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On the classification of crepant analytically extremal

contractions of smooth three-folds

Csilla Tamás

Abstract

We discuss the problem of classifying crepant analytically extremal contractions X → Y
from a smooth 3-fold, contracting an irreducible normal divisor D in X to a point P in Y .
We prove that, if D has degree (−KD)2 � 5, the analytic structure of the contraction is
completely determined by the isomorphism class of the exceptional locus and its normal
bundle. This was previously known only for a smooth exceptional locus D.

1. Introduction

In the minimal model program, the study of certain types of birational contractions, called extremal,
is of central importance. In [Mor82], S. Mori studied and classified birational extremal contractions
ϕ : X → Y of smooth 3-folds X where the canonical bundle of X is negative along the fibers of
the contraction. His classification includes the following result: the exceptional locus D = Exc(ϕ)
is an irreducible divisor. When Exc(ϕ) contracts to a curve on Y , Exc(ϕ) is a P

1-bundle over the
base curve and Y is smooth. When Exc(ϕ) contracts to a point q ∈ Y , it is either P

2, P
1 × P

1 or
a singular quadric, with specified normal bundle, and X is the blowup of Y at q; in this case the
analytic structure of the neighborhood of Exc(ϕ) is uniquely determined by the isomorphism class
of Exc(ϕ) and its normal bundle in X. We call this feature the analytic rigidity of the contraction
(see Definition 2.2).

In this paper we attempt to give a similar description for birational extremal contractions of
smooth 3-folds in the K-trivial case, i.e. when the relative canonical bundle KX/Y is numerically
trivial (and hence the contraction is crepant); see § 2 for a precise definition. Our main result is the
following theorem.

Theorem 1.1 (Main Theorem). Let X be a smooth projective 3-fold over C and let ϕ : X → Y
be a K-trivial birational extremal contraction onto a normal projective variety Y , contracting a
divisor D ⊂ X to a point q ∈ Y . Suppose D is normal, and (−KD)2 � 5. Then the contraction ϕ
is analytically rigid.

In this way we obtain the classification of K-trivial extremal contractions in terms of the
exceptional divisor D and its normal bundle ND/X in X in the case when D is normal with
d = (−KD)2 � 5, contracting to a point. As the exceptional locus is a normal rational (possibly
singular) del Pezzo surface D of degree d � 5 with normal bundle isomorphic to OD(KD) (see § 2),
we obtain a finite list of possible contractions up to analytic isomorphism.
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As the analytic rigidity result shows, in order to know the analytic structure of the contraction,
it is sufficient to construct one example for each possible exceptional locus. No algebraic examples
are known except when D is a non-singular del Pezzo surface of degree 6 [Nam97]. In § 6 we present
an example of an embedding of a singular del Pezzo surface of degree 7 into a smooth projective
3-fold such that the canonical bundle of the ambient space is numerically trivial on D. By Fujiki’s
contraction theorem, D can be contracted analytically, giving us a K-trivial contraction in the
analytic category. Similar constructions can be carried out for each possible exceptional divisor D
(any normal rational del Pezzo surface of degree d � 5).

K-trivial extremal contractions have been studied by Gross [Gr97a] and Wilson [Wil97].
Their analysis of the case when the exceptional locus D is a divisor contracting to a point
includes a description of the (possible) exceptional loci, and the description of the analytic struc-
ture (and in particular establishing the analytic rigidity) when D is non-singular with (−KD)2 � 5.
The analytic rigidity for D non-normal or (−KD)2 � 4 is not known. In fact, while the cubic
hypersurface singularities x3 + y3 + z3 + t3 + xyzt = 0 and x3 + y3 + z3 + t3 = 0 are not iso-
morphic (see [MY82]), the exceptional locus of the blowup of the origin is the smooth cubic surface
x3

0 + x3
1 + x3

2 + x3
3 = 0 in both cases. On the other hand, if D is non-normal, we have (−KD)2 = 7,

and [Gr97b] gives a (local) example of a K-trivial contraction with exceptional divisor a non-normal
del Pezzo surface of degree 7.

Wilson also describes the possible contractions if the exceptional locus D contracts to a curve.
Small K-trivial birational extremal contractions of smooth 3-folds (i.e. when the exceptional locus
is a collection of curves) are three-dimensional flopping contractions; these were studied in [Kol91]
and [Rei83].

Even in the surface case, the condition of K-negativity or K-triviality is essential for
analytic rigidity. In [Lau73], Laufer gives a complete list of taut surface singularities (i.e. normal
two-dimensional singularities that are completely determined by the weighted dual graph Γ of the
exceptional locus E of the minimal resolution). He also lists those singularities which are deter-
mined by the weighted dual graph and the analytic structure of E, and states that the singularities
obtained by contractions of curves of general type are not determined by Γ and the analytic struc-
ture of E. For example the singularity xd + yd + zd = 0 is not isomorphic to xd + yd + zd + fd+1 = 0
(where fd+1 is a ‘general’ monomial of degree d + 1, d � 3), whereas they both have the same
exceptional curve and normal bundle.

We outline below the proof of the Main Theorem.
By [HR64, Theorem 3], the proof of analytic rigidity is reduced to showing that any two

embeddings of D into smooth complex 3-folds with normal bundles isomorphic to OD(KD) are
formally equivalent. Suppose now that we have two K-trivial extremal contractions ϕ : X → Y
and ϕ′ : X ′ → Y ′, with isomorphic exceptional divisors D and D′, and such that ND/X � ND′/X′ .
To prove the formal equivalence, we first show that if H1(D,TD ⊗ ID/I2

D) = 0, then the two
embeddings D ⊂ X and D′ ⊂ X ′ are 2-equivalent, i.e. we have an isomorphism of the ringed
spaces (D,OX/I2

D) and (D′,OX′/I2
D′), where ID denotes the ideal sheaf of D in X. Then we can

obtain a formal equivalence by showing that the obstruction spaces H1(D,TX ⊗ Iν
D/Iν+1

D ) to
extending a ν-equivalence (ν � 2) to a (ν + 1)-equivalence vanish for all ν � 2. The vanishing
of both H1(D,TD⊗ID/I2

D) and H1(D,TX ⊗Iν
D/Iν+1

D ) is reduced to showing H1(D,TD) = 0 using
properties of del Pezzo surfaces. This last vanishing is then proved using an explicit description of
normal rational del Pezzo surfaces.

Remark 1.2. We should note that our results about formal equivalence hold over any algebraically
closed field of characteristic 0. However, over an arbitrary field there is no notion of analytic rigidity
(and in particular we do not have Theorem 3 of [HR64]). Over an arbitrary field, formal equivalence
implies only equivalence in the étale topology [Art69a, Theorem (4.6)].
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Conventions

i) We are working over the field of complex numbers C.

ii) We denote the tangent sheaf HomOD
(Ω1

D,OD) of an algebraic variety D by TD. The rest of
our notations are standard in algebraic geometry.

