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In this paper, we use an information theoretic approach called cumulative residual extropy (CRJ) to compare mixed
used systems.We establish mixture representations for the CRJ of mixed used systems and then explore the measure
and comparison results among these systems. We compare the mixed used systems based on stochastic orders and
stochastically ordered conditional coefficients vectors. Additionally, we derive bounds for the CRJ of mixed used
systems with independent and identically distributed components. We also propose the Jensen-cumulative residual
extropy (JCRJ) divergence to calculate the complexity of systems. To demonstrate the utility of these results, we
calculate and compare the CRJ and JCRJ divergence of mixed used systems in the Exponential model. Furthermore,
we determine the optimal system configuration based on signature under a criterion function derived from JCRJ in
the exponential model.

1. Introduction

A system is considered coherent if all of its components are relevant and its structure-function is mono-
tone. The family of all stochastic mixtures of coherent systems of a given size is called a mixed system.
For further details, refer to Barlow and Proschan (1981). System signatures are useful tools for study-
ing and comparing engineering systems. The theory of system signature has been explained in [26].
Additionally, Samaniego [25] demonstrated that the lifetime distribution of a coherent system, com-
prising n independent and identically distributed (iid) components, can be expressed as a function that
depends solely on the system design. The signature of a system of order n with component lifetimes
Yi which are iid random variables with the common distribution is an n-dimensional probability vector
s = (s1, . . . , sn) whose ith element is si = P(T (n) = Yi:n), i = 1, . . . , n and

∑n
i=1 si = 1, where T(n)

denotes the system’s lifetime and Yi:n stands for the lifetime of the ith weakest component. Let ḠT (n) (t)
is the survival function of the system with lifetime T(n), then (see [26])

ḠT (n) (t) = P(T (n) > t) =
n∑

i=1
siP(Yi:n > t). (1)

In recent years, researchers have shown increasing interest in studying the reliability properties of coher-
ent systems using a signature vector. Kochar et al. [15] proposed some applications of the signature
vector to compare coherent systems with iid components. Additionally, Navarro et al. [19, 20] utilized
the concept of the signature vector to compare coherent systems when the components are not neces-
sarily independent. The concept of residual lifetime is important in reliability theory, and it is widely
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used in engineering reliability, survival analysis, and economic issues. Let’s consider a system with a
lifetime of T(n) that starts at time t = 0 and is still functioning at time t > 0. In this case, the residual
lifetime of the system, given that T (n) > t, is defined as T (n) − t |T (n) > t. In reliability theory, this
type of system is referred to as a “used system”. The residual lifetime represents the remaining lifetime
of a system that has reached an age of t. Navarro et al. [18] established the representation similar to Eq.
(1) for the survival function of the residual lifetime T (n) − t |T (n) > t as follows

P(T (n) − t > x |T (n) > t) =
n∑

i=1
pi (t)P(Yi:n − t > x |Yi:n > t), (2)

where pi (t) = siP(Yi:n>t)
P(T (n)>t) for i = 1, . . . , n is conditional coefficient vector given T (n) > t. Navarro et al.

[18] studied the stochastic orders and various properties of Eq. (2). One purpose of this paper is to
investigate the information properties of mixed used systems from the viewpoint of cumulative residual
extropy (CRJ).

In the field of information theory, entropy measures the uncertainty associated with a random vari-
able. It was introduced by [29] in 1948. The Shannon entropy of a continuous random variable X with
the probability density function (pdf) f (x) is defined as H (X) = −E(log f (X)) where “log” means the
natural logarithm. In 2015, Lad et al. proposed a new way to measure the uncertainty of a random
variable, which they called extropy. Extropy is used as an opposite concept to entropy and has been
mentioned in academic literature before. It represents the intelligence, functional order, vitality, energy,
life, experience, capacity, and drive for improvement and growth of a living or organizational system.
The extropy of a random variable X with the pdf f (x) is defined by [17] in the following manner:

J (X) = −1
2

∫ +∞

−∞
f 2(x)dx = −1

2

∫ 1

0
f (F−1(u))du.

Several studies have focused on extropy and its applications in investigating the information properties
of reliability systems. Qiu and Jia [22] regarded the extropy of a system’s residual lifetime as a measure
of residual uncertainty. They also derived some properties of this measure in order statistics. Qiu [21]
provided characterization results and symmetric properties of the extropy of order statistics and record
values. Additionally, Qiu and Jia [23] introduced two estimators for the extropy of an absolutely contin-
uous random variable. For further studies on the information properties of a system’s extropy, readers
are encouraged to refer to [4, 7, 9, 10, 11, 21].

Cumulative residual entropy was first introduced by Rao et al. in 2004 in terms of the survival
function of X. CRJ was introduced by Jahanshahi et al. in 2020, and it is defined as

bJ (X) = −1
2

∫ ∞

0
F̄2 (x) dx. (3)

In their 2023 study, Chakraborty and Pradhan examined the CRJ of coherent and mixed systems
using a signature-based approach. When monitoring the system at time t, the system may be in one
mode, indicating that it is operational at that time (i.e., T (n) > t). If T (n) > t, the system’s remaining
lifetime is given by T (n) − t |T (n) > t. This paper investigates the CRJ of mixed used systems by
utilizing Eq. (2). In this paper, by substituting t = 0 into the results of Sections 2 and 3, we obtain some
of the findings of Chakraborty and Pradhan’s study. This paper aims to extend the findings of [4] to the
conditional system under a specific state condition.

The paper is structured as follows. In Section 2, an expression of the CRJ of the mixed used system is
provided in terms of the conditional coefficients vector. Additionally, based on this representation, some
stochastic comparisons and bounds have been obtained. A new divergencemeasure is developed to study
the complexity of the mixed used system in Section 3. In Section 4, the CRJ of the mixed used systems
is compared to each other under the exponential system consisting of three iid components for some
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configurations between the system components. Finally, in Section 5, the optimal signature vector has
been obtained for simultaneously minimizing the Jensen-cumulative residual extropy (JCRJ) divergence
of mixed used systems and minimizing costs. Some concluding remarks are made in Section 6.

