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Abstract

A certain natural extension 3S of the Borel tr-algebra is studied in generalized
weakly 0-refinable spaces. It is shown that a set belongs to 3$ whenever it
belongs to 3S locally. From this it is derived that if X« is an uncountable
regular cardinal which is not two-valued measurable, then the space of all
ordinals less than to, is more complicated than a union of less than X« weakly
0-refinable subspaces.

Subject classification (Amer. Math. Soc. (MOS) 1970): primary 28A05,
54D20, secondary 28A10
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Given a set A, we shall denote by | A \ the cardinality of A and by exp A the family
of all subsets of A. Throughout, by X we shall denote an uncountable cardinal.

DEFINITION 1. Let Z be a set. A family j / c e x p Z is called an ^-algebra in Z if
(i)
(ii)

(iii) ({Aa: a

DEFINITION 2. Let stf be an X-algebra in a set Z. A function /x: =s/->[0, +oo]
is called an ^-measure on stf if /x(0) = 0 and

rt\J{Aa: «eT}) = SM^J : cceT}
for each disjoint family {Aa: oceT}<=sZ with | r |<X-

Thus in our terminology, a a-additive measure on a a-algebra will be called
an ^-measure on an Xi-algebra.

Let stf be an ^-algebra in a set Z and let /* be an fc<-measure on s/. We shall say
that /it is complete ifAes/ whenever there is a B G«J/ such that A <= B and /x(B) = 0.
We shall say that JU, is saturated if A ejtf whenever AnBestf for each B sstf with

An uncountable cardinal K is called measurable if there is a set Z with \Z\ = X
and an X-measure (i on expZ such that /*(Z) = 1 and ^({z}) = 0 for each zeZ.
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If the measure [i takes only values 0 and 1, the cardinal X is called two-valued
measurable. The basic properties of measurable and two-valued measurable
cardinals which do not involve axiomatic set theory are proved in Ulam (1930);
more recent results can be found, for example, in Dickmann (1975, Chapter 0,
Section 4).

Unless specified otherwise, throughout, X will be an arbitrary topological space.
By & we shall denote the family of all open subsets of X. Let Y<= X. A collection
{Aa: aeT}<=expX is called separated in Y if {Aa: aer}c:exp Y and there is a
family {Ga: aeT}<= & such that {Gan Y: <xeT} is a disjoint collection and Aa<= Ga

for each aeT.

DEFINITION 3. An tf-algebra s/ in X is called complete (abbreviated as ctf-
algebra) if U {Aa: aeT} ejtf for every collection {Aa: a e r}<= «s/ which is separated
in some Yestf.

Clearly, expX is a c^-algebra in X, and the intersection of any nonempty
family of cfc<-algebras in X is again a c^-algebra in X. Thus we can define the
Borel ctf-algebra in X as the smallest cj<-algebra ^?x in X containing 'S. The
elements of ^?K will be called ctf-Borel subsets of X.

The next two propositions indicate that cJ<-Borel subsets occur quite naturally.

PROPOSITION 1. Let s4 be an ^-algebra in X containing IS and let fi.be a complete
and saturated ^-measure on s#. If X contains no discrete subspace of measurable
cardinality, then s/ is complete and so J ^ c j / ,

PROOF. Let {Aa=fi0: a.eT}<=-s/ be separated in some Yes/ and let
^ = U { 4 : a e I } . Choose Bes/ with fi(B)< +oo and {Ga: <xeT}<=& such that
{GanY:<xeT} is a disjoint family and Aa<=GanY for each aeT. Let
To = {a e T: fi(Ga n Yn B) = 0} and Bo = U {Ga n Yn B: a e To}. Suppose that
fi(Bo)>0. Because the sets Gan YnB are open in YnB and disjoint, we can
define an ^-measure v on exp To by letting

^ a n YnB: aeT'})

for each T'<=T0. Since X>Ko» it follows from Dickman (1975, Lemma 0.4.12,
p. 36) that To contains a set Tx of measurable cardinality. Choosing xaeAa for
each aeTx, we obtain a discrete subspace Xx = {xa: oieTj} of X with | JTJI = |TJI.

