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Solar Convection and Mean Flows
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Abstract. We briefly review our current understanding of how the solar differential rotation
and meridional circulation are maintained, which has important implications for understanding
cyclic magnetic activity in the Sun and stars.
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Differential rotation and meridional circulation play an essential role in all current
dynamo models of solar and stellar activity cycles so a thorough understanding of how
mean flows are established is an essential prerequisite to a comprehensive dynamo model.

Our current understanding of how the solar differential rotation and meridional cir-
culation are established rests heavily on two key concepts: thermal wind balance and
gyroscopic pumping. The first is derived from the zonal component of the vorticity equa-
tion under the assumption that the inertia of the differential rotation dominates over the
Reynolds, Lorentz, and viscous stresses (e.g. Miesch 2005)
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where Ω is the mean angular velocity, g is the gravitational acceleration, S is the specific
entropy, CP is the specific heat at constant pressure, and brackets denote averages over
longitude and time. Both spherical polar (r, θ, φ) and cylindrical (λ, φ, z) coordinates
are used, with λ = r sin θ and z = r cos θ.

The second key equation, expressing gyroscopic pumping, is derived from the zonal
momentum equation and can be written as

〈ρvm 〉 ·∇L = F (0.2)

where ρ is the density, vm denotes the meridional components of the velocity field, L =
λ2Ω is the specific angular momentum, and F represents the net torque due principally
to the convective Reynolds stress (Miesch & Hindman 2011).

Much insight can be obtained merely from these two simple equations and the nature
of the mean flows inferred from photospheric observations and helioseismic inversions. In
particular, the conical nature of the solar rotation profile is attributed to (0.1), though
the origin of the latitudinal entropy gradient is still unclear (Kitchatinov & Rüdiger
1995; Rempel 2005; Miesch et al. 2006; Balbus et al. 2009; Balbus & Schaan 2012).
However, the differential rotation cannot be established solely by baroclinic forcing; the
Reynolds stress must account for the observed super-rotation at the equator (Miesch et al.
2012, hereafter MFRT). Moreover, the meridional circulation cannot be strictly baroclinic
either; rather, it must be maintained by the inertia of the differential rotation. This follows
from equations (0.1) and (0.2) together with the observed sense of the rotational shear
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(∂Ω/∂z < 0 in the northern hemisphere) and the meridional flow (poleward in the upper
convection zone; MFRT).

Equation (0.2) can also be used to probe the nature of the elusive deep convection that
sustains mean flows. Since the left-hand-side is known in the upper convection zone (CZ)
from helioseismic inversions, this equation can be used to estimate the amplitude of the
turbulent stresses on the right-hand-side, and thus the convective amplitude (MFRT).
This yields values of at least 30 m s−1 in the upper CZ (r ∼ 0.95R), in apparent contra-
diction with the results of Hanasoge et al. (2012) who place an upper limit of less than
1 m s−1 on persistent (lifetime τ > 96 hrs), large-scale (spherical harmonic degree � < 60)
convective motions at r ∼ 0.95R based on local helioseismic inversions. The resolution of
this apparent inconsistency poses a significant challenge to both observations and models
of solar convection and mean flows (MFRT).

Further clues on the nature of solar convection are provided by the existence of the
near-surface shear layer (NSSL), which is a “smoking gun” signifying a transition from
high to low Rossby number Ro (Miesch & Hindman 2011). The Rossby number is a
nondimensional measure of the influence of rotation on convection, Ro = U/(2ΩL), where
U and L are characteristic convective velocity and length scales. Taking the estimate of
U ∼ 30 m−1 in the previous paragraph and assuming L is of order the density scale
height suggests that this transition occurs at Ro � 0.3. This value is consistent with that
estimated from global convection simulations (Featherstone & Miesch 2013).

The mean flows in global convection simulations generally exhibit the same dynamical
balances that are thought to prevail in stars, namely equations (0.1) and (0.2), although
the detailed dynamics may differ. At high latitudes, inward angular momentum transport
by convective plumes induces a single-celled meridional circulation profile in radius, with
poleward flow in the upper CZ and equatorward flow in the lower CZ. Meanwhile, the
low-latitude dynamics is dominated by “banana cells”, convective columns aligned with
the rotation axis that transport angular momentum cylindrically outward and thereby in-
duce multiple-celled meridional circulation profiles in radius. The balance between these
two regimes changes with Rossby number; Fast rotators (Ro < 0.3) exhibit solar-like
differential rotation profiles (fast equator, slow poles) with multi-celled circulation pro-
files while slow rotators (Ro > 0.9) exhibit anti-solar differential rotation profiles (slow
equator, fast poles) and single-celled circulation profiles (Featherstone & Miesch 2013).
The Sun lies near the transition, which suggests that its cyclic dynamo may operate
somewhat differently relative to other stars.
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