2. CRJ of mixed used systems

Let Y1, . . . ,Yn be iid component lifetimes with the cumulative distribution function (cdf) G of a coher-
ent system of order n with the signature vector s. Let the random variable T(n) be the lifetime of the
aforementioned system with the pdf gT (n) (.) and the cdf GT (n) (.). Also, assume that the system started
at time t = 0 and it is alive at time t > 0.We are interested in computing the extropy of the used system or,
equivalently, computing the extropy of residual lifetime T (n) − t |T (n) > t. For convenience of notation,
let us denote T (n) − t |T (n) > t, Yi:n − t > x |Yi:n > t, and Yi − t |Yi > t, i = 1, . . . , n by T (n, t), Yi:n,t ,
and Yi,t , respectively, in the rest of the paper. Also, assume that the pdf and cdf of T (n, t)

(
orYi:n,t

)
are

gT (n,t) (.) and GT (n,t) (.)
(
orgi:n,t (.) and Gi:n,t (.)

)
, respectively. From (2) and [18], we have

ḠT (n,t) (x) =
n∑

i=1
pi (t)Ḡi:n,t (x), (4)

and

gT (n,t) (x) =
n∑

i=1
pi (t)gi:n,t (x),

where pi (t) = siP(Yi:n>t)
ḠT (n) (t)

for i = 1, . . . , n and ḠT (n,t) (x) = 1 − GT (n,t) (x) and ḠT (n) (t) = 1 − GT (n) (t)
are survival functions of systems with lifetimes T (n, t) and T(n), respectively. In this section, we obtain
an expression for the CRJ of mixed used system’s lifetime with the given signature vector s. From (3)
and (4), the CRJ of T (n, t) is given by

bJ (T (n, t)) = −1
2

∫ +∞

0
Ḡ2

T (n,t) (x)dx

= −1
2

∫ +∞

t

(
n∑

i=1
pi (t)

i−1∑
j=0

(n
j
)
G(x)jḠ(x)n−j

Ḡi:n(t)

)2
dx

= −1
2

∫ 1

G (t)

(
n∑

i=1
pi (t)

i−1∑
j=0

(n
j
)
vj (1−v)n−j

Ḡi:n (t)

)2
g(G−1(v))

dv

= −1
2

∫ 1

G (t)

Ḡ2
Vt
(v)

g(G−1(v))
dv, (5)

where

ḠVt (v) =
n∑

i=1
pi (t)ḠVt,i (v),
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and

ḠVt,i (v) =
i−1∑
j=0

(
n
j

)
vi (1 − v)n−i

Ḡi:n(t)
,G(t) < v < 1.

In fact, for i = 1, . . . , n, if we use the probability integral transformationUi = G(Yi,t), then the associated
order statistics Vt,i = G(Yi:n,t) has the pdf gVt,i (v). Therefore, the survival function of Vt = G(T (n, t))
is ḠVt (v). In the following, we present alternative representations of bJ (T (n, t)), which will be used
throughout the paper. Eq. (5) can be expressed as

bJ (T (n, t)) = − 1
2Ḡ2

T (n) (t)

∫ 1

G (t)

Ḡ2
V (v)

g(G−1(v))
dv, (6)

where,

ḠV (v) =
n∑

i=1
siḠVi (v),

and

ḠVi (v) =
i−1∑
j=0

(
n
j

)
vj (1 − v)n−j .

Also, expression (5) can be rewritten as

bJ (T (n, t)) = − 1
2Ḡ(t)Ḡ2

T (n) (t)
E
[ Ḡ2

V (Ut)
g(G−1(Ut))

]
, (7)

where Ut be a random variable uniformly distributed on (G(t), 1) with the pdf gt (v) = 1
Ḡ (t) and the cdf

Gt (v) = v−G (t)
Ḡ (t) . To compare the uncertainty between two systems, we can use the measure bJ (T (n, t))

in Eqs. (5), (6), and (7). For two mixed used systems with lifetimes T1(n, t) and T2(n, t), if bJ (T1(n, t))
is less than or equal to bJ (T2(n, t)), then T1(n, t) is more uncertain than T2(n, t) (see [24]). Eq. (5)
can be used to compare the CRJ of two mixed used systems using the vector of coefficient ppp(t) =

(p1(t), . . . , pn(t)). Eq. (6) can be used to compare the CRJ of twomixed used systems using the signature
vector sss = (s1, . . . , sn). In the following, we provide example to illustrate how to calculate CRJ for mixed
used systems using (6). In Section 4, we utilize the exponential model to demonstrate how to calculate
CRJ for mixed used systems using Eq. (5).

Example 1. Suppose we have a mixed used systemwith the signature sss = ( 12 , 0, . . . , 0,
1
2 ) and it consists

of n gamma distributed components with pdf gY (y) = _U

Γ (U) y
U−1e−_y, y > 0 and cdf GY (y) = W (U,_y)

Γ (U) ,
where Γ(.) is the complete gamma function and W(U,_y) is the incomplete gamma function. This system
represents a uniform mixture of n-component series and parallel systems. The system is created by
selecting n-component series and parallel systems with a probability of 1

2 . We have

ḠV (v) =

n∑
i=1

siḠVi (v)

=
1
2
[1 − vn + (1 − v)n] ,
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Figure 1. Plot of bJ (T (n, t)) in Example 1.

ḠT (n) (t) =

n∑
i=1

siP(Yi:n > t)

=
1
2

[
1 +

(
1 − W(U,_t)

Γ(U)

)n
−

(
W(U,_t)
Γ(U)

)n]
,

and g(G−1(v)) = _
Γ (U)

(
W−1 (U, Γ(U)v)

)U−1 e−W−1 (U,Γ (U)v) , where W−1 (U, Γ(U)v) is the inverse of the
incomplete gamma function W(U, Γ(U)v). Therefore, from Eq. (6), we obtain

bJ (T (n, t)) = − Γ(U)

2_
[
1 +

(
1 − W (U,_t)

Γ (U)

)n
−

(
W (U,_t)
Γ (U)

)n]2 ∫ 1

W (U,_t)
Γ (U)

[1 − vn + (1 − v)n]2(
W−1 (U, Γ(U)v)

)U−1 e−W−1 (U,Γ (U)v)
dv.

