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A b s t r a c t . O n c e u p o n a t i m e , there were r a d i o a n d o p t i c a l a s t ronomer s , e a c h g r o u p w i t h its o w n 

w a y o f d e t e c t i n g a n d th ink ing a b o u t rad ia t ion . In spi te o f the s h o c k t r ea tmen t admin i s t e r ed b y 

H a n b u r y - B r o w n a n d T w i s s m o r e t h a n th i r ty five years a g o , this d i c h o t o m y pers is ts t o a surpr is ing 

ex ten t e v e n t o d a y . A s n e w techn iques e m e r g e , w e c lear ly n e e d t o d o b e t t e r . C o h e r e n t a n d i n c o -

herent d e t e c t i o n , h e t e r o d y n i n g a n d in te r fe romet ry are all s i tuat ions whe re a full analys is i nvo lves 

q u a n t u m b e h a v i o u r o f the rad ia t ion . T h i s in fo rmal r ev iew c o v e r s the genera l a p p r o a c h n e e d e d a n d 

g o e s o v e r s o m e p o i n t s o f p r inc ip l e w h i c h arise. 

1. Introduction and scope 

Astronomers are not the only people who confront both the wave and particle as-

pects of electromagnetic radiation. But this particular group of astronomers, con-

cerned as it is with imaging the sky at all wavelengths by techniques which now 

cut across conventional boundaries, must feel the discomfort induced by this dual 

standard more acutely than most others. I have certainly felt it during my own 

encounters with radio synthesis and optical speckle, and would like to offer some 

practical suggestions which may alleviate the symptoms, though a full cure will 

become available only after quantum measurement has been fully sorted out. The 

kind of issues raised below will largely pertain to idealised thought-experiments. 

Real observations and techniques are of course well represented at this meeting by 

the people best qualified to do so. Even with this limitation, one is going over very 

well trodden ground and I can only claim to have chosen the route and some sights 

to point out along the way. 

2 . Modes and quanta 

My unlikely patron saints for this journey into quantized electromagnetism are 

Rayleigh and Jeans, whom we remember for an unsuccessful radiation law but 

should really thank for teaching us that the electromagnetic field is a collection of 

harmonic oscillators. The most convenient choice of modes depends on the problem. 

For our purposes we will use travelling modes having a central frequency i/, a 

bandwidth Au <C i>, a longitudinal extent ~ c/Διζ, a transverse extent D x D 

and a solid angle θ χ 0, with θ ~ X/D. We count this as one degree of freedom of 

the field (per polarisation) and specify its complex amplitude a = q + ip} which 

has information both about the energy and the phase. Alternatively, we can use 

in-phase and quadrature components ρ and q and write the electric field as a sum 

over modes, 

E{x,t) = 2 ^ [ q COS(2TT(I/* - x/X)) + psin(27r(z/t - ζ /λ))] (1) 

or, in terms of the complex amplitude α 
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E{x,t) = ^ [ ( a j e - 2 " 1 " e23^ + ( α * ) β + 2 ™ ' β " 2 * * ] . (2) 

Our in-phase and Quadrature components are happily the momentum ρ and coor-

dinate q of a harmonic oscillator of frequency v. 

All that is left is to apply quantum mechanics and statistics to these oscillators, 

converting ρ and q into operators in the usual way. Note that the wave function 

is ip(q) [its Fourier transform φ(ρ) if you want it in ρ space], i.e., it depends on 

one of the electric field components. It is not a function of spatial position x\ 

Uncertainty relations hold between the in-phase and quadrature components. Of 

course, a shift in the origin of time would rotate ρ into q and vice versa. (This is 

unlike other harmonic oscillators where we usually feel that we can tell position from 

momentum). The equally spaced energy levels (n + ^) hv of this oscillator represent 

states of the field with η quanta in the chosen mode. As the time dependence in 

(2) suggests, the effect of the operator α (for annihilation) is to reduce the energy 

by /ii/, and the effect of a) — q — ip is to increase it [1]. 

Why is one being so roundabout and filling space with oscillators? Can't we 

just treat photons as particles with wave functions ψ(χ) handled according to Bose 

statistics, but otherwise in the same way as electrons in atoms? Unfortunately not! 

Photons are massless, always relativistic, and freely emitted and absorbed. In fact, 

the usual process of registering a photon by a photodetector annihilates it - one can't 

make a second measurement to make sure it's still there ! A single particle wave 

function ψ(χ) cannot handle this but in oscillator language there is no problem. 

