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SUMMARY

As the 2009 H1N1 influenza pandemic (H1N1) has shown, public health decision-makers may

have to predict the subsequent course and severity of a pandemic. We developed an agent-based

simulation model and used data from the state of Georgia to explore the influence of viral

mutation and seasonal effects on the course of an influenza pandemic. We showed that when

a pandemic begins in April certain conditions can lead to a second wave in autumn (e.g. the

degree of seasonality exceeding 0.30, or the daily rate of immunity loss exceeding 1% per day).

Moreover, certain combinations of seasonality and mutation variables reproduced three-wave

epidemic curves. Our results may offer insights to public health officials on how to predict the

subsequent course of an epidemic or pandemic based on early and emerging viral and epidemic

characteristics and what data may be important to gather.

Key words: Influenza, pandemic, public health.

INTRODUCTION

As seen in the 2009 H1N1 influenza pandemic, public

health officials may need to forecast the subsequent

course of an epidemic based on its initial and emerg-

ing characteristics. Previous influenza pandemics have

shown that an outbreak can consist of multiple waves

with intervening periods of relatively lower disease

activity. The 1918 pandemic began with an initial

smaller herald outbreak in spring 1918 mostly affect-

ing the USA and Europe, subsiding in summer 1918.

A secondmuch larger global wave occurred in autumn

1918, affecting both Northern and Southern hemi-

spheres. After disease activity appeared to decline in

January 1919, a third wave followed in late winter

1919 and early spring 1919 [1, 2].

Viral pathogen characteristics and behaviour are

not necessarily static but can change during an epi-

demic, which may lead to the appearance of multiple

waves. Mutations and environmental factors can af-

fect viral transmission dynamics, virulence, and popu-

lation and individual host susceptibility and, in turn,

alter the course of the epidemic. Various infectious

pathogens including influenza, measles, chickenpox,

and pertussis have exhibited seasonality in their out-

break and epidemic patterns [3–10]. Transmission of

seasonal influenza tends to substantially increase from

November to February in the Northern hemisphere

and from May to August in the Southern hemisphere.

Studies have postulated a number of possible causes

of influenza seasonality, including changes in human

mixing patterns, fluctuations in human immunity, and
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most recently environmental humidity [11, 12]. The

influenza virus can also mutate, resulting in either in-

cremental changes (antigenic drift) or more substan-

tial changes (antigenic shift).

Understanding potential changes in transmission

dynamics and subsequent effects on the course of an

epidemic can be important for public health pre-

paredness. The 2009 H1N1 influenza pandemic

emerged in spring 2009, prompting public health

officials to forecast what would happen in autumn

2009 and winter 2009–2010. When disease activity

increased in September and October 2009, decision-

makers wondered whether another (i.e. third) wave

might occur during the winter. Public health officials

have tried to determine potential response strategies

and surge capacity needed on the basis of observed

transmission characteristics during the spring out-

break. They also have endeavoured to determine the

type of data that should be collected during the early

stages of the epidemic to assist forecasting. Computer

simulation models can help public health officials

make such plans. Mills et al. [13] noted the risk of

multiple waves in a pandemic and emphasized the

importance of preparedness. Handel et al. [14] inves-

tigated the optimal intervention strategies for multiple

outbreaks under the constraint of limited resources.

Existing pandemic simulation models have considered

a single wave but did not explicitly model the possi-

bility of multiple waves throughout the pandemic

course or transmission characteristics that may lead to

multiple waves [15–18]. Some studies have used dif-

ferential equation models to analyse seasonality and

viral mutation in seasonal influenza [19] and measles

[20] but did not utilize spatial, temporally explicit

simulation models ; Casagrandi et al. [19] primarily

focused on characteristics of annual disease outbreaks.

We constructed a computer simulation model to ex-

plore how seasonal changes in transmission dynamics

and viral mutation may affect the course of an influ-

enza pandemic. The study aimed to determine what

combinations of characteristics would lead to one,

two, and three separate epidemic waves and examined

the characteristics of the subsequent waves.