2. Preliminaries

2.1 K-trivial extremal contractions
Definition 2.1. Let X be a smooth projective n-fold over C and ϕ : X → Y a birational morphism
onto a normal projective variety Y such that the exceptional locus D of ϕ is of codimension 1 and
such that dimϕ(D) = 0. We call the contraction ϕ

P1) extremal if all the curves contracted by ϕ are numerically proportional, i.e. given two curves C
and C ′ contracted by ϕ, there is a rational number r such that for any divisor E in X, we have
(E · C ′) = r(E · C),

P2) K-trivial if the canonical bundle on X is numerically trivial on all curves contracted by ϕ,
i.e. (KX · C) = 0 for any curve C contracted by ϕ to a point.

Note that the condition P1 implies that the exceptional locus D is an irreducible divisor
(Proposition 2.4), and hence ϕ contracts D to a point q ∈ Y .

Definition 2.2. The contraction ϕ is called analytically rigid if its analytic structure is uniquely
determined by the isomorphism class of Exc(ϕ) = D and its normal bundle ND/X in X.
More precisely, suppose ϕ′ : X ′ → Y ′ is another birational map on a smooth projective 3-foldX ′ with
exceptional locus D′, contracting D′ to a point q′ ∈ Y ′. If D � D′ and we have an isomorphism
of normal bundles ND/X � ND′/X′ , then the analytic rigidity of ϕ means that there are open
(analytic) neighborhoods U of D in X and U ′ of D′ in X ′ over which the contractions ϕ and ϕ′ are
analytically isomorphic, i.e. we have the following commutative diagram (in the analytic category).

D

��

⊂ U

��

� U ′

��

⊃ D′

��
q ∈ ϕ(U) � ϕ′(U ′) � q′

Remark 2.3. A priori our definition P1 of an extremal contraction is different from the one generally
found in the literature, namely the ‘contraction of an extremal ray’. However, by Proposition 2.4
below, P1 and P2 imply that the birational map ϕ is the contraction of an extremal ray R with
respect to KX + εD, for any 0 < ε, where R := R+[C] for any curve C ⊂ D.

Proposition 2.4. Let X be a non-singular projective variety of dimension n, and let ϕ : X → Y
be a birational extremal contraction. Let D denote the exceptional locus of ϕ (with the reduced
structure). Suppose that codimX D = 1 and dimϕ(D) = 0. Then D is irreducible and −D is
ϕ-ample. Furthermore, ϕ is the contraction of an extremal ray of the closure NE(X) of the cone of
effective 1-cycles on X.

Proof. Suppose there are two distinct irreducible components D1 and D2 of D, and codimX D1 = 1.
Let H1,H2, . . . ,Hn−2 ⊂ X be general hyperplane sections of X. Let H =

⋂n−2
i=1 Hi. Then H is a

smooth surface and H ∩D1 is an irreducible curve C1 on D1. Then

(D1 · C1)X = (D1|H · C1)H = (C2
1 )H < 0
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by the negativity of self-intersection of contractible curves. Now, if C2 ⊂ D2 is a curve that is not
contained in D1, we have that (D1 ·C2) � 0. But this contradicts the fact that ϕ is extremal, because
C1 and C2 cannot be numerically proportional. Therefore, D is irreducible and for any curve C ⊂ D
we have (D · C) < 0.

In order to show that −D is ϕ-ample, we only need to show that the divisor −D|D is ample
on D [Gro61, Theorem III.4.7.1]. Then, by Kleiman’s criterion of ampleness, it is enough to show
that (−D · Z) > 0 for any Z ∈ NE(D).

The curves of D are numerically proportional on X, therefore Z ≡ rC1 on X for some positive
rational number r, since Z 
= 0 in NE(D). Therefore (−D · Z) = −r(D · C1) > 0, and hence −D is
relatively ample and the divisor −D|D is ample on D.

In order to show that ϕ is a contraction of an extremal ray, let A be an ample divisor on Y .
Then, by the contraction theorem of extremal rays [Mat01], the face (ϕ∗A)⊥ of 1-cycles intersecting
trivially with ϕ∗A in NE(X) contains an extremal ray R (i.e. an edge of the cone NE(X)) and we
have a contraction contR : X → Y ′ of the extremal ray R.

But any curve C in R is contracted by ϕ, because (ϕ∗A · C) = 0. Therefore C is numerically
proportional to the curve C1 in D, and hence the extremal ray R is generated by C1. Therefore ϕ
and contR contract the same curves. This implies ϕ = contR.

Now we consider again our situation: let X be a smooth projective 3-fold and ϕ : X → Y a
K-trivial birational extremal contraction, contracting a divisor D to a point q ∈ Y . In fact, as our
result concerns only the analytic structure of ϕ, we may drop the projectivity assumption on X,
and study crepant contractions of smooth 3-folds which are analytically extremal (i.e. have relative
Picard number 1).

2.2 Description of the exceptional divisor D

By the adjunction formula,

OD(−KD) � OX(−(KX +D))|D ≡ OX(−D)|D, (2.1)

and hence OD(−KD) is ample on D, because −D is ϕ-ample. Also, D has only Gorenstein singu-
larities, being a (Cartier) divisor on a smooth 3-fold. Therefore D is a so-called del Pezzo surface
(i.e. Gorenstein with ample anticanonical bundle) of degree d = (−KD)2. Note that we allow the
del Pezzo surface D to be singular.

By [Gr97a, Theorem 5.2], the possibilities for the exceptional divisor D are further restricted by
its degree and singularities; D is either

i) a normal and rational del Pezzo surface of degree 5 � d � 9, or

ii) a non-normal del Pezzo surface of degree d = 7, or

iii) a normal del Pezzo surface of degree d � 4 (rational for d = 4).

In order to obtain information about the normal bundle ND/X of D in X, note that the equiva-
lences (2.1) above also show that ND/X is numerically equivalent to OD(KD). In fact, we have that
ND/X � OD(KD) (using that the Euler characteristic is a numerical invariant [Gro67b, Corollary 09]
and that χ(OD) = 1 for del Pezzo surfaces [HW81]).

2.3 The singularity at q ∈ Y

Because ϕ : X→Y is K-trivial and extremal, the singularity q ∈ Y is a rational Gorenstein sin-
gularity (i.e. it is Gorenstein, and ϕ∗KX = KY ). According to [Rei79], to an isolated rational
Gorenstein 3-fold point q ∈ Y one can attach a natural number k � 0 such that:
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i) if k = 0 then q ∈ Y is a cDV point;
ii) if k = 1 then q ∈ Y is a hypersurface singularity that is locally of the form x2+y3+f(y, z, t) = 0,

where f = yf1(z, t) + f2(z, t) and f1 (respectively f2) is a sum of monomials zatb of degree
a+ b � 4 (respectively � 6);

iii) if k = 2 then q ∈ Y is a hypersurface singularity that is locally of the form x2 + f(y, z, t) = 0,
where f is a sum of monomials of degree � 4;

iv) if k � 3 then multq Y = k and the embedding dimension of q ∈ Y is k + 1; in particular, for
k = 3, q ∈ Y is still a hypersurface singularity, and for k = 4 it is a complete intersection.