(8)

In Figure 1, we plot the CRJ of Example 1 for _ = 2
3 , U = 3, and different values of n. We observe

that the CRJ of the mixed used system decreases as the number of components increases. This is natural
because a system with minimum CRJ is better. According to the monotonicity of coherent systems,
increasing the number of components will improve the reliability of the system.

Based on Eqs. (5), (6), and (7), we can analyze the CRJ measure for coherent and mixed used systems
and develop some comparison results among systems. First, we recall the definition of some stochastic
orders, see [28] or [3].

Definition 1. Stochastic orders Let X and Y be two random variables with cdfs F and G and pdfs f
and g, respectively. Then X is said to be smaller than Y in the sense of:

(i) usual stochastic order (denoted by X 6st Y or F 6st G) if F̄ (x) ≤ Ḡ(x) for all x;

(ii) hazard rate order (denoted by X 6hr Y or F 6hr G) if
Ḡ(x)
F̄ (x)

is increasing in x;

(iii) disperse order (denoted by X 6disp Y or F 6disp G) if g(G−1 (v)) ≤ f (F−1(v)) for all 0 < v < 1.
Also, let p and q be two discrete distributions on the integers {1, ..., n}. Then, it is said that (see,

for example, [3, 15])
(iv) p 6st q if and only if

n∑
i=j

pi ≤
n∑

i=j
qi, for j = 1, . . . , n.
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(v) p 6hr q if and only if
n∑

i=j
pi

/ n∑
i=j

qi is decreasing in j, for j = 1, . . . , n.

(vi) p 6lr q if and only if pi/qi is decreasing in i, for i = 1, . . . , n when pi, qi > 0.

In what follows, let us denote MT (n,t) ,Y ,G,p(t) = {T (n, t),Y ,G(.), p(t)} as the model function of the
system associated with the iid components lifetimes Y1, . . . ,Yn with the common cdf G of the system
with lifetime T (n, t) where, p(t) = (p1(t), p2(t), . . . , pn(t)) is the vector of coefficients in (4). Also,
assume that the random variable Y is one of Y1, . . . ,Yn. In the next result, we aim to explore the behavior
of CRJ based on t, and we want to obtain the conditions under which the uncertainty of the mixed used
system decreases over time.

Result 1. Let MT (n,t) ,Y ,G,p(t) be the model function of a mixed used system. If Ḡ2
V (v)

g(G−1 (v) ) is increasing
in v ≥ 0, then bJ (T (n, t)) is decreasing in t ≥ 0.

Proof. Assume that 0 ≤ t1 ≤ t2. For G(t1) ≤ v ≤ G(t2) and G(t2) ≤ v ≤ 1, we have
gt1 (v)
gt2 (v)

= ∞, i = 1, . . . , n and gt1 (v)
gt2 (v)

=
Ḡ (t2 )
Ḡ (t1 )

, i = 1, . . . , n, respectively. Therefore, we conclude that

Ut1 6lr Ut2 . Accordingly, we have Ut1 6st Ut2 . Since
Ḡ2

V (v)
g(G−1 (v) ) is increasing, we have E

[
Ḡ2

V (Ut1 )
g(G−1 (Ut1 ) )

]
≤

E
[

Ḡ2
V (Ut2 )

g(G−1 (Ut2 ) )

]
. Since 0 < 1

Ḡ (t1 )
≤ 1

Ḡ (t2 )
and 0 < 1

ḠT (n) (t1 )
≤ 1

ḠT (n) (t2 )
, we conclude the desired result by

noting that

bJ (T (n, t1)) = − 1
2Ḡ(t1)Ḡ2

T (n) (t1)
E
[ Ḡ2

V (Ut1)
g(G−1(Ut1))

]
≥ − 1

2Ḡ(t2)Ḡ2
T (n) (t2)

E
[ Ḡ2

V (Ut2)
g(G−1(Ut2))

]
= bJ (T (n, t2)).

�

The condition in Result 1 that Ḡ2
V (v)

g(G−1 (v) ) is increasing in v is sufficient but not necessary. We show
this problem in the following example.

Example 2. Under the assumption of Example 1 and aforementioned parameter values, we plot H (v) =
Ḡ2

V (v)
g(G−1 (v) ) with respect to v in Figure 2.We see that the function H(v) is decreasing in v ∈ (0, 1). However,

we know from Figure 1 that bJ (T (n, t)) is decreasing in t. So, the condition in Result 1 that Ḡ2
V (v)

g(G−1 (v) ) is
increasing in v is sufficient but not necessary.

In the following, we give an example to show that the condition “ Ḡ2
V (v)

g(G−1 (v) ) is increasing in v” in
Result 1 can be satisfied.

Example 3. Under the assumption of Example 1 for parameter values U = 0.01, _ = 0.1, and n= 10,
we plot H (v) =

Ḡ2
V (v)

g(G−1 (v) ) with respect to v in Figure 3. We see that the function H(v) is increasing
in v ∈ (0, 1). However, from Figure 4, we see that bJ (T (n, t)) is decreasing in t. So, the condition in
Result 1 is satisfied.
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Figure 2. Plot of H (v) = Ḡ2
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g(G−1 (v) ) in Example 2.
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g(G−1 (v) ) in Example 3.
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Figure 4. Plot of bJ (T (n, t)) in Example 3.

The most important and common stochastic order that is studied the “variability” or the “dispersion”
of random variables is the dispersive order. In fact, dispersive order is used to compare the variability in
probability distributions [8, 14, 28]. It is connected to the concept of log-concavity, and several authors
have studied the log-concavity properties of ordered random variables. For a comprehensive survey, we
refer the reader to [5, 12, 16]. In the following result, we demonstrate that increasing the variability of
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the baseline cdf of the components in a mixed used system leads to make inequality between the CRJ
in mixed used systems.