METHODS

We developed a spatially and temporally explicit

agent-based simulation model and tested it with data

from the state of Georgia. The agent-based model is

comprised of a population of computer agents, with

each agent representing an individual programmed

with characteristics and behaviours. Each person (in

a total population of 9 071 756) with corresponding

relevant socio-demographic characteristics was rep-

resented by a computer agent and assigned to a

household (y3500 000 households in total) according

to 2000 U.S. Census Data [21]. Each day, agents

moved back and forth between households and work-

places (y300 000 work groups in total) or schools

(y130 700 classrooms in total) as determined by data

from the Georgia Accrediting Commission [22].

Agents interacted with each other in homes, work-

places, schools, and in the community [16, 17].

At initialization, all persons were susceptible to

disease. The disease progression within a person is

described by a standard SEIR (Susceptible–Exposed–

Infected–Recovered) model [15]. Calibration of the

disease and contact model was based on previously

published methods [15, 16]. Additional details are

available in the Technical Appendix (available on-

line).

Representation of seasonality

To represent seasonality, we expressed the repro-

ductive rate (R0) value as a sinusoidal function of time

t [19, 23] :

R0(t)=R0*(1+e cos (2pt)), (1)

This allowed us to vary R0 during the course of the

epidemic. R0* is the baseline reproductive rate, and

e (0<e<1) characterizes the degree of seasonality

(see Fig. 1). More temperate regions tend to have a

higher e and lower R0*; more tropical regions tend

to have lower e but higher R0* [19]. We directly set the

R0 value (rather than the transmission rate b) as a

function of time t ; this process closely estimated the

changing pattern of b with time in a manner used in

previous studies [6, 8, 19, 23].

For computational efficiency, we used linear inter-

polation to convert the continuous function in

equation (1) into a step function with 12 discrete

monthly R0 values (Table 1). The discretization ap-

proximated the continuous function with sufficient

accuracy [6, 8].

Representation of viral mutation

To model viral mutation, we introduced a new strain

at time t* (i.e. the number of days after the appear-

ance of the initial seed) in the simulation. After the

introduction of the new strain at time t*, each day a
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fraction d (0<d<1) of the resistant population lost

their immunity (i.e. reverted to being susceptible).

This mutation model assumed that the new dominant

mutant strain had the same R0 value as the original

strain. Hence, our simulation runs tracked disease

spread in the population without distinguishing

the infections caused by the original strain from those

caused by the new strain, an assumption employed

by Ferguson et al. [24].

Combination of seasonality and viral mutation

In order to study the joint effect of seasonality and

viral mutation on an influenza pandemic, we com-

bined the seasonality and mutation models for some

experiments. This combined model assumed that the

R0 value of the circulating strain (either the original or

the mutant strain) will change over time in the same

manner described by equation (1) and employed the

resulting discrete monthly R0 values for compu-

tational efficiency, as described above.

Simulation runs and sensitivity analysis

Table 2 and Figure 1 show the combinations of values

for R0* and e and different times (January, April, July,

October) of the initial seed case (where t0 denotes the

time). Considering the time of emergence of the H1N1

pandemic influenza, we tested three more months

in spring for the initial seed case (February, March,
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Fig. 1. Plot of R0 value as function of time. The figure shows
the baseline reproductive rate R0*=1.5, degree of season-
ality e=0.07, 0.18, and 0.30. The four intervals represent

four different times (January, April, July, October) when the
initial seed case appears. Within different intervals, the
variation patterns of R0 are different (e.g. in the first inter-
val, the value of R0 first decreases then increases ; in the third

interval, the value of R0 first increases then decreases).

Table 1. The reproductive rate (R0) value in every month after discretizing the sinusoidal function for

seasonality with nine sets of variables’ values

(R0*#, e$) Jan. Feb. Mar. Apr. May June July Aug. Sep. Oct. Nov. Dec.