Remark 2.5 [Rei79, Proposition (2.13)]. Reid implies that, if the exceptional locus of the map
ϕ : X → Y is a del Pezzo surface of degree d, then the invariant k is equal to d. We also have that
X is the (weighted) blowup of Y at q [Rei79, Theorem (2.11)]. In particular, when d � 3, X is the
blowup of Y at q.

2.4 Normal rational del Pezzo surfaces of degree ��� 5
Definition 2.6. A two-dimensional (possibly singular) projective variety D is called a del Pezzo
surface if it has only Gorenstein singularities, and its anticanonical sheafOD(−KD) is ample. We call
the intersection number d = (−KD)2 the degree of the del Pezzo surface D.

Normal rational del Pezzo surfaces were classified by Hidaka and Watanabe in [HW81];
non-normal ones by Reid in [Rei94]. In this section we enumerate some facts that will be used
subsequently.

Let D be a normal del Pezzo surface of degree d and π : D̃ → D a minimal resolution of D.
Then D is either a cone over an elliptic curve, or it is rational. In the latter case, D is either P

2

(d = 9), P
1×P

1 (d = 8), a singular quadric in P
3 (d = 8), or its minimal resolution D̃ is the blowup

of 9− d points Σ in almost general position on P
2 [HW81].

Up to projective automorphisms of P
2 (and their extensions to the blowup spaces), there are 22

different configurations of at most four points in almost general position (including Σ = ∅, when
D � P

2), so there are 22 non-isomorphic rational del Pezzo surfaces of degree d � 5 other than
P

1 × P
1 or a singular quadric. The following is a well known lemma.

Lemma 2.7. A normal rational del Pezzo surface D of degree d � 5 is either non-singular, or it can
have only the following singularities: A1, 2A1, A2, A1A2, A3 or A4.

Note that for d � 3, the anticanonical sheaf OD(−KD) is very ample and its global sections
yield an embedding of D into P

d as a subvariety of degree d. This embedding defines a projectively
normal variety and is defined by quadric equations except for the case d = 3 [HW81, Theorem 4.4].

Proposition 2.8 [HW81, Proposition 4.2]. Let D be a normal del Pezzo surface. Then the following
hold:

i) the anticanonical system |−KD| of D contains a non-singular elliptic curve;

ii) H1(D,OD(νKD)) = 0 for all ν ∈ Z;

iii) if degD = d, then

dimH0(D,OD(−νKD)) =




(ν + 1)ν
2

d+ 1 if ν � 0,

0 if ν < 0.
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3. Analytic equivalence, formal equivalence and infinitesimal extensions

3.1 Analytic versus formal equivalence

A standard tool for showing analytic equivalence is a criterion due to Grauert [Gra62] and Hironaka
and Rossi [HR64] that reduces the problem of showing analytic equivalence of embeddings to that of
showing formal equivalence [HR64, Theorem 3]. A careful reading of the proof of [HR64, Lemma 9]
gives us the following lemma.

Lemma 3.1. Let X be a non-singular complex manifold of dimension n and let D be a complex
subspace with ideal sheaf ID. We assume that either D is reduced, or D is a (Cartier) divisor.
Suppose that there exists an integer ν0 � 2 such that H1(D,TX ⊗ Iν

D/I
ν+1
D ) = 0 for any ν � ν0.

Then a ν-equivalence (ν � ν0) of D with a complex subspace D′ of a complex space X ′, where X ′

has the same dimension as X at all points of D′, extends to a formal equivalence.

By ν-equivalence we mean an isomorphism of the complex spaces (D,OX/Iν
D) and (D′,OX′/Iν

D′),
where ID, respectively, ID′ is the ideal sheaf of D in X, respectively of D′ in X ′. Formal equivalence
means an isomorphism of the completions:

X̂ = lim←−(D,OX/Iν
D) � X̂ ′ = lim←−(D′,OX′/Iν

D′).

Remark 3.2. For any ν, the obstruction to extending a ν-equivalence to a (ν + 1)-equivalence lies
in the cohomology group H1(D,TX ⊗ Iν

D/Iν+1
D ).

In our case we are given a divisor D in a smooth 3-fold X, with given normal bundle ND/X

(which is isomorphic to OD(KD)). In general, if we have an embedding of any scheme D into a
scheme X such that D has conormal sheaf L in X, then we have the exact sequence

0→ L→ O2D → OD → 0,

where 2D is the 2-structure on D obtained from the embedding D ⊂ X. Therefore 2D is an in-
finitesimal extension of D by the sheaf L (i.e. L can be considered as an ideal sheaf with square 0
on the scheme 2D, with O2D/L � OD [Har77, Exercise II.8.7]; see also [Gro64, § 18]). Below (see
Proposition 3.5) we show that, if H1(D,TD⊗L) = 0, then D uniquely extends to 2D with the given
conormal sheaf L. As we see in § 4, this condition is satisfied in our case and hence we may apply
Lemma 3.1 with ν0 = 2.

3.2 Certain local conditions

Lemma 3.3. LetD be a (not necessarily reduced) divisor in a smooth n-foldX, and let L � OD(−D)
be the conormal bundle of D in X. Then the scheme 2D is locally uniquely determined by D and L.
More precisely, if we have another embedding D � D′ ⊂ X ′ into a smooth n-fold X ′ such that
(ND′/X′)∗ � L, then the schemes 2D and 2D′ are locally isomorphic.

Proof. As noted before, both 2D and 2D′ are infinitesimal extensions of D by L. The question is
local, so we may assume that X = SpecR, R a regular ring, D = Spec(R/f) (and hence 2D =
Spec(R/f2)) and 2D′ = SpecA, where the support of A is D, and at any point, the embedding
dimension of A is the same as the embedding dimension ofD. So we have two infinitesimal extensions
of R/f by R/f :

0→ R/f
α−→ R/f2 β−→ R/f → 0 and 0→ R/f

α̃−→ A
β̃−→ R/f → 0.
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The ring homomorphism R/f2 → R/f factors through A [Har77, Exercise II.8.6], and thus we
have the following commutative diagram.

0 �� R/f

λ
��

α �� R/f2

ϕ

��

β �� R/f �� 0

0 �� R/f
α̃

�� A
β̃

�� R/f �� 0

(3.1)

From here, we obtain an isomorphism of extensions

0 �� R/f
αλ �� R[T ]/(f2, f − λT, T 2)

Φ

��

βλ �� R/f �� 0

0 �� R/f
α̃

�� A
β̃

�� R/f �� 0

where αλ(r) = rT , βλ(r + sT ) = β(r), and Φ is a ring homomorphism defined by Φ(r + sT ) =
ϕ(r) + α̃(s modf); we regard λ as an element of R.