Result 2. Let MTY (n,t) ,Y ,G,pY (t) and MTX (n,t) ,X,F,pX (t) be two model functions of two mixed used systems
with the same signature vector sss = (s1, ..., sn). Denote the supports of X and Y by SX and SY, respectively.
Let lX = inf{x : x ∈ SX} and uX = sup{x : x ∈ SX}. Define lY and uY similarly for random variable Y. If

X 6disp Y and lX = lY > −∞, then
Ḡ2

TX (n)
(t)

Ḡ2
TY (n)

(t) bJ (TX (n, t)) ≥ bJ (TY (n, t)).

Proof. Since X 6disp Y from Theorem 3.B.13 (a) of [28], we have X 6st Y . Therefore, we concluded
that ∫ 1

G (t)

Ḡ2
V (v)

g(G−1(v))
dv ≥

∫ 1

F (t)

Ḡ2
V (v)

f (F−1(v))
dv.

Therefore, we have

1
Ḡ2

TY (n) (t)

∫ 1

G (t)

Ḡ2
V (v)

g(G−1(v))
dv ≥

Ḡ2
TX (n) (t)

Ḡ2
TY (n) (t)

.
1

Ḡ2
TX (n) (t)

∫ 1

F (t)

Ḡ2
V (v)

f (F−1(v))
dv.

By using Eq. (6), the proof is complete. It should be noted that, if X 6disp Y , Theorem 3.B.26 in [28]
claims that Xi:n 6disp Yi:n, so from Theorem 3.B.13 (a) of [28], we have Xi:n 6st Yi:n. Therefore, we have
Ḡ2

TX (n)
(t)

Ḡ2
TY (n)

(t) ≤ 1. �

In the following theorems, we compare the CRJ of two mixed used system based on vector of
coefficient ppp(t) = (p1(t), . . . , pn(t)) and properties of order statistics of their components.

Theorem 1. Let MTY (n,t) ,Y ,G,pY (t) and MTX (n,t) ,X,F,pX (t) be the two model functions of the two mixed
used systems.

(i) If G 6hr F and pY (t) 6st pX (t) then bJ (TY (n, t)) ≥ bJ (TX (n, t)).
(ii) If G 6hr F and pY (t) 6hr pX (t) then bJ (TY (n, t)) ≥ bJ (TX (n, t)).
(iii) If F and G are absolutely continuous, pY (t) 6lr pX (t) then bJ (TY (n, t)) ≥ bJ (TX (n, t)).

Proof. The results can be immediately obtained from Theorem 2.3 (a), (b), and (c) of [18]. �

Theorem 2. Let MT (n,t) ,Y ,G,p(t) be a model functions of the mixed used system.

(i) If Yi:n 6st (Yi:n − t |Yi:n > t), then bJ (T (n)) ≥ bJ (T (n, t)).
(ii) If (Yi:n − t1 |Yi:n > t1) 6st (Yi:n − t2) |Yi:n > t2), then bJ (T (n, t1)) ≥ bJ (T (n, t2)).

Proof. The results follow immediately from Theorem 2.4. (a) and (b) of [18]. �

Result 3. Let MT (n,t) ,Y ,G,p(t) be the model function of a mixed used system. If Y is decreasing failure
rate, then Ḡ2n (t)

Ḡ2
T (n) (t)

bJ (Y1:n,t) ≥ bJ (T (n, t)).

Proof. Bagai and Kochar [2] stated that X 6disp Y if X 6hr Y and either X or Y is decreasing failure
rate. From this fact and Result 2, it is easy to prove Result 3. It is easy to see that Y1:n,t 6hr T (n, t) by
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Theorem 2.1 (b) of [18]. Since Y1:n,t is decreasing failure rate provided that Y is decreasing failure rate,
Ḡ2n (t)

Ḡ2
T (n) (t)

bJ (Y1:n,t) ≥ bJ (T (n, t)) by Result 2. �

Computing the exact information of the system can be challenging due to the large number of com-
ponents and its complicated structure. Therefore, it is important to have bounds for the CRJ of the mixed
used system to approximate its behavior in complex situations. Following theorems establish bounds on
the CRJ of the mixed used system.

Theorem 3. Let bJ (T (n, t)) be the CRJ of a mixed used system with the model function MT (n,t) ,Y ,G,p(t) .
Then

bJ (Yt)
Ḡ2(t)

Ḡ2
T (n) (t)

M2
Y (t) < bJ (T (n, t)) < bJ (Yt)

Ḡ2(t)
Ḡ2

T (n) (t)
m2

Y (t),

where mY (t) = infG (t)<v<1
GV (v)
(1−v)2 and MY (t) = supG (t)<v<1

GV (v)
(1−v)2 .

Proof. By assumptions, we obtain

(1 − v)2m2
Y (t)

g(G−1(v))
≤

G2
V (v)

g(G−1(v))
≤

(1 − v)2M2
Y (t)

g(G−1(v))
.

By using some computations, we conclude that

−
M2

Y (t)
2Ḡ2

T (n) (t)

∫ 1

G (t)

(1 − v)2
g(G−1(v))

dv ≤ − 1
2Ḡ2

T (n) (t)

∫ 1

G (t)

G2
V (v)

g(G−1(v))
dv ≤ −

m2
Y (t)

2Ḡ2
T (n) (t)

∫ 1

G (t)

(1 − v)2
g(G−1 (v))

dv.

Hence, from Eq. (6), the proof is complete. �

Next, wewill derive a different lower bound for the CRJ of themixed used system’s lifetime compared
to Theorem 3. We obtain the lower bound in the following theorem in terms of the CRJ of the r-out-of-n
system’s lifetimes.

Theorem 4. Let bJ (T (n, t)) be the extropy of a mixed used system with the model function
MT (n,t) ,Y ,G,p(t) . Then

bJ (T (n, t)) ≥
n∑

i=1
pi (t)bJ (Yi:n,t).

The equality holds for i-out-of-n used systems, i = 1, . . . , n.

Proof. Applying Jensen’s inequality in (5), we get

bJ (T (n, t)) ≥ −1
2

∫ 1

G (t)

n∑
i=1

pi (t)G2
Vt,i

(v)

g(G−1(v))
dv

=

n∑
i=1

pi (t)bJ (Yi:n,t).