One has just demoted one of the modes from η to η — 1 which an ordinary first-

quantized mortal can handle using i/>(q). The policy here will therefore be to stick 

to oscillators, leaving a particle description of photons to the twice-quantized. The 

oscillator point of view is actually quite respectable [2], and in any case no stranger 

than its counterpart for electrons, the Dirac sea. 

Notice that Bose statistics is also automatic in this description. There is no limit 

to the occupancy n. Further, if two modes are both excited to the η = 1 state, 

it doesn't even make sense to ask which of the two photons is in a given mode. 

Another bonus is that interference fringes and in general all phenomena contained 

in the spatial dependence of the modes carry over smoothly to the quantum theory. 

3 . Photon counting 

Let us start at the extreme optical end of the spectrum. The quantum oscillator 

which represents our mode interacts with a detector to which it gives up its en-

ergy, producing photocounts. Disregarding questions of efficiency, the ideal detector 

"cleans up" the travelling mode falling onto it and gives us η counts. Of course, 

the mode may not be in a state with a definite value of energy in which case one 

will have a probability distribution for n. A good example is a thermal state where, 

from elementary statistical mechanics, the probability is given by 

pn oc exp (—nhv/kT) (3) 

i.e., pn form a geometric series. In the limiting case of a continuously varying 

intensity J with a mean 7 O J this gives 
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p(7)dl = e x p ( - f ) j - (4) 

This is just Rayleigh statistics and corresponds to a Gaussian distribution in the 

two components of the electric field which is what the radio people see. Long ago, 

Bothe [3] observed that one can go in the opposite direction, i.e., from the classical 

distribution to the quantum one, by the following recipe 

1. Construct a Poisson distribution pnj for the number of quanta when the mean 

is η = J x At/hi/, with intensity J fixed for the moment. 

This would be appropriate for uncorrelated events with a fixed rate I/hv per 

unit time. 

2. Now, regard I as a fluctuating quantity with the Rayleigh distribution, and 

average (5) with (4). The answer is (3). Notice how one has managed to com-

plicate what was a very direct result in the quantum oscillator picture ! 

Semiclassically, this line of thought culminates in the Mandel photocounting 

formula [4]. One can calculate the probability of getting η counts by using an ap-

propriate distribution function for the intensity I regarded as a continuous variable. 

This could be the Rayleigh distribution for thermal light or a delta function for an 

amplitude stabilised signal like a laser. The second step is the same as before, viz., 

averaging a Poisson distribution whose mean is proportional to J. This formula is 

an excellent bridge between classical electric fields and photocounts. It is physically 

appealing because it separates wave noise, due to fluctuating electric fields, from 

particle noise (given by Poisson statistics even for a fixed intensity). The physical 

concept of wave noise manifesting itself as bunching of photons underlies accounts of 

the celebrated Hanbury-Brown and Twiss experiments [5]. In a practical sense, the 

Mandel formula means that one can get by in almost all applications with classical 

electric fields plus using the consequent wave noise to modulate Poisson statistics. 

Certainly this is true of the thermal excitation of the modes which is what all astro-

nomical sources, barring little green men, are expected to give us. But the formula 

is basically a derived calculational rule rather than a basic principle. For example, 

there are minor precautions like leaving out the zero point energy of the oscillator 

from J. More seriously, one has situations where the variance of the counts is less 

than the mean n, i.e., less than for a Poisson distribution. An obvious example is 

a mode in a state of definite energy which gives zero variance for the total count. 

One is not going to explain this by widening a Poisson distribution further with 

a distribution of wave noise ! Closer examination of the derivation of the formula 

reveals some fine print. The function which masquerades as the probability distri-

bution of the intensity is not a genuine probability at all and must go negative in 

cases where we have sub-Poisson fluctuations ! In such subtle ways does the quan-

tum underworld resist attempts to capture it in a classical framework. This general 

phenomenon viz., classical language with quantum meaning, was uncovered in the 

context of coherence theory by George Sudarshan and Roy Glauber in the early 

sixties [6]. 

