
J. Fluid Mech. (2025), vol. 1009, A58, doi:10.1017/jfm.2025.204

Stratified wake of a 6:1 prolate spheroid
at a moderate pitch angle

Sheel Nidhan
1

, Sanidhya Jain
1

, Jose Luis Ortiz-Tarin
1
and

Sutanu Sarkar
1

1Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla,
CA 92093, USA
Corresponding author: Sutanu Sarkar, ssarkar@ucsd.edu

(Received 6 November 2024; revised 20 January 2025; accepted 31 January 2025)

The on-body flow and near-to-intermediate wake of a 6:1 prolate spheroid at a pitch
angle of α = 10◦ and a length-based Reynolds number, ReL = U∞L/ν = 3 × 104, are
investigated using large eddy simulation (LES) across four stratification levels: Fr =
U∞/N D = ∞, 6, 1.9 and 1. A streamwise vortex pair, characteristic of non-zero α in
unstratified flow over both slender and blunt bodies, is observed. At Fr = ∞ (unstratified)
and 6, the vortex pair has a lateral left–right asymmetry as has been reported in several
previous studies of unstratified flow. However, at higher stratification levels of Fr = 1.9 and
1, this asymmetry disappears and there is a complex combination of body-shed vorticity
that is affected by baroclinicity and vorticity associated with internal gravity waves. Even
at the relatively weak stratification of Fr = 6, the wake is strongly influenced by buoyancy
from the outset: (a) the vertical drift of the wake is more constrained at Fr = 6 than
at Fr = ∞ throughout the domain; and (b) the streamwise vortex pair loses coherence
by x/D = 10 in the Fr = 6 wake, unlike the Fr = ∞ case. For the Fr = 1 wake, flow
separation characteristics differ significantly from those at Fr = ∞ and 6, resulting in a
double-lobed wake topology that persists throughout the domain.

Key words: stratified flows

1. Introduction

1.1. Slender body wakes in unstratified fluid at zero angle of attack
The study of wakes behind slender bodies is a crucial area of fluid mechanics research
with significant implications for various engineering applications. From the design of
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streamlined vehicles and structures to the understanding of biological locomotion, the
behaviour of fluid flow in the wake region of elongated objects continues to present both
challenges and opportunities. To the best of our knowledge, Chevray (1968) conducted the
first experimental investigation of a slender body wake, employing a 6:1 prolate spheroid
with a tripped boundary layer at an angle of attack α = 0◦ as the wake generator. Further
experimental and computational studies by Jimenez et al. (2010), Posa & Balaras (2016)
and Kumar & Mahesh (2018) have explored the on-body and near-wake dynamics of
slender bodies at α = 0◦ and ReL ∼ O(106), using the DARPA-SUBOFF with a tripped
boundary layer (BL) as the wake generator. Due to limitations in the experimental set-up
and the prohibitively expensive cost of performing wall-resolved simulations for slender
bodies, these studies cover downstream distances of up to x/D ≈ 20. In terms of the
near wake, coherent vortex shedding was not detected. The absence of near-wake vortex
shedding at a high ReL with a tripped BL configuration was also found by Ortiz-Tarin
et al. (2021) for a 6:1 prolate spheroid. This is in stark contrast to moderate- to low-ReL
configuration for slender bodies, 4:1 spheroid by Ortiz-Tarin et al. (2019) at ReL = 4 × 104

and 6:1 spheroid by Ohh & Spedding (2024), where clear vortex shedding from the
slender wake generator is observed. It is worth noting that the high-Re spheroid wake
of Ortiz-Tarin et al. (2021) at ReL = 6 × 105 exhibited a region where the flow evolved
self-similarly but with a wake deficit law of Ud ∼ x−6/5 (different from the classical
Ud ∼ x−2/3) due to non-equilibrium dissipation scaling (Nedić et al. 2013; Dairay et al.
2015) that has been attributed to unsteadiness in the energy cascade.

1.2. Unstratified slender body wakes and streamwise vortices at non-zero pitch angle
Another widely studied configuration involves unstratified flow past a spheroid, tilted at
a non-zero pitch angle (α) relative to the incoming flow. While the separation region
behind a slender body at α = 0◦ is relatively small compared with that of a bluff body,
the separation patterns can change significantly as α increases. At even moderate angles
of attack (α ∈ [10◦, 20◦]), the separation line shifts upstream from the tail of the body and
forms streamwise vortices on both sides as the flow detaches from the surface (Han & Patel
1979; Fu et al. 1994; Patel & Kim 1994). In addition to the primary streamwise vortices,
secondary vortices with weaker circulation can also develop in these configurations (Fu
et al. 1994).