Equality holds for a k-out-of-n systems since pi (t) = 0 for all i ≠ n − k + 1 and pi (t) = 1
for i = n − k + 1. �

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0269964824000196
Downloaded from https://www.cambridge.org/core. IP address: 18.191.40.201, on 12 Mar 2025 at 07:40:42, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0269964824000196
https://www.cambridge.org/core


Probability in the Engineering and Informational Sciences 131

0 0.5 1 1.5 2
-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

Figure 5. Exact value of bJ (T (4, t)) and lower bounds L1 and L2 for the system with lifetime T (4) =
min(Y2:3,Y4) in exponential model.

In the following example, the comparisons of lower bounds in Theorems 3 and 4 are carried out
under the exponential model.

Example 4. Consider a system with lifetime T (4) = min(Y2:3,Y4) and with the signature vector
s = ( 14 ,

3
4 , 0, 0). Suppose that the components of the system follow the exponential distribution with

mean 0.25. It is easy to show that GV (v)
v2 =

1−(1−v)4−3v(1−v)3
v2 is decreasing function of v. Hence,

MY (t) =
GV (1−e−4t )
(1−e−4t )2 . The lower bounds for bJ (T (4, t)) from Theorems 3 and 4 are given by L1 =

− (2−(1−e−4t )2+2−e−4t )2
16e−16t (3−2e−4t )2 and L2 = p1(t)bJ (Y1:4,t) + p2(t)bJ (Y2:4,t), respectively, where p1(t) = e−4t

4(3−2e−4t )

and p2(t) =
3(4−3e−4t

4(3−2e−4t ) . We study the behavior of L1, L2, and bJ (T (4, t)) based on t in Figure 5. We
observe that L2 performs well than L1.

3. Jensen-cumulative residual extropy divergence and complexity of mixed used systems

We propose a new divergence measure using the CRJ of a mixed-use system consisting of iid
components. As mentioned earlier, one important application of information measures in reliability
engineering is to measure the complexity of the system. To address this issue, Asadi et al. (2016)
proposed the Jensen–Shannon (JS) divergence between the system with lifetime T and Y1:n, . . . ,Yn:n
as

JS(T : Y1:n, . . . ,Yn:n) = H (T) −
n∑

i=1
siH (Yi:n), (9)

whereH(T) is the Shannon entropy of T. Thismeasure compares the system entropywith its components
entropies and it is zero for the k-out-of-n systems. This property helps us to study the complexity of
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systems as higher values of JS(T : Y1:n, . . . ,Yn:n) will imply that the n-component system T is more
complex than the k-out-of-n consisting of same type of components. Analogous to JS divergence, [24]
defined the Jensen–Extropy (JJ) divergence between system T and Y1:n, . . . ,Yn:n as

JJ (T : Y1:n, . . . ,Yn:n) = J (T) −
n∑

i=1
siJ (Yi:n), (10)

where J(T) is the extropy of T. By analogy of (9) and (10), Chakrabortyand and Pradhan (2023) proposed
the JCRJ divergence in terms of the CRJ function. Chakrabortyand and Pradhan (2023) defined the JCRJ
divergence between T and Y1:n, . . . ,Yn:n as

JCRJ (T : Y1:n, . . . ,Yn:n) = bJ (T) −
n∑

i=1
sibJ (Yi:n). (11)

Analogous to (11), we propose the JCRJ divergence between a mixed used system with lifetime T (n, t)
and Y1:n,t , . . . ,Yn:n,t as

JCRJ (T (n, t) : Y1:n,t , . . . ,Yn:n,t) = bJ (T (n, t)) −
n∑

i=1
pi (t)bJ (Yi:n,t). (12)

We can present (12) as

JCRJ (T (n, t) : Y1:n,t , . . . ,Yn:n,t) = −1
2

∫ 1

G (t)

Ḡ2
Vt
(v) −

n∑
i=1

pi (t)Ḡ2
Vt,i

(v)

g(G−1(v))
dv. (13)

Also, we can rewrite (13) as

JCRJ (T (n, t) : Y1:n,t , . . . ,Yn:n,t) = − 1
2Ḡ2

T (n) (t)

∫ 1

G (t)

Ḡ2
V (v) −

n∑
i=1

Ḡ2
Vi
(v)

pi (t)

g(G−1(v))
dv.

Like JS and JJ divergence measures, JCRJ divergence is nonnegative and from Theorem 4, we see that
JCRJ (T (n, t) : Y1:n,t , . . . ,Yn:n,t) = 0 for k-out-of-n used systems. JCRJ divergence measures the com-
plexity of a mixed used system in comparison with k-out-of-n system having used same iid components
with cdf F̄ (x+t)

F̄ (t) .
Now, we introduce the relative CRJ measure, which is similar to the relative extropy measure intro-

duced by [17]. This measure will be used to compare two systems. The relative CRJ for two nonnegative
random variables X and Y with survival functions F̄ (x) and Ḡ(x) is defined as follows:

R(X : Y) = 1
2

∫ ∞

0
(F̄ (x) − Ḡ(x))2dx. (14)

The formula of relative CRJ measure calculates the squared difference between the survival functions
F̄ (x) and Ḡ(x) over all time points from zero to infinity, integrating these differences and then normal-
izing by a factor of 1

2 . Relative CRJ measures the divergence between the two survival functions over
time. This measure is used to compare the residual life distributions of two systems or components,
providing insight into how much they differ in terms of their reliability or survival characteristics.
The Kullback–Leibler divergence is focused on pdfs rather than survival functions, which makes it
more suitable for capturing overall distributional differences rather than tail behavior. JS divergence
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is more sensitive to differences in the entire distribution but may not provide detailed insights into
survival differences as relative CRJ does. Relative CRJ specifically measures the relative difference
between two distributions, making it more suitable for comparative analysis. The relative CRJ can be
viewed as a generalization or an extension of other distance measures between distributions (such as the
Kullback–Leibler divergence or the Hellinger distance), but specifically tailored to survival functions.
We refer the reader to [6, 13, 27]. In risk analysis, particularly for financial systems or insurance, relative
CRJ can help in assessing the risk of extreme events (e.g., rare but catastrophic failures) and comparing
the residual risks between different scenarios or portfolios. It can be particularly useful in stress testing
and scenario analysis, where the tail behavior of distributions is critical, see [1] for more details. Note
that the relative CRJ measure is a scale transformation of the energy distance between two nonnegative
random variables. JCRJ divergence can be expressed in terms of the relative CRJ.