(1.5, 0.07) 1.6 1.6 1.5 1.5 1.4 1.4 1.4 1.4 1.5 1.5 1.6 1.6

(1.5, 0.18) 1.8 1.7 1.6 1.4 1.35 1.3 1.2 1.35 1.4 1.6 1.7 1.8
(1.5, 0.30) 1.9 1.8 1.6 1.4 1.2 1.15 1.1 1.2 1.4 1.6 1.8 1.9
(1.8, 0.07) 1.9 1.9 1.8 1.8 1.7 1.7 1.65 1.7 1.8 1.8 1.9 1.9

(1.8, 0.18) 2.1 2.0 1.9 1.7 1.6 1.5 1.5 1.6 1.7 1.9 2.0 2.1
(1.8, 0.30) 2.3 2.1 1.9 1.6 1.4 1.3 1.3 1.4 1.6 1.9 2.1 2.3
(2.0, 0.07) 2.1 2.1 2.0 2.0 1.95 1.9 1.9 1.95 2.0 2.0 2.1 2.1

(2.0, 0.18) 2.3 2.2 2.1 1.9 1.7 1.6 1.6 1.7 1.9 2.1 2.2 2.3
(2.0, 0.30) 2.5 2.4 2.1 1.8 1.6 1.4 1.4 1.6 1.8 2.1 2.4 2.5

# Baseline reproductive rate.
$ Degree of seasonality.

Table 2. Combination of (baseline reproductive rate,

degree of seasonality) values in the seasonality

experiments

Degree of

seasonality

Baseline reproductive rate

1.5 1.8 2.0

0.07 (1.5, 0.07) (1.8, 0.07) (2.0, 0.07)
0.18 (1.5, 0.18) (1.8, 0.18) (2.0, 0.18)

0.30 (1.5, 0.30) (1.8, 0.30) (2.0, 0.30)
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May) with the combinations of R0* and e as shown

in Table 2. This resulted in a total of 63 different

experimental seasonality scenarios, and we ran 10

replications of the simulation for each scenario. The

time horizon for each replication was 365 days.

To study the viral mutation, we tested three R0

values : 1.5, 1.8, and 2.1. These values are consistent

with the estimates for R0 in relevant studies [15–17].

We also explored the effects of using six different

values for d (0.5%, 1.5%, 5%, 8%, 10%, 20%)

derived from previous studies [19, 25]. Using rough

estimates, an antigenic drift occurs on average every

2–8 years, and the antigenic shift occurs approxi-

mately three times every 100 years [26]. We considered

an epidemic that starts from an antigenic shift (i.e. the

population has low immunity to the virus), and tested

five values for t* (30, 60, 90, 120, 180) to ensure a

comprehensive experimental setting for the antigenic

drift. If t* is larger than 180 our simulation showed

that it can be considered to be a new epidemic with a

smaller susceptible population. The combinations of

the (d, t*) variables are listed in Table 3. The total

number of experimental mutation scenarios was 120

with 10 replications for each scenario. The time

horizon for each replication was 365 days.

Different specific scenarios with both seasonality

and viral mutations were also considered in order to

explore the combinations of factors that may lead to

a third wave (e.g. simulated time horizon of 500 days

and 10 replications with parameters R0*=1.5, e=0.3,

d=0.5%, 1.5%, 5%, t*=150, 180, 250, 275, and the

pandemic starting in April).

RESULTS

Seasonality scenarios

Figure 2 shows the resulting epidemic curves (i.e.

daily prevalence of infected persons) for different

combinations of (R0*, e, t0) from the seasonality scen-

arios. As Figure 2 demonstrates, a pandemic that be-

gins in April can result in two waves (the first in spring

and the second in the subsequent autumn/winter),

whereas pandemics beginning in January, July, and

October did not result in additional waves for the set

of variables that we tested. Our simulation also shows

that a pandemic starting in March can result in two

waves (the first in spring and the second in the sub-

sequent autumn), and no additional waves appear if

the pandemic begins in February or May.

As shown in Figure 2, with e (the degree of season-

ality) held constant, the peak prevalence day for the

first wave of the epidemic occurs earlier for higher

values of R0* (baseline value of R0). In situations

where a second epidemic wave occurs, the second

wave’s peak prevalence day occurs later and the peak

value is smaller for lower values of R0*.

Holding the baseline value R0* constant, a pan-

demic that starts in January or October has an earlier

peak prevalence day and a higher peak prevalence for

higher degrees of seasonality (e). An epidemic that

starts in April or July has a later peak prevalence day

and a smaller peak prevalence for higher degrees of

seasonality.