The vortices shed off a slender body may not be axisymmetric even in the mean
although the body is axisymmetric. The asymmetric nature of a slender-body wake at
high angles of attack (α > 40◦) has been extensively documented for slender bodies
with a sharp nose (Nelson & Pelletier 2003; Bridges 2006; Nelson et al. 2006). Direct
numerical simulation (DNS) at moderate ReL ∼ O(104) and high α = 45◦ (Jiang et al.
2015; Strandenes et al. 2019) for a 6:1 prolate spheroid reports that the flow separation,
resulting wake and streamwise vortex pair are asymmetrical in the lateral direction, despite
the configuration being symmetrical. This asymmetry induces a considerable lateral force
on the spheroid. In the near wake, these studies do not find vortex shedding (Jiang et al.
2015). Instead, they report an asymmetric vortex pair where the vortex tube structure with
larger circulation magnitude persists throughout the computational domain. At further
higher ReL ∼ O(106), DNS into the far wake becomes infeasible. Consequently, previous
studies on flow past slender bodies at non-zero angle of attack have employed either
Reynolds-averaged Navier–Stokes (RANS) simulations (Constantinescu et al. 2002) or
large eddy simulations (LES) (Wikström et al. 2004; Plasseraud et al. 2023). These
computational studies do not report any asymmetry in the flow separation or the resulting
wake at ReL ∼ O(106) and α within the range of 10◦–20◦.
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The high-Re experimental study by Ashok et al. (2015a) does report asymmetry in
the flow. The authors conducted detailed velocity measurements in the wake of a DARPA-
SUBOFF model (an axisymmetric body) over a wide range of ReL ∈ [2.4 × 106, 30 × 106]
at low to moderate angles of attack, up to α = 12◦. They observed that even at these low to
moderate α values, the streamwise vortex pair and the wake structure were asymmetrical
with the circulation of one vortex exceeding the other by 10 %–20 %. To assess the
robustness of this asymmetry, they repeated their experiments under various conditions,
such as changing the physical model and wind tunnel, and consistently found that the
asymmetry remained a distinctive feature of the wake for such configurations. Some
experimental studies (Grandemange et al. 2013; Rigas et al. 2014) have reported the
presence of an asymmetric mode in bluff-body wakes, even at zero pitch and yaw. In these
wakes, the time scale of the asymmetric mode is almost O(102)−O(103) times larger than
that of the vortex shedding mode.

1.3. Stratification effects on slender-body wakes at zero pitch angle
Despite their widespread use in naval and aerospace applications, the effect of stratification
on slender-body wakes (Ortiz-Tarin et al. 2019, 2023; Ohh & Spedding 2024) is not as well
studied as the effect of stratification on bluff bodies (Lin et al. 1992; Spedding et al. 1996;
Spedding 1997; Dommermuth et al. 2002; Meunier & Spedding 2006; Brucker & Sarkar
2010; de Stadler & Sarkar 2012; Pal et al. 2017; Zhou & Diamessis 2019; Chongsiripinyo
& Sarkar 2020; Rowe et al. 2020; Madison et al. 2022; Li et al. 2024). For a uniformly
stratified medium, the effect of ambient stratification on the wake is quantified by the body-
based Froude number, Fr = U∞/N D, where U∞, N and D are the free stream velocity,
buoyancy frequency and body length scale (diameter in the case of a sphere or disk and
minor-axis diameter for a spheroid), respectively. The value of body Fr depends not only
on the application through the submersible parameters (relative speed U and size D), but
also strongly on the environment since N in s−1 can vary from 10−3 in the deep ocean
to 10−2 in the upper ocean to values as large as 10−1 in a sharp pycnocline. Fr = 1 to
500 brackets most applications with lower values corresponding to low-speed operation of
large vehicles or to ocean observation floats that have low relative velocity with respect
to the background currents. Irrespective of the body Fr, the wake is inevitably affected
by buoyancy since the progressive decrease (increase) of wake velocity (size) reduce the
local Froude number to O(1) and smaller. For bluff-body stratified wakes, a three-stage
decay is well established: (a) 3-D regime with essentially unstratified wake behaviour until
Nt ∼ O(1); (b) non-equilibrium (NEQ) regime from Nt ≈ 2−50 where the defect velocity
Ud ∼ x−0.25±0.04 and the wake continues to adjust to the buoyancy effects; and (c) quasi-
two-dimensional (Q2-D) regime beyond Nt ≈ 50, where Ud ∼ x−0.75 and wake organises
progressively into horizontally meandering pancake vortices.