Proposition 1. The JCRJ divergence between the system T and Y1:n, . . . ,Yn:n is given by

JCRJ (T (n, t) : Y1:n,t , . . . ,Yn:n,t) =
n∑

i=1
pi (t)R(T (n, t) : Yi:n,t). (15)

Proof. From (14), we have

n∑
i=1

pi (t)R(T (n, t) : Yi:n,t) =
1
2

n∑
i=1

pi (t)
∫ ∞

t

(
ḠT (n,t) (x) − Ḡi:n,t (x)

)2
dx

=

n∑
i=1

pi (t)
∫ ∞

t

( n∑
i=1

pi (t)Ḡi:n,t (x) − Ḡi:n,t (x)
)2

dx

=

n∑
i=1

pi (t)
∫ 1

G (t)

(
ḠVt (v) − ḠVt,i (v)

)2
g(G−1(v)

dv

=

n∑
i=1

pi (t)
∫ 1

G (t)

(
Ḡ2

Vt
(v) − 2ḠVt (v)ḠVt,i (v) + Ḡ2

Vt,i
(v)

)
g(G−1(v)

dv

= −1
2

∫ 1

G (t)

Ḡ2
Vt
(v) −

n∑
i=1

pi (t)Ḡ2
Vt,i

(v)

g(G−1(v)
dv

= JCRJ (T (n, t) : Y1:n,t , . . . ,Yn:n,t).
�

The JCRJ divergence of a mixed used system is determined by its signature vector sss, vector of the
coefficient ppp(t), and the common cdf of the lifetimes of its components. Proposition 1 establishes that
the JCRJ divergence is always nonnegative and that the minimum value is attained by k-out-of-n used
systems. The inequality JCRJ (T (n, t) : Y1:n,t , . . . ,Yn:n,t) ≥ 0 measures how much more complex a
mixed used system with signature vector sss and vector of the coefficient ppp(t) is in comparison to an k-
out-of-n used system with homogeneous components. Therefore, the JCRJ divergence can be used as
an alternative information criterion for comparing mixed used systems with homogeneous components.

4. Exponential model

In this section, we investigate the CRJ of the exponential mixed used system of order n. Let the com-
ponents of mixed used system have exponential distribution with survival function Ḡ(y) = e−Vy, where
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Table 1. The vectors of coefficients p∗(t) in (17) for coherent systems with one to three iid exponential
components.
System T (3) = q(Y1,Y2,Y3) p∗ (t) CRJ

1 T1 (3) = Y1
(
1
3 ,

1
3 ,

1
3

)
bJ (T1 (3, t))

2 T2 (3) = min{Y1,Y2}
(
2
3 ,

1
3 , 0

)
bJ (T2 (3, t))

3 T3 (3) = max{Y1,Y2}
(
2−2e−Vt

6−3e−Vt , 2−e−Vt

6−3e−Vt , 2
6−3e−Vt

)
bJ (T3 (3, t))

4 T4 (3) = min{Y1,Y2,Y3} (1, 0, 0) bJ (T4 (3, t))
5 T5 (3) = min{Y1, max{Y2,Y3}}

(
4−3e−Vt

6−3e−Vt , 2
6−3e−Vt , 0

)
bJ (T5 (3, t))

6 T6 (3) = Y2:3(2-out-of-3)
(
2−2e−Vt

3−2e−Vt , 1
3−2e−Vt , 0

)
bJ (T6 (3, t))

7 T7 (3) = max{Y1, min{Y2,Y3}}
(
1+2e−Vt−3e−2Vt

3+3e−Vt−3e−2Vt , 1+e−Vt

3+3e−Vt−3e−2Vt , 1
3+3e−Vt−3e−2Vt

)
bJ (T7 (3, t))

8 T8 (3) = max{Y1,Y2,Y3}
(
1−2e−Vt+e−2Vt

3−3e−Vt+e−2Vt , 1−e−Vt

3−3e−Vt+e−2Vt , 1
3−3e−Vt+e−2Vt

)
bJ (T8 (3, t))

V is positive constant. From the Corollary 2.1 of [18], for the mixed used system of order n with iid
exponential components, we have

ḠT (n,t) (t) =
n∑

i=1
p∗i (t)Ḡi:n(x), (16)

where p∗1(t), p
∗
2(t), . . . , p

∗
n(t) are coefficients such that

n∑
i=1

p∗i (t) = 1 and p∗i (t) =
aiḠ1:i (t)
ḠT (n) (t)

for i = 1, . . . , n,

where aaa = (a1, . . . , an) is domination vector, see [20]. This result follows directly from the lack of
memory property of exponential distribution. By using (16), the CRJ of the exponential mixed used
system of order n is given by

bJ (T (n, t)) = −1
2

∫ 1

0

( n∑
i=1

p∗i (t)ḠVi (v)
)2

V(1 − v) dv. (17)

Denote the vector of coefficient in (17) by p∗(t) = (p∗1(t), p
∗
2(t), . . . , p

∗
n(t)). We compute the vectors of

coefficients p∗(t) for the exponential mixed used system of order 3 with one to three iid components.
The results are displayed in Table 1. Actually, we rewritten Table 2 in [18] for extropy of exponential
mixed used systems with one to three iid components.