Pni = e x p [ - ( n ) ] ( n ) n / n ! (5) 
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4 . Electric fields and phase space 

Now let us swing over to the radio end of the spectrum, where our telescopes record 

complex electric fields (amplitudes and phases) in the modes which come in, i.e., 

they measure q and ρ instead of q2 + p2. The uncertainty principle restricts us here 

— one cannot localise q and ρ to an area smaller than Planck's constant h in phase 

space. Fig. 1 shows that if the excitation energy (nhv) is very large compared to 

the zero point energy, i.e., η > 1 one can pick a circular region of area h which 

has small fractional uncertainties for both amplitude and phase, viz., This 

seems a nice way to approach classical behaviour. 

But, what does a distribution in phase space mean, since simultaneously defining 

ρ and q is not allowed ? Wigner was the first to show [7] that it is possible to use 

such a distribution and his definition would appeal to this gathering. Suppose we 

want to know the "probability" W(q}p) of getting momentum ρ at a point q. The 

prescription is to take a baseline b symmetrically located about ç, multiply the wave 

functions at the two ends and then Fourier transform this "visibility" 

W(q,p) = J r(q-V2)1>(q + b/2)exp(-ipb)db 

Like the related distribution function on phase space which Sudarshan and Glauber 

introduced^ thirty years later, the Wigner function W(q, p) is real but can go nega-

tive. But it does allow us to calculate averages correctly, using reasonable formulae 

like J J W(q}p) F(q,p)dqdp, provided one is clever enough (as Hermann Weyl was) 

to associate the right function F with the quantum operator F. For the electric field 

components q and p, this is no problem. In this language, the ground state is a Gaus-

sian in phase space, not just in real or momentum space alone. It is tempting to 

displace this rigidly to any desired point on the qp plane and obtain a state with 

electric fields defined as closely as the uncertainty principle allows (Fig.l). This 

goes by the name of a coherent state and was invented by Schrodinger though not 

in phase space language. These states have been thoroughly exploited in quantum 

optics [6,8] because of many beautiful mathematical properties, but here are two 

interesting physical ones. 

1. A quantum oscillator excited from its ground state by a classical source (e.g., 

a very heavy charge moving on a well defined trajectory with small quantum 

uncertainty) attains precisely this Gaussian distribution in phase space, which 

has minimum uncertainty. The centroid ζ = q(t) + ip(i) moves around on a 

circle just like a classical oscillator. The wave packet does not spread. Classical 

sources radiate coherent states. 

2. Let a field of this kind in a given mode transfer its excitation to two other 

modes, say by a beam splitter. Then (i) each of these daughter modes is itself 

in a coherent state and, (ii) experiments do not tell us whether these arose from 

a single source or two independent sources. This "cloning" is a characteristic 

property of classical signals [9] (the ultimate example being digital audio!). In 

contrast, a thermal state fed into a beam splitter shows positive correlations 

between counting fluctuations in the two output channels, a la Hanbury-Brown 
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and Twiss. A fixed number state would show anti correlation since any excess 

in one channel would have to be compensated by a deficiency in the other. 

Figure 1: Phase space description of a quantum oscillator. The rings in thin lines 

correspond to classical orbits with action in multiples of h. The areas surrounded by 

thicker lines schematically denote the distributions corresponding to different states. The 

annulus marked η is the π = 3 energy eigenstate. The circle marked g is the ground state, 

the radius being the rms uncertainty, c is a coherent state (displaced ground state) with 

π = 9, Δη = 3. « is a sqeezed state with the same value of π as c, but a reduced An 

and an increased (phase uncertainty). 
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It may seem surprising that a single mode laser field, idealised by a coherent 

state, exhibits Poisson counting statistics. One associates a laser with stimulated 

emission, hence with Bose statistics, and thereby with bunching. But, there is one 

case when Bose statistics does not imply bunching, viz., when all the bosons are in 

the same state ! For non-relativistic bosons, one would write a wave function like 

Φ(ΧΙ)Φ(Χ2)'"'Φ{^Ν) which is already symmetric in x\ · · · zjy, and at the same 

time factorized, implying uncorrelated particles. Although I have discouraged you 

from thinking of photons as bosons with wave functions ψ(χ), the parallel works in 

this case. 

The coherent state, with Δ η « y/n is not the only minimum uncertainty state 

with phase space area ft. One can conceive of squeezing the circular distribution in 

q — ρ space to reduce the variance in number and increase the variance in phase 

(Fig.l). This is an example of the squeezed states which have become so popu-

lar recently. As the phase space picture suggests, they show sub-Poisson intensity 

fluctuations. Futuristic gravitational wave detection concepts embody the use of 

squeezed light to reduce noise in interferometric configurations for detecting small 

movements in mirrors attached to the suspended masses (see the review by Ya-

mamoto et al. [10]). 