This contradiction shows that n(B0) = 0. By the completeness of /x,

U{AanB:aeT0}ej>/.

Because fi(B)< +oo, we have | r - r o |<Ko<X- Hence

AnB = (U{AaaB: aeT0})u([J{AanB:

belongs to s4. Since /x is saturated, A es/.
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REMARK 1. From the previous proof it is clear that if fi is a two-valued measure,
we can replace "measurable" by "two-valued measurable" in Proposition 1: we
only need to apply Dickmann (1975, Theorem 0.4.25(4), p. 39).

A set A^X is called tf-Lindelof if every open cover of A contains a subcover
whose cardinality is less than X- Thus an ordinary Lindelof set is XrLindelof.
We shall denote by ^ the family of all closed X-Lindelof subsets of X.

Let jtf be an K-algebra in X containing 19. An K-measure ju. on s/ is called
inner regular if

fi(A) = sup{/x(C): C e ^ , CaA}

for each A es/ with fi(A)< +oo.

PROPOSITION 2. Let sf be an tf-algebra in X containing & and let fibe a complete
and saturated ^-measure on s/. If /* is inner regular, then <sf is complete and so

PROOF. Using the same notation as in the proof of Proposition 1, it clearly
suffices to show that fi(B0) = 0. If Ce^ and C<=50, then

where S<=r0 with |S|<K. Hence /x(C) = 0 for each C e ^ , for which C<=Bo.
By the inner regularity of /x, /x(50) = 0.

The Borel ̂ -algebra in Jfis defined as the smallest ^-algebra in X containing IS.
Thus the Borel X-algebra in -JTis contained in 0$^ but, in general, it is not complete.
If X is a free union of subspaces Xa, then it is easy to see that the Borel c^-algebra
in X is isomorphic to the direct product of the Borel c^-algebras in Xa's. This
is not correct if the Borel cK-algebras are replaced by the Borel X-algebras. The
situation is well illustrated by the following example.

EXAMPLE 1. Let T be the discrete space of all countable ordinals and let
X=Tx[0,1]. According to Natanson (1957, Chapter 15, Section 2), for each
aeT there is a set Aa<=[0,1] whose characteristic function belongs to the Baire
class a. Thus the set A = (J {(a) x Aa: aeT} is not a Borel subset of X. Obviously,

A set A<= X is called locally c#-BoreI if for each xeX there is a neighborhood
U of x such that A n Ue&K. The family of all locally ctf-Borel subsets of X will
be denoted by ^ . Obviously, ^K<=J§^ and, in general, this inclusion is proper
(see the Corollary to Proposition 3). If ^N = =2 ,̂ the space A" is called ^-saturated.

If -Tcexp X and x e X, let st (x,iT) = {VeTT: x e V}.

DEFINITION 4. The space X is called tf-weakly O-refinable if each open cover
of X has an open refinement "V = U {f~a: oceT} such that | T\ <X and for each
x e X there is an ax e T such that st (x, "3^) is nonempty and finite.
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We note that X is weakly 0-refinable in the sense of Bennett and Lutzer (1972)
if and only if it is Xi-weakly 0-refinable.

THEOREM. Let X be ̂ -weakly 6-refinable. Then X is ^-saturated.

PROOF. Let AeJC^. For each xeX choose an open neighborhood Ux of x so
that AnUxe&K- ^et "^ = Ui'K- oceT} be an open refinement of {Ux: xeX}
such that | T\ < X and given xeX, there is an atx e Tfor which st (x, i^) is nonempty
and finite. Because the sets {xeZ:|st(x,T^)|^A:}, cceT,.k= 1,2,..., are open, the
sets

Xa>k

are cK-Borel. Clearly,

Let #^fc consist of all sets AnXaknV1n...nVk where Vlt...,Vk are distinct
elements of iTa. Then iTaik is separated in Xak and \J{W: WeWa>k) = AnXak.
Since if^jec^K, we have AnXa>ke&tK for oceT and k = 1,2 The theorem
follows.