Let us denote the CRJ of systems with lifetimes Ti (3, t) by bJ (Ti (3, t)), for i = 1, . . . , 8. For vectors
of coefficients p∗(t) in Table 1, the CRJ of exponential mixed used systems of order 3 has been displayed
in Figure 3 as a function of t. From Figure 6, it is observed that bJ (Ti (3, t)) is a increasing function with
respect to t for i = 1, . . . , 8. For t < 0.008, Figure 6 shows that the following inequalities hold between
the CRJ of the aforementioned systems as follows:

bJ (T4(3, t)) ≥ bJ (T2(3, t)) ≥ bJ (T5(3, t)) ≥ bJ (T1(3, t)) ≥ bJ (T6(3, t)) ≥ bJ (T7(3, t))
≥ bJ (T3(3, t)) ≥ bJ (T8(3, t)), (18)

for 0.008 < t < 0.048,

bJ (T4 (3, t)) ≥ J (T2(3, t)) ≥ bJ (T5(3, t)) ≥ bJ (T6(3, t)) ≥ bJ (T1(3, t)) ≥ bJ (T7 (3, t))
≥ bJ (T3(3, t)) ≥ bJ (T8(3, t)), (19)
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Figure 6. The CRJ of exponential mixed used systems of order 3 in Table 1.

and for t > 0.048, we have

bJ (T4(3, t)) ≥ bJ (T2(3, t)) ≥ bJ (T5(3, t)) ≥ bJ (T6(3, t)) ≥ bJ (T7 (3, t)) ≥ bJ (T1(3, t))
≥ bJ (T3(3, t)) ≥ bJ (T8(3, t)). (20)

Also, inequalities (18), (19), and (20) confirm Theorem 1. For example p∗2 (t) 6st p∗5(t) and p∗3(t) 6st
p∗8(t), therefore from inequality (18), we have bJ (T2(3, t)) ≥ bJ (T5(3, t)) and bJ (T3(3, t)) ≥
bJ (T8(3, t)), respectively. Note that p∗2(t), p∗5(t), p∗3(t), and p∗8(t) are vectors of coefficients for systems
2, 5, 3, and 8 in Table 1, respectively.

The JCRJ divergence for the group of systems listed in Table 1 is depicted in Figure 7. This group
of systems comprises three iid components, each with an exponential lifetime having a mean of 0.1.
In Figure 7, it can be observed that system 4 is a 3-out-of-3 system with a JCRJ divergence of zero.
System 4 is the least complex system among the systems listed in Table 1. Furthermore, it is evident
from Figure 7 that as the complexity of the systems increases, the JCRJ divergence also increases.
The JCRJ divergence of systems 5 and 6 are the same for t > 0.048. As t approaches infinity, the JCRJ
divergence of systems 5 and 6 tends to the JCRJ divergence of system 2. Additionally, as t approaches
infinity, the JCRJ divergence of systems 7, 3, and 8 tends to the JCRJ divergence of system 1. One
advantage of the JCRJ divergence measure is that we can compare the complexity of systems consisting
of different numbers of iid components.

5. Optimal signature for the JCRJ divergence and complexity of used systems

In this section, we consider the problem of finding the optimal signature system in the exponential model
by maximizing a chosen criterion function over the class of all mixed used systems of order n at the fixed
time t. The formulation of any reliability economics problem will always involve specifying a criterion
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Figure 7. JCRJ of exponential mixed used systems of order 3 in Table 1.

function that quantifies how the performance and cost of the system or policy will be evaluated in
relation to each other. It’s important to note that choosing the criterion function is somewhat subjective
and will have an impact on the outcome of the optimization process. The criterion function should vary
proportionatelywithmeasures of system performance and inverselywithmeasures of system cost. These
properties are equivalent, for example, to the position that, given two systemswith the same performance
characteristics, we would prefer the one which costs less, and given two systems which cost the same, we
would prefer the better-performing system. A mixed system with a signature sss can be physically created
using a randomization process that selects a k-out-of-n system with a probability of sk, where k ranges
from 1 to n. Since the class of mixed systems includes all coherent systems as special cases, considering
this larger space does not result in any loss. Furthermore, the space of signatures ofmixed systems, based
on coherent systems of order n in iid components, is uncountably infinite, which leads to replacing a
discrete search with a search over a much larger space. The larger problem is much more amenable to
analytical treatment, as the tools of differential calculus become available in the maximization problem
of interest. The optimization problem to which we now turn involves the maximization of a chosen

criterion function over the (n − 1)-dimensional simplex
{
s ∈ [0, 1]n |

n∑
i=1

si = 1
}
.

We consider the following criterion function

md (s, a, c) =

n∑
i=1

aisi

(
n∑

i=1
cisi)d

, (21)

where s is the signature vector, d > 0 and vectors a and c can be chosen arbitrary within the context of
two natural constraints: 0 < a1 < · · · < an and 0 < c1 < · · · < cn. The criterion function (21) has
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been presented in Chapter 7 of [26] which is dedicated to a particular problem in the area of reliability
economics. The optimization problem considered in [26] is divided into two mutually exclusive cases,
and the precise nature of the optimal design is obtained for each and it is showed that the criterion func-
tion can be maximized by a given coherent system. The cost vector c = (c1, . . . , cn) and the calibration
parameter d involve assessments on the part of the experimenter (the producer, customer or both), and
it seems reasonable to assume that the value of c can be determined, in most applications of interest,
with the assistant of engineering judgment and other expert advice. Furthermore, the value of d can be
chosen to fit a given application, perhaps with the help of suitable sensitivity analysis.

Eq. (15) in a mixed used system assesses the complexity of the system, which indicates how much
more complex the system is in comparison to a k-out-of-n system with a baseline CDF of F̄ (x+t)

F̄ (t) . The
objective is to find a system that minimizes the JCRJ divergence and reduces costs simultaneously. To
achieve this, we use the criterion function in Eq. (21) and reformulated Eq. (14) as

JCRJ (T (n, t) : Y1:n,t , . . . ,Yn:n,t) =
n∑

i=1
siai, (22)

where ai =
P(Yi:n>t)

P(T (n)>t) R(T (n, t) : Yi:n,t). By substituting (22) into the criterion function (20), we can
achieve our goal.