As all infinitesimal extensions of non-singular affine schemes are trivial, it is sufficient to consider
the case when R is local of dimension n, D = Spec(R/f) is singular, and so embdim(R/f) = n.

By completion, we may assume R � C[[X1,X2, . . . ,Xn]]. However, the embedding dimension of
C[[X1,X2, . . . ,Xn, T ]]/(f2, f − λT, T 2) is n if and only if λ is a unit. But then (3.1) implies that
the completion ϕ̂ of ϕ is an isomorphism, and (as completion is faithfully flat) that ϕ : R/f2 → A is
an isomorphism. So, although the infinitesimal extension 0→ R/f → A→ R/f → 0 is not unique,
the ring A is.

Remark 3.4. The same statement is true if we only assume that D is a (n− 1)-dimensional scheme
which is locally a divisor in a smooth n-fold, and that there exists a scheme 2D in which D has
conormal bundle L.

3.3 Cohomological condition for the (global) uniqueness of O2D

In what follows, we show that, if we fix the local data given by an infinitesimal extension of D by L,
then the set of all (isomorphism classes of) extensions with the same local data is in one-to-one
correspondence with H1(D,TD ⊗L).

More precisely, let now (D,OD) be a ringed space, L a sheaf of OD-modules, and consider
the following local data: for any p ∈ D, an infinitesimal extension 0→ Lp

αp−→ Ap
βp−→ Bp → 0,

where Lp = Lp and Bp = OD,p. We say that an infinitesimal extension 0→ L α−→ A β−→ OD → 0
of D by L has the given local data (Ap, αp, βp) if, for all p ∈ D, we have isomorphism of extensions
as follows.

0 �� Lp �� Ap

��

�� Bp �� 0

0 �� Lp �� Ap �� B �� 0

(3.2)

Proposition 3.5. Suppose we have a ringed space (D,OD), a sheaf L of OD-modules, and an
infinitesimal extension (A, α, β) of D by L with local data (Ap, αp, βp). Then the set of isomorphism
classes of infinitesimal extensions of D by L having the local data (Ap, αp, βp) is in one-to-one
correspondence with

H1(D,Der(OD,L)) = H1(D,HomD(Ω1
D,L)).

Remark 3.6. This result was stated (without details) in [Rei75].
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Proof of Proposition 3.5. Let 0 → L α−→ A β−→ OD → 0 be the given infinitesimal extension with
local data (Ap, αp, βp). Cover D with affine open sets Vi = SpecBi, and denote L|Vi = Li, A|Vi = Ai.

Given another extension 0 → L α̃−→ Ã β̃−→ OD → 0 with local data (Ap, αp, βp), on Vi we have the
following isomorphisms of extensions.

0 �� Li
αi �� Ai

ϕi

��

βi �� Bi
�� 0

0 �� Li α̃i

�� Ã|Vi β̃i

�� Bi
�� 0

On the intersections Vij = Vi ∩ Vj , the morphisms ϕi and ϕj differ by a derivation: if we denote
ϕij = ϕ−1

j ◦ ϕi, then ϕij(a) = a+ θij(β(a)), where θij ∈ Derk(Bij , Lij). Thus the extension Ã gives
a (well-defined) cohomology class [{θij}] ∈ Ȟ1({Vi},Der(OD,L)) � H1(D,Hom(Ω1

D,L)).
Conversely, given a cohomology class [{θij}] ∈ Ȟ1({Vi},Der(OD,L)), we obtain isomorphisms

of extensions ϕij : (A|Vij , αij , βij)→ (A|Vij , αij , βij). We define the infinitesimal extension Ã by

Ã(V ) =
{

(si)i∈I ∈
∏
A(Vi ∩ V ) : ϕij(si|(Vij∩V )) = sj|Vij

}
.

Remark 3.7. Similar proof shows that extensions of νD to (ν+1)D are in one-to-one correspondence
with H1(D,HomνD(Ω1

νD,L)).

Corollary 3.8. Let D be a (not necessarily reduced) divisor in a smooth n-fold X, and let L
be the conormal bundle of D in X. Suppose that H1(D,TD ⊗ L) = 0. Then O2D is unique up to
isomorphism.

4. Reducing the proof to the vanishing of H1(D,T D)

We now return to the proof of the Main Theorem, restated as follows.

Theorem 4.1 (Main Theorem). Let X be a smooth 3-fold over C and let ϕ : X → Y be a crepant
analytically extremal contraction, with exceptional locus D a normal rational del Pezzo surface of
degree d � 5, contracting to a point q ∈ Y . Then the contraction ϕ is analytically rigid.

As we noted in § 2, a normal rational del Pezzo surface of degree d � 5 has only An-type
singularities (Lemma 2.7), and ND/X � OD(KD). If we denote by ID the ideal sheaf of D in X,
then

Iν
D/Iν+1

D � (ID/I2
D)⊗ν � OD(−νKD). (4.1)

Based on the results of § 3, the proof of the Main Theorem is reduced to showing the vanishing
of the cohomology groups H1(D,TD ⊗ ID/I2

D) and H1(D,TX ⊗ Iν
D/I

ν+1
D ), for all ν � 2. In this

section we show that H1(D,TD) = 0 is a sufficient condition for achieving these vanishings, and we
defer the proof of the following theorem till § 5.

Theorem 4.2. Let D be a normal rational del Pezzo surface of degree d � 5. Then

H1(D,TD) = 0.

Proposition 4.3. Let D be a normal rational del Pezzo surface of degree d � 5. Then we have

H1(D,TD ⊗OD(−νKD)) = 0 for all ν � 0.
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Proof. Let H ∈ |−KD| be a general hyperplane section; we can take it to be an irreducible, smooth
elliptic curve (Proposition 2.8) that avoids the singular points of D.

Note that TD is locally free outside the singular points of D, and therefore tensoring

0→ OD(−H)→ OD → OH → 0 (4.2)

by TD ⊗OD(−νKD) we obtain

0→ TD ⊗OD((1 − ν)KD)→ TD ⊗OD(−νKD)→ TD ⊗OD(−νKD)|H → 0. (4.3)

Next we consider the exact sequence

0→ IH/I2
H → Ω1

D|H → Ω1
H → 0,

where IH is the ideal sheaf of H in D. Since H is an elliptic curve and deg(−KD|H) = d = deg(D),
we obtain that

h0(H,TD ⊗OD(−νKD)|H) = (2ν + 1)d,

h1(H,TD ⊗OD(−νKD)|H) = 0.

Therefore, by induction, using the long exact sequence associated to (4.3) and the condition
H1(D,TD) = 0, we obtain H1(D,TD ⊗OD(−νKD)) = 0 and H2(D,TD ⊗OD(−νKD)) = 0 for all
ν � 0. This completes the proof of Proposition 4.3.

Theorem 4.4. Under the assumptions of the Main Theorem, we have

H1(D,TX ⊗ Iν
D/Iν+1

D ) = 0, for all ν � 2.