Viral mutation scenarios

Figure 3 shows the resulting epidemic curves for dif-

ferent combinations of (R0, d, t*) values. The simu-

lation runs suggest that 10 days after the initial wave’s

peak prevalence may be a critical threshold. Viral

mutations introduced before this time did not result in

a second wave but increased the initial wave’s peak

prevalence and delayed the peak prevalence day.

However, a viral mutation introduced after this time

could result in a second wave. Moreover, after this

time threshold, the later the viral mutation emerged,

Table 3. Combination of (rate of immunity loss, day when the mutant strain emerges) values in the mutation

experiments

Rate of
immunity loss

Day when the mutant strain emerges

30 60 90 120 180

0.005 (0.005, 30) (0.005, 60) (0.005, 90) (0.005, 120) (0.005, 180)
0.015 (0.015, 30) (0.015, 60) (0.015, 90) (0.015, 120) (0.015, 180)

0.05 (0.05, 30) (0.05, 60) (0.05, 90) (0.05, 120) (0.05, 180)
0.08 (0.08, 30) (0.08, 60) (0.08, 90) (0.08,120) (0.08, 180)
0.10 (0.10, 30) (0.10, 60) (0.10, 90) (0.10,120) (0.10, 180)

0.20 (0.20, 30) (0.20, 60) (0.20, 90) (0.20,120) (0.20, 180)
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then the later the peak prevalence of the second wave

came, if it occurred.

Not all viral mutations introduced after the time

threshold resulted in a second wave. A loss of im-

munity rate (d) smaller than 1% daily seemed to

prevent the appearance of a second wave. Second

waves appeared only when d was above 1%.

Additionally, a higher d resulted in an earlier peak
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Fig. 2. Epidemic curves (daily prevalence of infection) for
seasonality scenarios. Nine curves in each panel correspond
to nine pairs of (R0*, e) values. The x axis (northeast hori-

zontal) represents the simulation day, the y axis (southeast
horizontal) represents the degree of seasonality (e), and
the z axis (vertical) represents the daily prevalence of infec-

tious cases (the number of symptomatic and asymptomatic
persons over the total population). The epidemic starts in
four different months : (a) January, (b) April, (c) July,
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(a)

8

6

4

2

0
0 50 100 150 200 250 300 350

D
ai

ly
 p

re
va

le
nc

e 
(%

)

Day

6

4

2

0
0 50 100 150 200 250 300 350

D
ai

ly
 p

re
va

le
nc

e 
(%

)

Day

(b)

10

8

6

4

2

0
0 50 100 150 200 250 300 350

D
ai

ly
 p

re
va

le
nc

e 
(%

)

Day

(c)

δ =0·05, t*=60

δ =0·05, t*=90

δ =0·05, t*=180

δ =0·10, t*=60

δ =0·10, t*=90

δ =0·10, t*=180

Fig. 3. Epidemic curves (daily prevalence of infection)
for mutation scenarios. Each panel contains six curves
corresponding to six pairs of (d, t*) values (d=0.05 and

0.10, t*=60, 90, and 180). The x axis represents the simu-
lation day, and the y axis represents the daily prevalence of
infectious cases (the number of symptomatic and asymp-

tomatic persons over the total population). The subfigures
show different reproductive rates (a) R0=1.5, (b) R0=1.8,
(c) R0=2.1.
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prevalence day and a higher peak prevalence for the

second wave, if one exists.

Figure 4 shows that when R0=1.5 and d=0.05, the

peak prevalence of the second wave increases as t*

increases from 90 to 180. However, when d increases

to 0.10, the peak prevalence of the second wave de-

creases as t* increases from 90 to 180. Table 4 and

Figure 5 depict the effects of varying d, t*, and R0.

Seasonality and viral mutation scenarios

Certain combinations of seasonality and mutation

variables (e.g. R0*=1.5, a degree of seasonality e=0.3,

and a loss of immunity rate d=0.015) were able to

reproduce three-wave epidemic curves similar to those

seen in the 1918 pandemic (Fig. 6a). The first case was

introduced in April and the mutant strain emerged

275 days after the initial seed infection. The simulated

time horizon spanned 500 days to include the third

wave. Applying a constant mortality rate [15] re-

produced the shapes of the observed 1918 pandemic

mortality curves very closely (see figures in [1, 2]).

