollary 2). If $f_r \in F(k) \setminus F(2)$ we let $s_k = r$. If $f_r \in F(2k)$ we choose $\varepsilon > 0$ sufficiently small that $f_{r-\varepsilon} \in F(k)$ (by the theorem of [1]), and let $s_k = r - \varepsilon$. In either case $f_{s_k} \in G(k)$.

REFERENCES

- [1] L. Block. Stability of periodic orbits in the theorem of Sarkovskii. Proc. Amer. Math. Soc. 81 (1981), 333-336.
- [2] L. Block. Periods of periodic points of maps of the circle which have a fixed point. Proc. Amer. Math. Soc. 82 (1981), 481-486.
- [3] L. Block. Simple periodic orbits of mappings of the interval. Trans. Amer. Math. Soc. 254 (1979), 391-398.
- [4] L. Block. Homoclinic points of mappings of the interval. Proc. Amer. Math. Soc. 72 (1978), 576-580.
- [5] L. Block, J. Guckenheimer, M. Misiurewicz, & L.-S. Young. Periodic points and topological entropy of one-dimensional maps. *Lecture Notes in Math.* No. 819, Springer: Berlin, 1980, pp. 18-34.
- [6] P. Collet & J. P. Eckmann. Iterated maps on the interval as dynamical systems. Progr. in Phys. Phys. 1 (Birkhauser, 1980).
- [7] M. Feigenbaum. Quantitative universality for a class of non-linear transformations. J. Stat. Phys. 19 (1978), 25-52.
- [8] M. Misiurewicz. Structure of mappings of an interval with zero entropy. *Publ. Math. I.H.E.S.*, to appear.
- [9] M. Misiurewicz. Horseshoes for mappings of the interval. Bull. Acad. Polon. Sci. 27 (1979), 167-169.
- [10] Z. Nitecki. Topological dynamics on the interval. Ergodic Theory and Dynamical Systems, Vol. II (Proceedings of the Special Year, Maryland, 1979–1980) Progr. in Math. Birkhäuser, 1981, to appear.
- [11] Z. Nitecki. Maps of the interval with closed period set. Proc. Amer. Math. Soc. 85 (1982) 451-456.
- [12] A. Sarkovskii. Coexistence of cycles of a continuous map of the line into itself. Ukr. Mat. Z. 16 (1964), 61-71. (In Russian.)