Proof. When D is non-singular, the theorem is an easy consequence of Proposition 4.3 and the
vanishing of the first cohomology of OD((1 − ν)KD) for any del Pezzo surface (Proposition 2.8).
We actually obtain the vanishing of H1(D,TX ⊗ Iν

D/Iν+1
D ) = 0, for all ν � 1.

So we concentrate on the case when D is normal rational. In this case the difficulty comes from
the fact that the tangent sheaf TD is not locally free any more. In fact, H1(D,TX⊗ID/I2

D) does not
vanish in general (see Remark 4.6 below), but an easy argument shows that it is enough to prove
that H1(D,TX ⊗ I2

D/I3
D) = 0.

Indeed, for a general H ∈ |−KD|, as in the proof of Proposition 4.3, tensor

0→ OD(−H)→ OD → OH → 0

by TX ⊗ Iν
D/Iν+1

D for some ν � 2. From the long exact sequence of cohomology, we get

H1(D,TX ⊗ Iν−1
D /Iν

D)→ H1(D,TX ⊗ Iν
D/Iν+1

D )→ H1(H,TX ⊗ Iν
D/Iν+1

D |H).

Consider the exact sequences

0→ TH → TX |H → NH/X → 0

and

0→ NH/D → NH/X → ND/X |H → 0.

The latter sequence is exact because both H in D and D in X are Cartier divisors; see for example
[Gro67a, 19.1.5].

We know that NH/D = OH(−KD), ND/X |H = OH(KD), so tensoring the above exact sequences
with Iν

D/Iν+1
D = OD(−νKD) yields H1(H,NH/X ⊗ Iν

D/Iν+1
D ) = 0 (because −KD is non-zero and

effective), and hence H1(H,TX ⊗Iν
D/Iν+1

D |H) = 0 for all ν � 2. (Recall that H is an elliptic curve.)
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Therefore we have surjections

H1(D,TX ⊗ Iν−1
D /Iν

D)→ H1(D,TX ⊗ Iν
D/Iν+1

D )→ 0 ∀ν � 2,

and so we can use induction on ν to prove the vanishing of the groups H1(D,TX ⊗ Iν
D/Iν+1

D ).
Next we show that H1(D,TX ⊗ I2

D/I3
D) = 0. The sequence

0→ ID/I2
D → Ω1

X |D → Ω1
D → 0 (4.4)

is exact because D is a Cartier divisor in the smooth 3-fold X. The dual of this sequence gives us

0→ TD → TX |D → (ID/I2
D)∗ ⊗ IS(D) → 0,

where S(D) is the scheme of singularities of D. We tensor this with I2
D/I3

D � OD(−2KD); the
corresponding long exact sequence on cohomology gives

0 = H1(D,TD ⊗ I2
D/I3

D)→ H1(D,TX ⊗ I2
D/I3

D)

→ H1(D,OD(−KD)⊗ IS(D))→ H2(D,TD ⊗ I2
D/I3

D) = 0. (4.5)

Therefore H1(D,TX⊗I2
D/I3

D) � H1(D,IS(D)(−KD)). We now show that H1(D,IS(D)(−KD)) = 0.
From the exact sequence

0→ IS(D) → OD → OS(D) → 0
we obtain that H1(D,IS(D)(−KD)) = coker(ΦD : H0(D,OD(−KD))→ H0(S(D),OS(D)(−KD))).

Suppose that the singularities of D are p1, p2, . . . , pr, of type Aλ1 , Aλ2 , . . . , Aλr respectively.
Then h0(S(D),OS(D)(−KD)) =

∑r
i=1 λi. We also know that h0(D,OD(−KD)) = d + 1, where

d = degD.

Claim. We claim that dimker(ΦD) = d+ 1−
∑r

i=1 λi.

Note that as D has only isolated singularities p1, p2, . . . , pr, OS(D) is the direct sum of the Milnor
algebras OD,pi/J(pi) of the singularities (D, pi), where J(pi) denotes the Jacobian ideal of D at pi.
Hence

ker(ΦD) = {s ∈ H0(D,OD(−KD)) : s ∈ J(pi),∀i}.
We consider the anticanonical embedding of D into P

d [HW81, Corollary 4.5]. An element s of
H0(D,OD(−KD)) can be viewed as a hyperplane section of D ⊂ P

d, and s ∈ J(pi) means that
the corresponding hyperplane section contains the scheme SpecOD,pi/J(pi). Therefore the claim is
obviously true when D is non-singular, or has one or two A1 singularities, because in this case s
belongs to the Jacobian ideal if and only if the corresponding hyperplane section passes through
the (two) singular point(s).

We proceed by descending induction on d = degD. Suppose D′ ⊂ P
d is a (normal, rational) del

Pezzo surface of degree d � 5. Then there is a del Pezzo surface D ⊂ P
d+1 of degree d + 1 and a

smooth point p ∈ D such that the closure of the image of D under the projection πp : P
d+1 ��� P

d

is D′. We have
H0(D′,OD′(−KD′)) � {s ∈ H0(D,OD(−KD)) : s(p) = 0}.

Note that if p does not belong to any line on D, then S(D′) � S(D), and the claim follows.
Suppose now that p belongs to a line L ⊂ D. If L does not contain any singularities of D, then

πp(L− p) is a new A1 singularity on D′; if L contains an Aλ singularity, then πp(L− p) is an Aλ+1

singularity; and if L contains an Aλ1 and an Aλ2 singularity, then πp(L− p) is an Aλ1+λ2 singularity.
The claim now follows from the observation that

dim(ker ΦD′) = dim(ker ΦD)− 1−#(lines through p).

This completes the proof of Theorem 4.4.
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Corollary 4.5. The Main Theorem holds, i.e. the contraction ϕ is analytically rigid.

Proof. Suppose D and X are as in the Main Theorem (Theorem 4.1). Then, by Proposition 4.3
and Corollary 3.8, any two embeddings of D into smooth 3-folds with normal bundles isomorphic
to OD(KD) are 2-equivalent. We also have the vanishing of H1(D,TX ⊗ Iν/Iν+1) for any ν � 2
(Theorem 4.4); thus, by Lemma 3.1 and by [HR64, Theorem 3], the Main Theorem holds.

Remark 4.6. When D is non-singular, the vanishing of H1(D,TX ⊗ID/I2
D) is an easy consequence

of the fact that H1(D,TD) = 0 (via the exact sequence (4.4), using Proposition 4.3 and the van-
ishing of H1(D,OD)). Hence, by induction (as in the proof of Theorem 4.4), we have the vanishing
of H1(D,TX ⊗ Iν

D/Iν+1
D ), for all ν � 2. However, if D is singular, it is not generally true that

H1(D,TD) = 0 implies H1(D,TX ⊗ ID/I2
D) = 0.