One of the common methods of measuring an electric field is to add a strong lo-

cal oscillator field and detect the total by a square law detector. This superposition 

of electromagnetic fields is not the same as superposition of wave functions. The 

mode amplitude is not the wave function but the independent variable on which 

the wave function depends. In terms of the phase space distribution function, the 

result, when worked out, is a convolution — what one would expect for independent 

classical variables. Notice that translating the signal distribution to higher ampli-

tudes by beating it with a local oscillator would increase the uncertainty in the 

number of quanta in the mode (as measured by the number of rings intersecting 

the distribution in Fig.l). Although, one has gained in the size of the effect caused 

by the signal, one has not gained in terms of detectability against quantum fluc-

tuations, which is reassuring. In fact, an l.o. in a coherent state will add its own 

intrinsic fluctuations to those of the signal. The phase space picture shows that this 

could be reduced by squeezing the l.o. in the amplitude direction. Of course, all this 

gives us only one of the two quadrature components of the input signal. To get both, 

one has to split the original signal, degrading the signal to noise ratio in the process. 

5. The radio-optical comparison 

The example just given of measuring the complex electric field has brought the 

discussion to the radio domain, being nothing but a schematic quantum-limited 

heterodyne receiver. As a general point, electric field measurement is quite distinct 

from photon counting. Formally, the operator (2) for the electric field contains 

separate a and o) terms, which means that in the process of measuring it photons 

can either be emitted or absorbed. More physically, imagine the input field acting 

on a heavy charge, whose movement can be monitored. The output from such a 

measurement would be a signal going up and down in some way, not one steadily 

https://doi.org/10.1017/S0074180900107272 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900107272


17 

building up. Clearly there is no net energy transfer to the field measuring device, 

consistent with the earlier argument. 

There is no basic principle which forbids reaching the quantum limit in the radio 

domain and indeed, Rydberg atoms have been discussed as possible photon detec-

tors at radio frequencies. However, real radio receivers are currently not quantum 

limited since their noise temperatures are by and large greater than hv/k (about 

5°K at 100 GHz). 

Once the receiver output is dominated by classical noise equivalent to many 

quanta, copying, amplification and recording are possible, without further degra-

dation (in principle). Notice that all these modern conveniences which radio as-

tronomers enjoy in contrast to their optical cousins are really a consequence of 

their having thoroughly ruined the signal in the first place with thermal noise [11]. 

Having a photon rich input signal is not the central issue for two reasons. Firstly, 

even in this regime, the photon counting techniques of the optical interferometrists 

would give better signal to noise if they could be implemented. Secondly, one is not 

particularly photon rich with sub-kelvin signals and millimetre (or shorter) waves. 

From the quantum view point, the Michelson two-element interferometer is re-

ally a different animal at optical and radio wavelengths. In the optical case, one is 

directly measuring the occupation of a Young-fringe like mode on the sky defined by 

two coherently combined apertures on the ground. Unless one uses beam splitters 

(and degrades S/N), a given aperture is committed to a single baseline. In the radio 

case, one is trying to measure electric fields at all the apertures simultaneously. The 

interference occurs between the classical signals or computer tapes which result. It 

should be regarded as a statistical correlation between the results of two quantum 

measurements. The optical example is a single measurement of the correlation of 

two quantum fields. 

Finally, it is amusing to try and decide just where things become truly "mea-

sured" or "classical" - is it the current in the diode or (as some observatory directors 

would maintain) the print in the journal which collapses the wave function ? Such 

questions are the Achilles heel of quantum theory [12] but fortunately, practical 

predictions do not seem to depend on how we answer them [13]. 
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Discussion: 

Baldwin: 

Are there any circumstances in which the use of amplifiers would be useful, assum-

ing they reach the theoretical limits of performance? I have in mind systems in 

which a beam has to be split and there are also losses. 

NHyananda: 

Even a quantum limited amplifier would add its fluctuations to those of the signal. 

Theoretically, one could therefore measure the signal and then share that informa-

tion over many baselines, rather than amplify it. However, this statement does not 

take into account considerations of bandwidth and computation. 
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