To the best of our knowledge, Ortiz-Tarin et al. (2019) was the first numerical study
of the stratified flow past a slender body (4:1 spheroid) and it was conducted at a
moderate Reynolds number ReL = 40 000. A major finding of their work is that the slender
body exhibits stronger buoyancy effects at the same body-based Froude number (Fr)
compared with a bluff body. For example, at a critical Frc = AR/π , the flow separation
past the spheroid is suppressed due to modulation by steady lee waves, leading to wake
relaminarisation. Furthermore, even at Fr = ∞, representing the unstratified configuration,
the wake and flow separation remain azimuthally symmetrical unlike its non-zero α

counterparts (Ashok et al. 2015a; Jiang et al. 2015, 2016). They find that the topology of
the separation line is strongly affected by the stratification level. Building upon this study,
Ortiz-Tarin et al. (2023) studied the far wake of a prolate 6:1 spheroid at three different
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stratification levels Fr = ∞, 10, 2, α = 0◦ and a higher ReL = 6 × 105. For a prolate 6:1
spheroid at Fr = 2 ≈ 6/π = Frc, a strong effect of buoyancy on the mean wake is observed,
causing the wake to transition to a Q2-D regime earlier than expected (at Nt ≈ 15 instead
of Nt ≈ 40 − 50 for the sphere).

Apart from a recent experimental study (Ohh & Spedding 2024) of a spheroid at
pitch in stratified flow, there is no other work reported on a stratified wake in this
configuration. Ohh & Spedding (2024) use particle image velocimetry (PIV) to investigate
Fr ∼ O(10) wakes at non-zero inclinations of θ = 10◦ and 20◦. Notably, the pitched wake
exhibited significant vertical displacement that was followed by an oscillatory return to
its hydrostatic equilibrium position with a frequency of 2π/N . Similar to the canonical
straight-on flow, the spheroid at pitch exhibited a reduced decay rate of Ud and a reduced
vertical wake extent (LV ) compared with its unstratified counterpart. The authors also
reported lateral asymmetry in the streamwise shed vortices.

1.4. Open questions and objectives of this study
The previous subsections highlight a clear knowledge gap on the flow past slender bodies
at non-zero angles of attack (α) in situations where the environment is stratified. The
focus of the present work is on a 6:1 prolate spheroid at pitch angle α, where there is
no comparable work apart from the PIV-based experimental study of a towed spheroid
(Ohh & Spedding 2024). The present work, which is based on high-resolution (to be
demonstrated shortly) LES, complements the previous experimental study. Apart from
Fr = 6 that is close to their lowest Fr = 8 (converting from their R-based definition to
our D-based Fr), our work considers more strongly stratified Fr = O(1) wakes too. The
near-body flow is also examined and the detailed database is interrogated to understand
and quantitatively characterise buoyancy effects on the vortex wake that ensues when a
slender body is in pitch.

Several questions are addressed as part of this work. (a) Is the notable vertical
oscillation of the wake that was reported by Ohh & Spedding (2024) found in the present
work? (b) How do the streamwise vortices, characteristic of inclined spheroids, and flow
separation topology respond to buoyancy? (c) How do the mean fields for a spheroid at
pitch evolve as a function of Fr, including the hitherto unreported Fr = O(1) regime?
(d) Does the lateral asymmetry in the streamwise vortex pair, previously observed at
either small α with high ReL (Ashok et al. 2015a) or large α with moderate ReL (Jiang
et al. 2015) under unstratified conditions, also occur at moderate α with moderate ReL
of the present unstratified case? (f ) How do the characteristics of said asymmetry change
with varying Fr – from unstratified to weak-stratification conditions of Fr = 6 to strongly
stratified conditions of Fr = 1.9 and 1?

To this end, the paper is organised as follows. Section 2 details the numerical methods
used and includes a study of grid quality. Section 3 presents an overall effect of buoyancy
through flow visualisations at various Fr. Section 4 describes the evolution of the pressure
coefficient (C p) and friction coefficient (C f ) on the body, as well as flow separation.
Sections 5 and 6 discuss the evolution of the mean wake (velocity and length scales) and
the mean streamwise vorticity field, respectively. The study is concluded in § 7.

2. Methodology

2.1. Governing equations and numerical scheme
Figure 1 is a schematic of the simulation set-up wherein a 6:1 prolate spheroid, with major
and minor axis given by L = 6D and D, respectively, is placed at a pitch angle α = 10◦ in
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Lx

U∞

Lx

Lr

ReL = U∞L/ν = 3 × 104

Fr = U∞/ND = ∞, 6, 1.9, 1

r
x

x
yz

g

D

6D

α = 10°
α

θ

− +

Figure 1. Schematic of the flow configuration that is simulated in a cylindrical domain (not to scale). L−
x , L+

x
and Lr refer to the upstream, downstream and radial domain distance, respectively. Re and Fr denote the minor-
axis based Reynolds number and Froude number, respectively, and α is the pitch angle. ReL is the major-axis
based Reynolds number. The stratified cases correspond to a background with uniform thermal stratification.
The centre of the spheroid is at the origin of the coordinate system.