Indeed, suppose D has at least one singular point. Consider the exact sequence

0→ Hom(Ω1
D,ID/I2

D)→ Hom(Ω1
X |D,ID/I2

D)→ Hom(ID/I2
D,ID/I2

D)
δ−→ Ext1(Ω1

D,ID/I2
D)→ Ext1(Ω1

X |D,ID/I2
D)→ Ext1(ID/I2

D,ID/I2
D)

obtained from (4.4). We have Ext1(ID/I2
D,ID/I2

D) � H1(D,OD) = 0 and Ext1(Ω1
X |D,ID/I2

D) �
H1(D,TX ⊗ ID/I2

D) by Serre duality. Therefore we obtain

0→ Hom(Ω1
D,ID/I2

D)→ Hom(Ω1
X |D,ID/I2

D)→ k

δ−→ Ext1(Ω1
D,ID/I2

D)→ H1(D,TX ⊗ ID/I2
D)→ 0.

Here δ(1) corresponds to the extension (4.4) that is not split, and hence it is non-zero in
Ext1(Ω1

D,ID/I2
D). Therefore δ is injective and we have

0→ k
δ−→ Ext1(Ω1

D,ID/I2
D)→ H1(D,TX ⊗ ID/I2

D)→ 0. (4.6)

From the five-term exact sequence associated to the local to global spectral sequence, we have

0→ H1(D,Hom(Ω1
D,OD))→ Ext1(Ω1

D,OD)→ H0(D, Ext1OD
(Ω1

D,OD))

→ H2(D,Hom(Ω1
D,OD))→ Ext2(Ω1

D,OD),

and, as Hom(Ω1
D,OD) = TD and H2(D,TD) = 0 [Gr97a, Lemma 5.6], we obtain

0→ H1(D,TD)→ Ext1(Ω1
D,OD)→ H0(D, Ext1OD

(Ω1
D,OD))→ 0. (4.7)

It is easy to see that dimH0(D, Ext1OD
(Ω1

D,OD)) =
∑r

i=1 λi if D has r singularities, of type Aλ1 ,
Aλ2 , . . . , Aλr , respectively. Therefore, if H1(D,TD) = 0, we obtain dimExt1(Ω1

D,OD) =
∑r

i=1 λi.
Now suppose that H1(D,TX⊗ID/I2

D) = 0. Then (4.6) implies that dim Ext1(Ω1
D,OD) = 1, and

hence D can have only one singularity, of type A1. However, this is not the case in general, and hence
H1(D,TX ⊗ ID/I2

D) does not vanish for a general singular del Pezzo surface with H1(D,TD) = 0.

5. Computing the obstruction to formal equivalence: the vanishing of H1(D,T D)

Theorem 5.1. Let D be a normal rational del Pezzo surface of degree d � 5. Then

H1(D,TD) = 0.

Let π : D̃ → D denote the minimal resolution of D. The proof is done below in several steps (in-
volving §§ 5.1–5.3, Lemmas 5.2–5.4, Theorem 5.5 and Corollary 5.6), by comparing the cohomology
of the tangent sheaf on D to the cohomology of the tangent bundle on D̃.
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5.1 The Leray spectral sequence
As D is a surface having only isolated normal singularities, π∗TD̃ � TD [BW74, Proposition (1.2)].
We use this fact and the Leray spectral sequence

Ep,q
2 = Hp(D,Rqπ∗TD̃)⇒ Ep+q

∞ = Hp+q(D̃,TD̃)

to compare the cohomology of TD with that of TD̃.
The first four terms of the corresponding five-term exact sequence [God58, Theorem I.4.5.1]

0→ E1,0
2 → E1

∞ → E0,1
2 → E2,0

2 → E2
∞

give in our case

0→ H1(D,π∗TD̃)→ H1(D̃,TD̃)→ H0(D,R1π∗TD̃)→ H2(D,π∗TD̃).

With the identification π∗TD̃ � TD, and using H2(D,TD) = 0 [Gr97a, Lemma 5.6], we obtain

0→ H1(D,TD)→ H1(D̃,TD̃)→ H0(D,R1π∗TD̃)→ 0. (5.1)

In order to show the vanishing of H1(D,TD), we show that dimH1(D̃,TD̃) = dimH0(D,R1π∗TD̃).

5.2 Local computations: H0(D,R1π∗T D̃)
As D is a normal rational del Pezzo surface of degree d � 5, it has only singularities of type A1, A2,
A3 and A4 (Lemma 2.7). Denote by E the exceptional locus of its minimal resolution π : D̃ → D.

We have H0(D,R1π∗TD̃) � R1π∗TD̃ if regarded as complex vector spaces, as R1π∗TD̃ is a
skyscraper sheaf supported on the singular points of D. By the theorem of formal functions [Har77,
Theorem III.11.1], we obtain

R1π∗TD̃ � lim←−H
1(En,TD̃|En),

where En is the closed subscheme of D̃ defined by In
E, where IE is the ideal sheaf of E in D̃.

From [BW74, (1.6)], we have the following lemma, true for any surface having only isolated
rational singularities.

Lemma 5.2. If Z is an effective divisor on D̃ supported on E, there is an exact sequence

0→ TZ → TD̃|Z →
λ⊕

i=1

NEi/D̃ → 0 (5.2)

where E1, E2, . . . , Eλ are the irreducible components of E and NEi/D̃ := OEi(Ei) = OEi(−2) is the

normal bundle of Ei in D̃. (The second map of (5.2) is the sum of the compositions TD̃ ⊗ OZ →
TD̃ ⊗OEi → NEi/D̃.)

By the tautness of rational double point singularities [Tju68] we have that H1(TZ) = 0.
Therefore, the long exact sequence obtained from (5.2) implies h1(En,TD̃|En) = h1(En,

⊕λ
i=1NEi/D̃),

for all n � 0. This shows that, if D has r singularities, of type Aλ1 , Aλ2 , . . . , Aλr , respectively, then
h0(D,R1π∗TD̃) =

∑r
i=1 λi.

5.3 Global computations: H1(D̃,T D̃)

Here we show that dimH1(D̃,TD̃) =
∑r

i=1 λi as well, and therefore we obtain H1(D,TD) = 0 from
the sequence (5.1).

First, we need some preliminary results relating the tangent bundle of a (smooth) surface S to
that of a one-point blowup of S.

Lemma 5.3. Let σ : S′ → S be a birational morphism of smooth projective surfaces and let F be a
locally free sheaf on S. Then H∗(S,F) = H∗(S′, σ∗F).
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Proof. The morphism σ can be factored as the composition of blowups. Therefore it is enough to
assume that σ itself is the blowup of a point p ∈ S.

Because the sheaf F is locally free, the projection formula and normality of S imply that
σ∗σ∗F � F . Therefore, by a degenerate case of the Leray spectral sequence, it is enough to show
that Riσ∗σ∗F = 0, ∀i > 0. But again, by the projection formula and σ∗OS′ = OS , we can reduce
this to showing that Riσ∗OS′ = 0, which is proven in [Har77, Proposition V.3.4].