In Eq. (21), we assume that ai =
P(Yi:n>t)

P(T (n)>t) R(T (n, t) : Yi:n,t) and ci = CI + n(A − B) + iB for
i = 1, . . . , n, where CI is an initial fixed cost of manufacturing the systems of interest, A is cost of an
individual component, B is salvage value of a used but working component removed after system failure,
and t is a fixed time. For additional information about the values of ci, refer to Page 95 of chapter 7 in
[26].

Let the components of mixed used system have exponential distribution with survival function
Ḡ(y) = e−Vy, where V is positive constant. Let CI = 0 and B= 1. Consider the class of all mixed
used systems based on n components with iid lifetimes. The goal is to identify a system that simulta-
neously minimizes the JCRJ (maximizes (−1)×JCRJ) divergence as well decreases the costs. Now the
question come up is, “What is the optimal signature vector subject to the criterion function (21)?”. This
problem can be formulated as

maximized : md (s, a, c) =
− 1

2

n∑
i=1

p∗i (t)
∫ 1
0

( n∑
i=1

i−1∑
j=0

p∗i (t)
(n
j
)
ui (1 − u)n−i −

i−1∑
j=0

(n
j
)
ui (1 − u)n−i

)2
dx

(
n∑

i=1
(i + n(A − 1))si)d

,

subject to :


n∑
i=1

si = 1,

0 ≤ si ≤ 1.

Numerical computations are needed to find the solutions. We have done the computations to obtain the
optimal signature of mixed used system with five independent exponentially distributed components
for some selected values of A, d, and V. The numerical results are presented in Table 2 which shows
that there is no continuity in nature of the optimal signature. From Table 2, we observe that the optimal
signature system is a series system for d ≤ 0.13 and with increasing the mean lifetime of components,
the optimal signature system is a series system for d ≤ 0.5. Also, we observe that for d ≥ 12, the
optimal system is a mixture system with uniform signature s = ( 15 ,

1
5 ,

1
5 ,

1
5 ,

1
5 ).
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Table 2. Optimal signatures of mixed used system of order 5 with independent exponentially distributed
components at time t= 0.1.

V = 2 V = 0.1
A d s1 s2 s3 s4 s5 s1 s2 s3 s4 s5
1.5 ≤ 0.1 1 0 0 0 0 1 0 0 0 0
1.5 0.13 1 0 0 0 0 1 0 0 0 0
1.5 0.2 1 0 0 0 0 1 0 0 0 0
1.5 0.5 1 0 0 0 0 1 0 0 0 0
1.5 0.9 0.9998 0 0 0 0 0.9231 0.0769 0 0 0
1.5 1 0.9970 0.0002 0.0001 0 0 0.5820 0.0761 0.3355 0.0051 0.0013
1.5 1.5 0.3130 0.2772 0.2270 0.1530 0.0298 0.6142 0.2602 0.0784 0.0319 0.0153
1.5 2 0.3053 0.2770 0.2329 0.1612 0.0236 0.5938 0.2896 0.0708 0.0306 0.0153
1.5 5.5 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
1.5 10 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
1.5 ≥ 12 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
2 ≤ 0.1 1 0 0 0 0 1 0 0 0 0
2 0.13 1 0 0 0 0 1 0 0 0 0
2 0.2 0.9999 0.0001 0 0 0 1 0 0 0 0
2 0.5 0.9998 0.0002 0 0 0 1 0 0 0 0
2 0.9 0.9997 0.0003 0 0 0 1 0 0 0 0
2 1 0.9999 0.0001 0 0 0 1 0 0 0 0
2 1.5 0 0 0 0.0001 0.9999 09, 224 0.0763 0.0009 0.0002 0.0001
2 2 0 0 0.0002 0.0001 0.9997 0.5622 0.1246 0.3006 0.0100 0.0026
2 5.5 0.0088 0.0112 0.0168 0.0399 0.9233 0.5936 0.2897 0.0708 0.0306 0.0153
2 10 0.1970 0.1984 0.1999 0.2015 0.2032 0.2 0.2 0.2 0.2 0.2
2 ≥ 12 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
3 ≤ 0.1 1 0 0 0 0 1 0 0 0 0
3 0.13 1 0 0 0 0 1 0 0 0 0
3 0.2 1 0 0 0 0 1 0 0 0 0
3 0.5 0.8701 0.1299 0 0 0 1 0 0 0 0
3 0.9 0.8701 0.1299 0 0 0 1 0 0 0 0
3 1 0.8704 0.1295 0.0001 0 0 0.9230 0.0765 0.0002 0.0001 0.0001
3 1.5 0.8712 0.1283 0.0002 0.0002 0.0001 0.5448 0.2199 0.2026 0.0254 0.0073
3 2 0.5936 0.2897 0.0708 0.3060 0.1520 0.5937 0.2896 0.0708 0.0306 0.0153
3 5.5 0.5772 0.3050 0.6770 0.3160 0.0185 0.5838 0.2896 0.0708 0.0306 0.0153
3 10 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
3 ≥ 12 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

6. Conclusion and future remarks

The purpose of this paper is to develop representations for the CRJ of systems with an order of n, under
specific conditions related to the system state at time t. We focused on one form of conditioning, which
is that the system is operational at time t (i.e., T (n) > t). When T (n) > t, the system is considered a used
system with a lifetime of T (n) − t |T (n) > t. The representations of the CRJ for these conditional sys-
tems are valuable for analyzing the information properties of conditional mixed systems. By using these
representations, we established some stochastic comparisons and boundaries for the CRJ of conditional
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systems. We computed the CRJ of coherent systems with three iid components with exponentially dis-
tributed lifetimes and discovered that the series system has the highest CRJ, while the parallel system
has the lowest CRJ. Additionally, we introduced a divergence measure based on the CRJ of a mixed
used system that evaluates the complexity of the system, that is, how much more complex the system
is compared to a k-out-of-n system with baseline cdf F̄ (x+t)

F̄ (t) . For our future work, we aim to explore
the information properties and complexity of conditional mixed systems from the perspective of other
information theoretic approaches.

Supplementary material. To view supplementary material for this article, please visit http://dx.doi.org/10.1017/
S026996482400019.
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