a cylindrical computational domain. The background is thermally stratified with density
variation inversely proportional to temperature variation. The non-dimensional filtered
Navier–Stokes equations under the Boussinesq approximation, in conjunction with the
continuity and density transport equation, are solved in a cylindrical coordinate system to
simulate the flow past a prolate spheroid:

(i) continuity,
∂ui

∂xi
= 0; (2.1)

(ii) momentum,

∂ui

∂t
+ ∂(ui u j )

∂x j
= − ∂p

∂xi
+ 1

Re

∂

∂x j

[(
1 + νs

ν

) ∂ui

∂x j

]
− 1

Fr2 ρdδi3; (2.2)

(iii) density,

∂ρ

∂t
+ ∂(ρu j )

∂x j
= 1

RePr

∂

∂x j

[(
1 + κs

κ

) ∂ρ

∂x j

]
. (2.3)

Equations (2.1)–(2.3) are solved to obtain non-dimensional velocity ui , density ρ and
pressure p as the flow evolves. Following the Boussinesq approximation, ρ is decomposed
as follows:

ρ(xi , t) = ρ0 + ρb(xi ) + ρd(xi , t), (2.4)

where ρ0 corresponds to the base density, ρb(xi ) is the background density variation
and ρd(xi , t) is the density fluctuation. For linear stratification, ∂ρb(xi )/∂z = C , where
C is a constant. Under the Boussinesq approximation, it is assumed that ρb/ρ0 << 1 and
ρd/ρ0 << 1, which lead to the simplified continuity and momentum equations (2.1) and
(2.2), respectively.

The non-dimensionalisation employs the following parameters: (i) free stream velocity
U∞ for ui ; (ii) minor axis length D for xi ; (iii) dynamic pressure ρ0U 2∞ for p; (iv) D/U∞
for time t ; (v) −DC for density; (vi) kinematic viscosity ν for the subgrid kinematic
viscosity νs ; and (vii) molecular diffusivity κ for the subgrid molecular diffusivity κs . This
non-dimensionalisation procedure results in the following non-dimensional parameters:
(i) Reynolds number Re = U∞D/ν; (ii) Froude number Fr = U∞/(N D), where N
represents the buoyancy frequency defined as N = √−gC/ρ0; and (iii) Prandtl number
Pr = ν/κ . In this study, ReL is fixed and Fr-based stratification (see table 1) is moderate
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Case ReL α Fr Lr /D Lθ /D L−
x /D L+

x /D Nr Nθ Nx

1 30 000 10◦ ∞ 22 2π 12 48 718 256 2560
2 30 000 10◦ 6 53 2π 30 53 1000 128 3584
3 30 000 10◦ 1.9 53 2π 30 53 1000 128 3584
4 30 000 10◦ 1 53 2π 30 53 1000 128 3584

Table 1. Simulation parameters. Nr , Nθ , Nx correspond to the number of grid points in radial, azimuthal and
streamwise directions, respectively. Here, ReL and Fr are the major-axis Reynolds number and minor-axis-
based Froude number, respectively.

(Fr = 6), critical (Fr = AR/π = 6/π ≈ 1.9) insofar as lee wave/wake interaction, and
quite strong (Fr = 1). The Reynolds number ReL = U∞L/ν, which is based on the major
axis and widely used in the literature on slender bodies, takes the value of 30 000. The
pitch angle α is held constant at 10◦. The Prandtl number is fixed at Pr = 1 for simplicity.
For comparison, Pr is approximately 0.7 for temperature in air, 5–7 for temperature in
water and 700 for salt in water.

The 6:1 prolate spheroid is represented in the computational domain using the immersed
boundary method (IBM) as described by Balaras (2004) and Yang & Balaras (2006). The
governing equations, as given in (2.1)–(2.3), are solved in cylindrical coordinates for the
pressure (p), density (ρ) and the three velocity components (ur , uθ , ux ). Here, r , θ and
x correspond to the radial, azimuthal and axial directions, respectively. These directions,
along with the Cartesian coordinate system, are illustrated in figure 1. Spatial derivatives
are calculated using second-order finite difference schemes, while temporal stepping is
done using a fractional step method that combines the Crank–Nicolson method with a
low-storage Runge–Kutta scheme (RKW3). In the predictor step, the pressure Poisson
equation is solved using a direct solver (Rossi & Toivanen 1999). The kinematic subgrid
viscosity (νs) and density diffusivity (κs) are determined using the dynamic Smagorinsky
model (Germano et al. 1991). For a more detailed description of the stratified-flow
solver employed in this study, interested readers are referred to Pal et al. (2017) and
Chongsiripinyo & Sarkar (2020).