Lemma 5.4. Let σ : S′ → S be the blowup of a smooth projective variety S of dimension n at a
point p and let E denote the exceptional locus of σ. We then have an exact sequence

0→ TS′ → σ∗TS → TE ⊗OE(E)→ 0. (5.3)

Proof. The first fundamental exact sequence of differentials

0→ σ∗Ω1
S → Ω1

S′ → ΩS′/S → 0 (5.4)

gives, after taking HomOS′ (−,OS′):

0→ TS′ → σ∗TS → Ext1OS′ (Ω
1
E ,OS′)→ 0,

where we used ΩS′/S � Ω1
E (see for example [Kle81]).

As Ext1OS′ (OE ,OS′) = OE(E), from the conormal exact sequence

0→ IE/I2
E → Ω1

S′ |E → Ω1
E → 0 (5.5)

we obtain

0→ Ext1OS′ (Ω
1
E ,OS′)→ TS′ ⊗OS′ OE(E)→ OE (2E)→ 0.

Tensoring the dual of (5.5) by OE (E), we have

0→ TE ⊗OE(E)→ TS′ ⊗OS′ OE (E)→ OE(2E)→ 0.

Comparing the last two exact sequences, we obtain the desired result.

In particular, if the variety S in Lemma 5.4 is a smooth surface, the exact sequence (5.3)
translates to

0→ TS′ → σ∗TS → OE (1)→ 0.
We can use the associated long exact sequence and Lemma 5.3 to obtain

H0(S′,TS′) = ker(H0(S,TS)→ H0(E ,OE (1)))

dimH1(S′,TS′) = h0(S′,TS′)− h0(S,TS) + 2 + h1(S,TS).
(5.6)

Therefore Lemma 5.4 gives us a tool to compute H1(D̃,TD̃) step-by-step, blowing up one point at
a time.

Theorem 5.5. Let Σ be a set of (possibly infinitely near) points of P
2 in almost general position.

Suppose |Σ| � 3. Let σ : S → P
2 be the blowup of center Σ. Let p ∈ S be a point such that

Σ′ = Σ ∪ {p} is in almost general position and let σ′ : S′ → S be the blowup of S at p. Denote by
Ẽ the union of all curves with negative self-intersection on S. Then we have the following:

i) If p /∈ Ẽ , then h0(S′,TS′) = h0(S,TS)− 2.

ii) If p is contained in a single (−1)-curve, then h0(S′,TS′) = h0(S,TS)− 1.
iii) If p is the intersection point of two (−1)-curves, then h0(S′,TS′) = h0(S,TS).

The proof of Theorem 5.5 follows after Corollary 5.6 and Remark 5.7.
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Corollary 5.6. If D is a normal rational del Pezzo surface of degree d � 5, with r singularities,
of type Aλ1 , Aλ2 , . . . , Aλr , respectively, and π : D̃ → D is its minimal resolution, then we have
dimH1(D̃,TD̃) =

∑r
i=1 λi, and hence H1(D,TD) = 0.

Proof. Note that h1(S′,TS′)− h1(S,TS) counts the number of (−2)-curves that appear on S′ after
the blowup σ′, thus the corollary follows.

This concludes the proof of Theorem 5.1.

Remark 5.7. As H1(D,TD) is the tangent space of the locally trivial deformations of D, we can
conclude that all locally trivial deformations of a normal rational del Pezzo surface of degree d � 5
are trivial. This was to be expected, as configurations of at most four points in almost general
position on P

2 (giving the same del Pezzo surface) have no moduli.

Proof of Theorem 5.5. Note that, if the surface S is obtained by successive blowups of (possibly
infinitely near) points on P

2, then we can regard H0(S,TS) as a subspace of H0(P2,TP2). We prove
the theorem by blowing up one point at a time and explicitly computing the cohomologies involved.

Case 0: Explicit computation of H0(P2,TP2). It is well known that dimH0(P2,TP2) = 8 and
dimH1(P2,TP2) = 0. Here we compute a basis for H0(P2,TP2) in local coordinates.

Fix the homogeneous coordinates [x0 : x1 : x2] on P
2. Then on the affine open U0 = {x0 
= 0} we

have local coordinates x := x1/x0 and y := x2/x0. Around p = [1 : 0 : 0], TP2 is generated by the
vectors ∂x = ∂/∂x and ∂y = ∂/∂y; more precisely, TP2|U0 = C[x, y]∂x + C[x, y]∂y.

Claim. With the above notations, H0(P2,TP2) has a basis given by v1 = ∂x, v2 = ∂y, v3 = x∂x,
v4 = x∂y, v5 = y∂x, v6 = y∂y, v7 = x2∂x + xy∂y, and v8 = xy∂x + y2∂y on U0.

Proof. We have the dual of the Euler sequence,

0→ OP2 → OP2(1)3 → TP2 → 0,

where OP2(1)3 → TP2 is (locally) given by

(s0, s1, s2) �→
s1x0 − s0x1

x2
0

∂x +
s2x0 − s0x2

x2
0

∂y.

Writing out the generators of H0(P2,OP2(1)3), the claim follows.

Using this explicit description ofH0(P2,TP2), the computations are straightforward. We illustrate
it in two cases: blowing up one point, and blowing up two infinitely near points on P

2.

Case 1: Blowing up a point. Let σ1 : S1 → P
2 be the blowup of the point (x, y) = (0, 0) ∈ U0,

and let E denote the exceptional locus. On the affine open V0 = Spec C[x, s], where x = x, y = xs,
E is defined by the equation {x = 0} and the sequence (5.3) is

0→ C[x, s]∂x ⊕ C[x, s]∂s → C[x, s]∂x ⊕ C[x, s]∂y →
1
x

C[s]∂s → 0,

where the first map is given by

∂x �→ ∂x + s∂y, ∂s �→ x∂y,

while the second map is given by

f(x, s)∂x + g(x, s)∂y �→
g(0, s) − sf(0, s)

x
∂s.

Note that the images of v1 = ∂x and v2 = ∂y (−(s/x)∂s and (1/x)∂s respectively) generate the
global sections of OE (1).
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As y = xs, it is easy to check that the images of v3, v4, v5, v6, v7 and v8 in H0(E ,OE (1)) are all
zero, and hence

H0(S1,TS1) = ker(H0(P2,TP2)→H0(E ,OE (1))) � 〈v2, v3, v5, v6, v7, v8〉.

This shows that dimH0(S1,TS1) = 6. In terms of ∂x and ∂s, we have

v3 = x∂x − s∂s,

v4 = ∂s,

v5 = xs∂x − s2∂s,

v6 = s∂s,

v7 = x2(1 + s)∂x − xs(1 + s)∂s,

v8 = xs(1 + s)∂s.

Case 2: Blowing up two infinitely near points of P
2. Let S2 be the blowup of the point (x, s) =

(0, 0) ∈ S1 (corresponding to the direction given by the line {y = 0} in P
2). Let E ′ denote the

exceptional locus. As in the previous case, we see that the image of v4 = ∂s is a global section of
H0(E ′,OE ′(1)), while the images of v3, v5, v6, v7 and v8 are all zero. Hence dimH0(S2,TS2) = 5.