Similarly, we were able to reproduce the epidemic

curves for 1957 [27] using one mutation scenario

(R0=1.5 and the loss of immunity rate d=0.05). The

epidemic began in August and the mutant strain

emerged at day 90 (Fig. 6b). Applying a constant

mortality rate reproduced the shape of the observed

1957 pandemic mortality curves [27]. For the pan-

demic in 1968 [28], setting R0=1.5, consistent with

estimates from the literature [27], and simulating

without seasonality or viral mutation reproduced the

epidemic curves observed (Fig. 6c).

As described earlier, without seasonality, a second

wave would not appear if the loss of immunity rate

was below 0.01 or the virus mutated before 10 days

after the initial wave’s peak. However, with season-

ality added, we found scenarios where a third wave

could occur if the loss of immunity rate was greater

than 0.005, a viral mutation emerged after 180 days

from the initial seed case, and the degree of season-

ality was equal to 0.18. (In these cases, the first two

waves reflected seasonal effects, and the third wave

resulted from the viral mutation.)

DISCUSSION

Our study shows how changing variables designed

to represent seasonality and influenza virus mutation

can substantially alter the course of an influenza

pandemic. When representing pandemic seasonality

with a sinusoidal function, we demonstrated how

varying a seasonality factor can transform the epi-

demic curve and result in one or two additional

waves. Additionally, the month that a pandemic first

appears could help determine whether a second wave

may occur.

Specifically, an epidemic starting in January (in

the Northern hemisphere) with a high reproductive

rate (R0) may infect too many susceptibles (in turn,

producing too many immune persons) to allow for

100

80

60

40

Su
sc

ep
tib

le
 p

op
ul

at
io

n 
(%

)

3

2

1

0
D

ai
ly

 p
re

va
le

nc
e 

(%
)

0 50 100 150 200 250 300 350
Day

δ =0·05, t*=90
δ =0·10, t*=90
δ =0·05, t*=180
δ =0·10, t*=180

Fig. 4. Percentage of susceptible population (number of the
daily susceptible persons over the total population) and the

daily prevalence of infection. R0=1.5 and the loss immunity
rate d=0.05 and 0.10. The curves are plotted with different
scaling. The upper curves, which correspond to the suscep-

tible population, use the scale on the left y axis ; the lower
curves, which correspond to the prevalence of infection, use
the scale on the right y axis.

Table 4. The peak prevalence value in the second wave

varies as the mutant strain emerges later

Reproductive
rate

Rate of immunity loss

0.05 0.10 0.20

2.1 + + x
1.8 + x x
1.5 + x x

+ The value of the peak prevalence is higher if the mutant
strain emerges later.
x The value of the peak prevalence is lower if the mutant

strain emerges later.
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a second wave to occur [14, 29–31]. An influenza

epidemic that begins in April has only a short time-

frame to infect susceptibles before summer before

the R0 value decreases. As a result, the first wave is

relatively mild, leaving a large population of sus-

ceptibles remaining to be infected in autumn, when

the R0 value rises again. This situation provides a

fertile ground for a second wave. Epidemics that start

in July may not have a large enough R0 to generate an

epidemic curve until autumn. Similar to those starting

in January, an epidemic starting in October rapidly

affects a large number of persons (leaving relatively

fewer susceptible persons) so that a second wave may

not be possible.

The time in which a viral mutation emerges

may also affect the peak prevalence, the timing of the

peak, and whether a second wave occurs. Viral mu-

tations that emerged more than 10 days after the peak

prevalence day accompanied by a loss of immunity

rate of more than 1% of the recovered population can

lead to a second wave.