At the inlet, a uniform inlet velocity boundary condition is prescribed for the velocity
components: [ux , ur , uθ ] = [U∞, 0, 0] = U. The outlet boundary condition for velocities
corresponds to an Orlanski-type convective boundary condition (Orlanski 1976). The
pressure p is set to zero at the inlet boundary. On the remaining boundaries (outlet and
radial), a Neumann boundary condition is used for pressure. For stratified cases, a Robin
boundary condition is applied at the radial boundary, satisfying ∂ρ/∂z = C . This implies
that the density far away from the wake generator is assumed to be unperturbed. On the
body surface, a no-slip condition is prescribed for velocity, and the normal gradients of
pressure and density are set to zero. To prevent the reflection of internal gravity waves
from the boundaries, sponge layers are employed for velocity and density at the inlet, outlet
and radial boundaries. These layers are defined as φ(xi )(u − U) for velocity components
and φ(xi )(ρ − ρb) for density, where ρb corresponds to the background density state. A
quadratic damping function of the following form, φ(xi ) = C∗((xi − xs,i )/(Lxi − xs,i ))

2,
is used for the sponge. Here, xs,i is the start of the sponge layer and Lxi is the extent of the
numerical domain, respectively, in the i th coordinate axis direction. Additionally, C∗ = 10
for Fr = 1.9 and 1 wakes and C∗ = 5 for the Fr = 6 wake. For the unstratified wake, sponge
layers are not necessary.

Flow statistics are obtained by time averaging with an averaging window of
approximately two flow-through times ≈ 100D/U∞. This time window is sufficient
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−3 −2 −1 0 1 2 3

x/D

−0.25

0

0.25

0.50

0.75

1.00

Cp

Simulation, leeside

Potential solution, leeside

Simulation, windside

Potential solution, windside

Figure 2. Variation of C p in the y/D = 0 plane on the leeside and windside of the spheroid. Potential
solution for C p in dashed line, obtained from Piquet & Queutey (1992), is also shown.

for convergence of mean and second-order statistics of interest here. The time average
(equivalent to ensemble or Reynolds average for this flow) is denoted by angle brackets,
e.g. the average of ux is 〈ux 〉. The simulations have approximately 458 million grid points
for the stratified cases and 470 million grid points for the unstratified case (details given in
§ 2.2). These simulations were conducted on 128 or 256 CPUs, consuming approximately
500 000 compute hours for 150D/U∞ simulation time units.

2.2. Domain size and grid quality
Table 1 presents the various grid parameters corresponding to the four simulations at Fr =
∞, 6, 1.9 and 1. The radial and upstream extent of the simulation domain, Lr and L−

x ,
respectively, is increased for the stratified simulations to ensure that the steady lee waves
weaken before they hit the radial and upstream boundary. Additionally, the azimuthal grid
points in the unstratified Fr = ∞ simulation is increased to Nθ = 256 from Nθ = 128 in
the stratified cases. The increased vertical displacement of the Fr = ∞ wake (figure 13b)
to higher-r regions requires a smaller azimuthal grid spacing (2πr/Nθ ) and thus larger Nθ

to ensure adequate azimuthal resolution away from the centreline.
For stratified wakes, the minimum �r/D ≈ 7 × 10−4 occurs at r/D ≈ 0 and remains

approximately constant until r/D ≈ 0.8. Beyond this point, the radial grid is stretched until
the edge of the radial domain. In the streamwise direction, the minimum �x/D = 4 ×
10−4 occurs at the nose of the spheroid. The streamwise grid is gradually stretched, due to
the thickening of the boundary layer, reaching �x/D ≈ 7 × 10−3 at the tail. The stratified
simulations were conducted prior to the unstratified simulations and it was found that the
minimum �r/D could be relaxed. Therefore, in the unstratified case, �r/D ≈ 2 × 10−3.
Aside from this adjustment, the grid distribution over the body remains the same as in the
stratified case. At x/D = 0, at the centre of the spheroid, there are approximately 40–50
grid points across the δ99 thickness of the BL on the leeside of the spheroid for stratified
cases. For the unstratified case, this number is ∼ 22. At the tail of the spheroid, there are
90 points and 47 points across the δ99 thickness of BL for Fr = 6 and ∞, respectively.