For the rest of the cases, similar computations can be carried out, and we leave them to the
reader. Thus the proof of Theorem 5.5 is finished.

6. Example of a K-trivial contraction

Let ϕ : X → Y be a K-trivial birational extremal contraction of a smooth projective 3-fold X,
contracting a divisor D ⊂ X to a point q ∈ Y . Suppose D is a normal rational del Pezzo surface of
degree d � 5. By our Main Theorem, in order to know the analytic structure of the contraction ϕ,
it is sufficient to have one example for each possible exceptional divisor with the prescribed normal
bundle.

In the following, we construct an example of embedding a normal rational (singular) del Pezzo
surface D of degree 7 into a smooth 3-fold X with the prescribed normal bundle OD(KD), and
hence, by Fujiki’s contraction theorem (see Theorem 6.1 below), obtain an analytic contraction
of D (i.e. a holomorphic map ϕ : X → Y onto a normal complex space Y that contracts D to
a point q ∈ Y ). Similar constructions can be carried out for each possible exceptional divisor D
(any normal rational del Pezzo surface of degree d � 5).

It should be noted that, if D is non-singular, the embedding of D as the zero-section into the
total space of OD(KD) gives such an example. It is tempting to consider a similar approach in
the singular case, by considering the zero-section embedding of the minimal resolution D̃ of D
into the total space X̃ of OD̃(KD̃) and then flopping the (−2)-curves of D̃. However, while any
(−2)-curve on D̃ is a (0,−2)-curve on X̃ , these curves are not isolated, and hence we cannot flop
them [Rei83]. Therefore we take a different approach.

Let D be a normal rational del Pezzo surface of degree d = 7. First we construct a family
X→ A

1 such that X is non-singular, the central fiber X0 is isomorphic to D, and the general fibers
of the family are non-singular del Pezzo surfaces of degree d = 7 = degD. We will construct the
family X ⊂ P

7 × A
1 as the closure of a family of blowups of two distinct points on P

2. We may
assume that the minimal resolution D̃ of D is isomorphic to the blowup of the infinitely near points
p1 = [1 : 0 : 0] ∈ P

2 and p2 = [1 : 0] ∈ P(Tp1P
2).

Consider the curve C = {x2
1−t(x1+x0) = 0, x2 = 0} ⊂ P

2×A
1. Over any t 
= 0, C has two points,

while over t = 0 it has a double point. The curve C defines a map Φ = {ϕt}t : P
2 × A

1 ��� P
7 × A

1
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with base-locus C, where ϕt : P
2 ��� P

7 is given by

[x0 : x1 : x2]

�−→ [x3
1 − tx2

0x1 − t2x3
0 − t2x2

0x1 : x3
2 : x2

0x2 : x0x
2
1 − tx3

0 − tx2
0x1 : x0x

2
2 : x2

1x2 : x1x
2
2 : x0x1x2].

Let X be the blowup of P
2 × A

1 with center C. Then ϕ|−KX/A1 | will define an embedding of X

into P
7 × A

1. The ideal I defining X in this embedding is [GS02]

I = (ge− bh,−hf + gd + th2 + tch,−he+ gc, f2 − ga− t2h2 − th2 − t2ch, ef − hg,
fd− ah+ thd, fc− h2,−g2 + bf, de− h2 + tc2 + tch, ea− hf + t2ch+ t2c2 + tch,

bd− hg + teh+ tce,−e2 + cb, ca − dh− tcd, ba − fg + t2eh+ t2ce+ tcg).

For each t, I defines a surface Dt in P
7. It can be verified by direct computation that the total

space X of the family {Dt}t∈A1 is non-singular and that Dt is non-singular (actually a smooth del
Pezzo surface of degree 7) except in the cases of D0 = D and D−4, which are singular del Pezzo
surfaces. In fact, for t 
= 0,−4, the surface Dt is the image (via the anticanonical embedding) in P

7

of the blowup of the points [1 : λ1 : 0] and [1 : λ2 : 0] on P
2, where λ1 and λ2 are the roots of the

equation u2 = t(u+ 1).
Since D is a fiber of the family X, its normal bundle ND/X � OD(D) in X is numerically trivial.
In order to make the normal bundle isomorphic to OD(KD), as required for a K-trivial

contraction, we proceed as follows.
Let C ∈ |−KD| be a general member avoiding the singular point of D (it exists, because |−KD|

is very ample). Let X be the blowup of C on X, E the exceptional locus, D′ the strict transform
of D, and C ′ := E|D′ � C. Because KX|D and KD are numerically equivalent, it follows that KX

is numerically trivial on D′. Therefore ND′/X is numerically equivalent to OD′(KD′), and so, as
in § 2, ND′/X � OD′(KD′). Therefore we succeeded in embedding the del Pezzo surface D � D′

into a non-singular 3-fold X such that its normal bundle is isomorphic to the canonical sheaf of D.
We can now apply the following theorem [Fuj74, Theorem 2].

Theorem 6.1 (Fujiki’s Contraction Theorem). Let X be a complex space, A ⊂ X an effective
Cartier divisor, B another complex space, and f : A → B a surjective holomorphic map. Assume
that

1) the conormal bundle N ∗
A/X is f -positive, and that

2) R1f∗(N ∗ν
A/X) = 0, for all ν > 0.

Then there exists a modification ψ : X → Y with ψ|A = f . Moreover, ψ∗(L) � OY , where the
coherent sheaf L is defined by

0→ L→ OX→ OA/ im(f∗OB → OA)→ 0.

In our case A := D′ � D, B is a point (hence L � OX) and we have R1f∗(N ∗ν
A/X) �

H1(D,OD(νKD)) = 0 for all ν (see Proposition 2.8).
Therefore we have an analytic modification ψ : X → Y contracting D to a point q ∈ Y , such

that ψ|X−D : X −D � Y − q, and ψ∗OX = OY .

Remark 6.2. A similar result is true in the category of algebraic spaces, based on a contraction
theorem due to Artin [Art69b, Corollary (6.10)].

However, Fujiki’s theorem does not guarantee a contraction in the algebraic category (i.e. the
existence of a morphism ϕ : X → Y of algebraic varieties contracting D to a point). At the present
we do not know how to construct in general algebraic morphisms that contract a singular del Pezzo
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surface embedded into a smooth 3-fold with the prescribed normal bundle to a point, i.e. how to
obtain a K-trivial morphism ϕ : X → Y onto a normal projective variety Y that contracts D
to a point q ∈ Y . For a non-singular D, the contraction of the zero-section of the total space of
the normal bundle ND/X provides such an example. Although this gives a K-trivial contraction,
it is not extremal. Namikawa constructs an example of a K-trivial extremal contraction [Nam97,
Example 1] with exceptional divisor D a non-singular del Pezzo surface of degree 6 (i.e. a smooth
cubic).
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