When a viral mutation leads to a second wave,

the characteristics of the second wave depend on the

value of R0, the emergence time of the mutant strain

(t*) and the loss of immunity rate (d). The variations

in the value of the peak prevalence in the second wave

(Fig. 5) are related to the force of infection, which is

the rate at which susceptible persons are infected by

the virus ; this rate is higher if there are more infec-

tious persons. The prevalence of infections depends

on the current value of the force of infection as well as

the number of susceptible persons. Holding other

parameters fixed, if the mutation begins earlier, then

the value of the force of infection is higher because

the first wave has not completely disappeared and

the number of infectious persons is higher; if the

mutation begins later, the number of susceptible per-

sons is higher because the recovered pool is larger

(Fig. 4). According to the simulation (Fig. 4, Table 4),

when R0=1.5 with a loss of immunity rate d=0.10,

the first factor dominates, although the second factor

dominates when rate d=0.05.

Furthermore, we found certain variable combi-

nations that can lead to three epidemic waves (e.g. the

initial case appears in April followed by a viral mu-

tation and seasonality effects). A three-wave epidemic

curve similar to the 1918 pandemic [1, 2] takes place

when R0*=1.5, the degree of seasonality e=0.3, the

loss immunity rate d=0.015, and the mutant strain

emerges 275 days after the initial seed case.
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Implications for public health

As the 2009 influenza epidemic (H1N1) has demon-

strated, public health officials and other decision-

makers must plan and execute strategies not only

before an epidemic emerges but also throughout its

course. Within a limited time window, they also must

determine what data needs to be collected to facilitate

forecasting and planning. Early characterization of

the ambient circumstances and the emerging viral

characteristics may help predict the behaviour of

the epidemic and the corresponding intervention

requirements. When an epidemic emerges in spring,

for example, a noteworthy concern is whether the

epidemic will re-emerge with greater or less severity

in the following autumn. Our simulation suggests

that decision-makers may want to watch for certain

characteristics such as the month the epidemic started

and the rate at which recovered patients are being

re-infected to aid their forecasts. If a second wave is

possible, then decision-makers can plan medical sup-

plies, personnel staffing, and education of the public

accordingly, and the time gained for planning may

even allow for a vaccine to be developed.

Additionally, our simulation study confirms the

importance of active surveillance and virus typing

during the course of an epidemic. A viral mutation

that emerges during the downward slope of an initial

wave may take public health officials by surprise.

It is valuable to closely monitor patients who have

already been infected and detect new strains as soon

as they emerge. Without this additional information,

the gross epidemiological behaviour of an initial wave

can be very deceptive.

Finally, re-creating a three-wave epidemic may

help shed additional light on the 1918 pandemic,

which has been the source of much of the scientific

and preparedness communities’ understanding of in-

fluenza epidemics. Our simulation offers a profile of

conditions that may have been present in 1918.

Limitations

Computer models and simulations by definition are

simplifications of real life. They include a number of

assumptions and cannot fully capture every possible

factor or effect. Computer simulations can help

delineate possible relationships and understand the

importance of various questions and characteristics.

Caution should be used when attempting to make

definitive forecasts. The current results may not be

generalizable to all locations and conditions.

Conclusions and future directions

Our study demonstrated how different seasonal

effects and the timing and degree of viral mutation

can substantially alter the course of a pandemic. Early

characterization of the ambient circumstances and

the emerging viral characteristics may help public

health officials and other decision-makers predict

the subsequent behaviour of an epidemic and the
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Fig. 6. Reproduced epidemic curves for the 1918, 1957 and
1968 pandemics. The x axis represents the simulation day,
and the y axis represents the daily prevalence of infectious
cases (the number of symptomatic and asymptomatic per-

sons over the total population). (a) Three prevalence peaks
can occur with a baseline reproductive rate R0*=1.5, degree
of seasonality e=0.30, loss of immunity rate d=0.015. The

epidemic starts in April and the mutant strain emerges at
day 275. (b) Simulating a mutation scenario with R0=1.5
and loss of immunity rate d=0.05. The epidemic starts in

August and the mutant strain emerges at day 90
(November). (c) Simulating with R0=1.5 (without mutation
or seasonality). The epidemic starts in October.
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corresponding intervention requirements. Further,

the advance notice of potential subsequent waves can

help improve planning decisions. Future studies may

look at the effectiveness of different public health

interventions [15–18] in many of our simulated scen-

arios.

NOTE

Supplementary material accompanies this paper on

the Journal’s website (http://journals.cambridge.org/

hyg).
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