Figure 2 shows a comparison between the Fr = ∞ simulation and the potential flow
solution for the coefficient of pressure, C p = (P − P∞)/0.5ρU 2∞. The match between
the potential solution and the current simulation is excellent until x/D ≈ 1, indicating
sufficient grid resolution to capture the boundary-layer evolution. Beyond x/D ≈ 1,
pressure recovery does not happen in our simulation due to viscous effects and subsequent
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Figure 3. Ratio of grid size to Kolmogorov length η in all three directions for (a,c,e) Fr = ∞ and (b,d,f ) Fr = 6.
For panel (a, b), the smallest η at the corresponding x/D is used for calculation. For panel (c− f ), dissipation
along the line θ = 3π/2 is used at respective x/D locations, since wake descends as it evolves.

boundary-layer separation. Here, C p for the Fr = 6 case is very similar to the unstratified
case and is not presented for brevity.

To assess grid quality in the wake, the spatial variation of the ratio of grid spacing
to the Kolmogorov length, denoted as η = (ν3/ε)1/4, is computed in all three directions
and shown in figure 3. We present results for Fr = ∞ and 6, specifically, for two reasons:
(a) distinct grid resolutions for the unstratified and stratified cases (refer to table 1); and
(b) the relatively strongly stratified simulations at Fr = 1 and 1.9 are less turbulent than
Fr = 6 at ReL = 30 000, and hence have better resolution of the wake turbulence. Figure 3
shows that the ratios of streamwise (�x), radial (�r ) and azimuthal (r�θ ) grid spacing to
η stay below 6, 1 and 5, respectively, for both Fr = ∞ and 6, establishing that the current
LES study has been conducted at high resolution. The Ozmidov scale, L O = √

ε/N 3, is
also well resolved with �r/Lo < 0.1 in the turbulent wake.

3. Visualisations
Isovolumes for instantaneous axial velocity (ux ) for all Fr are shown in figure 4. These
visualisations provide insights into buoyancy effects on the wake structure before moving
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(a) (b)

(c) (d )

Figure 4. Instantaneous axial velocity (ux ) isovolumes: (a) Fr = ∞; (b) Fr = 6; (c) Fr = 1.9; and (d) Fr = 1,
with maximum value of ux/U∞ = 0.75 and viewed from the front-left of the body.

on to quantification through mean velocity and vorticity fields in later sections. It is evident
that, as Fr decreases, the topology of flow separation is altered and there is a systematic
decrease in wake turbulence. It is also worth noting that, using finer azimuthal grid size,
the streak-like ripples in figure 4 have been confirmed to be mere artefacts of visualisation
in Paraview and should not be misconstrued as a physical phenomenon.

For the Fr = ∞ wake, two lobes of velocity defect are seen – one for each side of the
body (figure 4a). These lobes break up quickly (at x/D ≈ 5) into multiscale structures,
implying transition from the initially laminar separation. Similar multiscale structures are
observed in the Fr = 6 wake (figure 4b), but the breakup is observed further downstream
(x/D ≈ 10) relative to Fr = ∞. The wakes at higher stratification (Fr = 1.9 and Fr = 1)
are significantly different. Although, two velocity defect lobes can also be seen in the
Fr = 1.9 wake (figure 4c), they do not transition to smaller-scale structures until much
further downstream (x/D ≈ 20). At Fr = 1, transition to turbulence is further inhibited
by buoyancy and the wake stays laminar throughout with a layered structure. Furthermore,
two vertically separated and distinct regions of flow separation are observed at Fr = 1.
These distinct regions have an imprint on wake evolution as will be quantified later.

Figure 5 presents another view of ux -isovolumes, this time with streamlines added. With
this view, the two lobes of the Fr = ∞ wake are seen to break down into spiral structures
(figure 5a). Additionally, it is apparent that the unstratified wake descends vertically. The
streamlines indicate cross-flow from the windward side towards the leeward side at all
stratification levels. A similar spiral structure is observed in the Fr = 6 wake (figure 5b).
However, less vertical drift is observed as will be quantified later. Once again, the Fr = 1.9
and Fr = 1 wakes exhibit notable differences from the wakes at higher Fr. While two
structures emerge from either side of the body at Fr = 1.9 (figure 5c), akin to previous
cases, large-scale undulations are observed in the isovolume and the streamlines due to the
lee-waves-induced wake oscillation that has been previously reported for cases without
angle of attack. Furthermore, the cross-flow from windward to leeward sides that was
observed in the streamlines of the previous cases is now mildly suppressed at Fr = 1.9 and
even more so at Fr = 1 (figure 5d). Moreover, the lee-waves-induced oscillations of the
wake are stronger at the lower values of Fr.

The influence of stabilising buoyancy on the cross-flow and the resulting wake structure
is made clearer by visualising streamlines of the secondary flow on a cross-section
perpendicular to the inclined major axis of the body in figure 6. Contours of vertical
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(a) (b)

(c) (d )

Figure 5. Instantaneous axial velocity (ux ) isovolumes along with streamlines: (a) Fr = ∞; (b) Fr = 6;
(c) Fr = 1.9; and (d) Fr = 1. The isovolumes correspond to ux/U∞ � 0.75 and are viewed from the rear-left of
the body.

