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Abstract. Equlibrium spherical stellar systems exhibiting instabilities
on a dynamical timescale were first studied by Henon (1973), using a
spherically symmetric N-body code. We have re-examined Henon's models
using an improved code whi¢h includes non-radial forces to quadrupole
order. In addition to the radial instability reported by Henon, two new
non-radial instabilities are also observed. In one, found in models
with highly circular orbits, the mass distribution exhibits quadrupole-
mode oscillations. In the other, seen in models with highly radial
orbits, the system spontaneously breaks spherical symmetry and settles
into a tri-axial ellipsoid. These instabilities, which are driven by
fluctuations of the mean field, offer some analogies to the well-known
dynamical instabilities of a cold disk of stars. While our models are
rather artificial, they indicate that dynamical instabilities may be
more common in spherical systems than had been thought.

Henon's generalized polytropic models are equlibrium spherical stellar
systems based on the distribution function

f(r,v) o max(E]-E,O)n—3/2 gem

where E;, n, and m are constants, E = ¢(r)+%v2, and J = rv_. Here nx
1; if n' =3 then all stars have the same E. The stellar dgnsity of
these models vanishes at

ry = (4m+6)/(3m-n+5)
in units where G = 1, total mass M; = 1, and binding energy T+U = -}.
The velocity anisotropy is independent of radius. Instead of m, we use
the parameter
_ 2 2 2.y _
K o= Y/ (V) y+vid) = (2m42)/(2m+3) .

The cases k = 0, 2/3, and 1 correspont to radial, isotropic, and
circular orbits respectively.
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We numerically solve Poisson's equation for a given choice of n and K,
obtaining the potential & and radius r as functions of the enclosed
mass M. To produce an N-body realization of a generalized polytrope,
particle radii are selected by applying r(M) to a series of uniformly
distributed random numbers, while the radial and transverse velocity
components are selected by a von Neumann rejection procedure.

Most of our results were obtained with a "reduced" N-body code (White
1983) in which the mean force field is expressed as a sum of monopole,
dipole and quadrupole terms. Individual 2-body interactions are not
included, so this code is collisionless. Our key results have been
checked with a direct-summation Aarseth code. In general, the two codes
yield similar results, although the more expensive direct-summation
experiments also show signs of 2-body relaxation.

The first non-radial instability occurs in models with orbits circular
enough to initially confine most of the mass to a spherical shell.
Figure 1 shows a snapshot of such a model; particles with high angular
momentum have been plotted as circles to bring out the quadrupole form
of the instability. The net ellipticity of the model, derived from the
quadrupole moment, oscillates with a period of approximately half the
mean orbital time. In the limit k = 1, particles are confined to the
surface of a sphere; since all have the same orbital period, any initial
perturbation will recur at regular intervals. The self-gravity of a
perturbation attracts unperturbed particles, so its amplitude grows with
time.
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Figure 1. Snapshot of an N-body model of the polytrope
n=13%, k=11/12 after 13 time units. Particles with

J > 0.8 are plotted as circles.

The second non-radial instability is seen in models with highly radial
orbits. In these cases the system does not oscillate, but quickly
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settles into a highly tri-axial ellipsoid, as shown in figure 2. No
further evolution has been seen in the longest experiments to date.
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Figure 2. Snapshot of an N-body model of the polytrope
n=1,K =0 after 10 time units.

To map out the domain of these instabilities, we have run a grid of 120
experiments in the (n,k) plane, spanning the range from n = 5/10, Kk =
2/12 ton =16/10, kK = 11/12. We confirm Henon's results for the radial
instability, which appears to be confined to models with small values
of n and k. The non-radial instabilities occur over a much wider range
of parameters; there is little indication that either instability
becomes weaker with increasing n up ton = 16/10.

Antonov (1962) and Lynden-Bell and Sanitt (1969) have shown that no
instabilities exist if the distribution f is a function of the energy E
only and df/dE < 0. The latter condition alone is sufficient for
stability if only radial modes are allowed (Gillan et. al. 1976). Our
results show that the condition df/3E < 0 is not sufficient for
stability against non-radial perturbations. The unstable models
presented here may shed some new light on the general stability problem
for stellar systems.
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