Throughout, let K be an uncountable ordinal. By W we shall denote the set of
all ordinals less than K equipped with the order topology, and we let tf = | W\.
The family of all closed cofinal subsets of W is denoted by 3^. Thus if K is a
regular ordinal, then £F consists of all closed sets F<^ W for which | F\ = tf-

LEMMA Let K be a regular ordinal, {Fa: a.eT}<^3^, and let F=(\{Fa: asT}.

PROOF. Using the interlacing lemma (see Kelley, 1955, Chap. 4, Prob. E, (a)) in
W, it is easy to see that the lemma is correct if | T\ = 2. By induction it is correct
whenever |r|<Ko- Let Ko^OT<K and suppose that the lemma is correct if
| r |<w. Let £ be the initial ordinal for m and let T={a: <*<£}. Replacing
Fa by C\{Fp: )3<a}, we may assume that FaczF^ for each /}<<*<£. Given y<K,
there are y a eF a such that y<ya<yp for each a<jS<£. Let S = sup{ya: a<£}.
Since K is a regular ordinal, 8 < K. It follows that S sF and so FeJF.

Let stf consist of all sets A<= Wsuch that either A or W— A contain a set Fe Jf.
For Aes/ let fj.(A) = 1 if A contains a set FeJf and n(A) = 0 otherwise. The
next proposition follows immediately from the lemma.

PROPOSITION 3. Let Kbe a regular ordinal. Then the family si is an ^-algebra in W
containing all open subsets of W and /x is a complete ^-measure on stf.

COROLLARY. Let Kbe a regular ordinal such that the cardinal {< is not two-valued
measurable. Then W is not ^-saturated and hence not ^-weakly O-refinable.
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PROOF. The space W is Hausdorff and each xe W has a neighborhood U with
| U\ < X- Thus J§^ = exp W. Because the cardinal X is not two-valued measurable,
s/^expW. Being finite, the X"measure ^ j s saturated. By Proposition 1 and
Remark 1, ^ , c ^ . The corollary follows from the theorem.

Bennett and Lutzer (1972) proved that Wis weakly 0-refinable if and only if it is
paracompact (Theorem 11). A simple modification of this proof will show that
W is not K-weakly 0-refinable for any uncountable regular ordinal K.

REMARK 2. If the cardinal X is two-valued measurable, we cannot use Proposition
1 to show that ^?N <=,$/. However, K. Prikry kindly pointed out to the author that
s/^exp W for any uncountable regular ordinal K. Indeed, this is clear if K = a^,
for Xi is not measurable (see Ulam, 1930, Theorem (A)). If *c> wx then each closed
cofinal subset of W contains an ordinal a cofinal with a>0 and also an ordinal /?
cofinal with wv Hence if B is the set of all ordinals a.eW cofinal with <o0, then

We shall close this paper with an example indicating the necessity of the
cardinality assumption in Proposition 1.

EXAMPLE 2. Let X be a two-valued measurable cardinal and let Z be a discrete
space of cardinality X- Denote by v a two-valued X-measure on expZ such that
v{Z) = 1 and v({z}) = 0 for each zeZ. If K is the initial ordinal for X> then K is
regular (see Ulam (1930)). Thus we can define the X-measure ^ in W as in
Proposition 3. Let X= WxZ. For C^X and oceW set C01 = {zeZ: (<x,z)eC}
and C = {<xeW: v(Ca) = 1}. Denote by <# the family of those C<=X for which
C" G ^ and let A(C) = /x(C') for each Ce# . It is easy to see that ^ is an X-algebra
in X and that A is a complete two-valued K-measure on &. Let G c J b e open
and let a e G' be a limit ordinal. For each /?< a let

Since G is open, Ga = \J{Ay. /?<a}. It follows that v(Afi) = 1 for some /3<a.
Consequently, (J9,a]c(?' and G' is open. Therefore, ^cg 7 . Choose A<=- W for
which A $s/ (see Remark 2). Clearly, we can consider Z as W with the discrete
topology. Let B = {{a,z)eX: oceA and z>a). Then B' = A and thus
However,

B=U{(An[0,z))x{z}:zeZ}

from which it follows that
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