(a) (b) (c)

X

YZ

0.15

−0.15

0 uz

Figure 6. Streamlines of the secondary flow on a domain cross-section at X/D = 1 with normal as the major
axis of the body. The bottom half of each panel corresponds to the windward side of the spheroid at α = 10◦.
Contours of the vertical velocity (uz) are shown: (a) Fr = ∞; (b) Fr = 1.9; and (c) Fr = 1. Here, X is the
coordinate along the major axis of the body, where X = 0 corresponds to the centre of the body. The contours
are in the Y−Z plane normal to the major axis of the body. Top-right inset shows the (X, Y, Z) coordinate
system.

velocity (uz) are also depicted. Note that the cross-sections shown in figure 6 are in
the plane normal to the major-axis of the body. In the case of Fr = ∞, the cross-
flow is conspicuous, with the flow curving as it moves from the windward side to
the leeward side (figure 6a). Atop the body, there is an attached circulation zone with
two oppositely rotating streamwise vortices on either side. The imprint of stratification
begins to manifest at Fr = 1.9 as follows: (a) streamlines that show flattening of the
attached recirculation zone (figure 6b); and (b) uz contours that show a higher upward
velocity at the sides, whereas the downward velocity diminishes at the top. These features
can be attributed to buoyancy whereby lighter fluid that is brought downward on the
windward side by the inclined spheroid tends to rise to its neutral position and then
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Figure 7. Isocontours for λ2 criterion (top-view) are shown: (a) Fr = ∞; (b) Fr = 6; (c) Fr = 1.9; and
(d) Fr = 1. Contour levels for each case are mentioned on top of each panel.

cannot curve downward across isopycnals. These effects become even more pronounced at
Fr = 1, where the secondary-flow pattern (figure 6c) changes: the secondary streamlines
rise almost vertically from the windward side before traversing almost horizontally to
the leeward side along isopycnals. Consequently, some of the Fr = 1 flow separates
prematurely from the top, as will be shown quantitatively through the skin friction. This
region of separated flow – a secondary wake – remains distinct from the primary wake
formed after the flow separates further downstream, as observed in figures 4(d) and 5(d).

To visualise vortical flow structures, isocontours of the λ2 criterion are shown in figure 7.
For all four cases, the isocontour threshold at x/D � 15 is smaller than at x/D � 15
to ensure similar visibility between the near and intermediate wake. For Fr = ∞ and 6
(figure 7a,b), there is a distinct signature of a helical vortical structure developing from
each lateral side of the body. These structures stay asymmetrical in the spanwise direction,
a phenomenon consistent with the asymmetry previously observed in the velocity field
(figures 4 and 5) and will be discussed further in the following sections. Coherent vortical
structures become difficult to distinguish from small-scale turbulence when x/D � 15. At
the higher stratification of Fr = 1.9 and 1 (figure 7c,d), layering of the instantaneous λ2
isocontours is observed in the near wake with no distinguishable helical structures. These
layers subsequently break down into small-scale structures as the wake evolves.

4. Body forces
At α = 0, the buoyancy force affects the acceleration/deceleration of the flow through its
tangential component and, through its normal component, influences the confinement of
the boundary layer. The steady lee wave also imposes its pressure gradient and velocity
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on the boundary layer. In addition, at Fr � 1, the fluid tends to move sideways instead of
over and below the body, owing to the potential energy barrier imposed by the stable
stratification. These effects of buoyancy on the force coefficients, the boundary-layer
structure and its separation at α = 0◦, which were described in detail by Ortiz-Tarin
et al. (2019) for a straight-on 4:1 spheroid, are also operative at a non-zero pitch angle.
Importantly, for a pitched spheroid, there is an additional consequence of buoyancy
whereby it influences the cross-flow and secondary circulation, as will be shown in this
section.

Body forces are diagnosed by (a) the streamwise variation of pressure and shear-stress
on the lee and windside as contour plots and (b) the streamwise variation of the force
coefficients (C p and C f ) along the body surface in the central plane (y = 0) as line
plots. Here, C p = (P − P∞)/0.5ρU 2∞ and C f = Re0.5|τx |/0.5ρU 2∞. It is found that the
previously noted buoyancy effects on the flow are strongly reflected by differences in the
streamwise variation of body forces among the different stratification levels. A summary
of these differences follows.

4.1. Pressure coefficient
Figure 8(a,c,e,g) shows the pressure contours on the leeside and figure 8(b,d,f,h) shows
those on the windside of the body. The streamwise variation of C p in the centreplane (y =
0) on both lee and windside is shown in figure 8(i,j) and is discussed first. For comparison,
C p obtained from the potential-flow solution (Piquet & Queutey 1992) is also presented in
figure 8(i,j). For both sides, LES solutions agree well with the potential solution till x/D ≈
1, beyond which they deviate from the potential-flow solution owing to viscous effects and
subsequent flow separation. On both sides, C p rapidly drops from its stagnation value near
the nose of the body. The value of this initial drop of C p decreases systematically from its
largest value at Fr = ∞ as Fr decreases (figure 8i).

On the leeside, the initial drop in pressure near the nose is followed by a slow and
continuous recovery that is similar among the Fr � 1.9 cases (figure 8i). In contrast, at
Fr = 1, the pressure recovery on the lee side does not occur until x/D ≈ 1.5 so that
the front part of the body (x/D < 0) has higher pressure than the other cases, which is
a contributor to the increased drag in this case. The delayed pressure recovery can be
observed both from the pressure contours (figure 8g) and the C p evolution at the centreline
(figure 8i). Mean pressure contours in the vicinity of the spheroid (not shown here for
brevity), reveal a strong low-pressure region on the entirety of the leeside. This low-
pressure region is imposed by the strong steady lee wave field at Fr = 1. It can also be seen
that the leeside pressure contours for Fr = ∞ and 6 (figure 8a,c) show lateral asymmetry
about the centreline (y = 0), which is consistent with the results of the previous section.
The windside of the body exhibits more pronounced differences between unstratified
(Fr = ∞) and strongly stratified (Fr = 1.9, 1) cases as compared with the leeside. Here,
C p of Fr = 1.9 and 1 falls significantly below those of Fr = ∞ and 6 after x/D ≈ 2, and
recovers sharply towards the end of the body. Pressure contours in figure 8(b,d,f ,h) confirm
this trend of higher and lower pressure at the nose and the tail of the body, respectively,
for the Fr = 1 and 1.9 cases compared with the Fr = 6 and ∞ cases.

4.2. Friction coefficient
Figure 9(a,c,e,g) displays the scaled shear stress contours, Re0.5|τx |, on the leeside (left)
and figure 9(b,d,f,h) those on the windside of the body across all Fr. These contours reveal
that flow separation primarily occurs on the leeside, identifiable by regions in green where
|τx | → 0. For the unstratified (Fr = ∞) and weakly stratified (Fr = 6) cases, the wake
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Figure 8. Pressure contours on the (a,c,e,g) leeside and (b,d,f,h) windside of the spheroid. Dashed line in
panels (a) and (c) corresponds to y/D = 0. Variation of C p(x) on the (i) leeside and (j) windside of the body
surface in the y/D = 0 plane. The potential flow solution for C p(x), obtained from Piquet & Queutey (1992),
is also shown as a dashed line in panels (i) and (j).

separates mainly from the lateral portions of the leeside (figure 9a,c), forming a streamwise
vortex pair to be discussed in § 6.

A central region (in red) near y = 0 remains attached until nearly the tail, with a
noticeable lateral asymmetry. At Fr = 1.9, separation occurs both from the sides and the
central region around y = 0 (figure 9e). However, at Fr = 1, separation is primarily central,
with no clear lateral separation (figure 9g). Recall that a distinct streamwise vortex pair
was present at Fr = 1.9 (figure 7c) but, at Fr = 1, the vortex pair is less evident.

The variation of C f on the body surface at the y = 0 plane is shown in figure 9(i,j). For
all cases, C f varies quite similarly on both sides till x/D ≈ 0. For x � 0, Fr = ∞ and 6
show higher C f on the leeside (figure 9i) than their strongly stratified counterparts of
Fr = 1.9 and 1. On the windside, Fr � 1.9 cases show elevated levels of C f when
compared with Fr � 6 cases (figure 9 j). This region of elevated surface shear in
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Figure 9. Contours of Re0.5|τx | on the (a,c,e,g) leeside and (b,d,f,h) windside of the spheroid for all Fr at
α = 10◦. Dashed lines in panels (a) and (c) correspond to y/D = 0. Variation of C f on the (i) leeside and
(j) windside of the body at the y/D = 0 plane.

Fr = 1.9 and Fr = 1 coincides with the region of steep pressure drop observed at x/D > 1
(figure 8 j). The elevated surface shear is related to an accelerating external flow that thins
the boundary layer.

4.3. Overall forces
The aforementioned changes in C p and C f lead to a buoyancy effect on overall drag.
Also, in cases with lateral asymmetry, there is an additional sideways force. Since the
flow separation and the boundary layer developing over the body remain laminar at ReL =
30 000, the fluctuation root mean square (r.m.s.) of force coefficients is negligible. Hence,
only mean force coefficients are discussed in this section.

Figure 10 shows the drag Cd = Fx/(1/2ρU 2∞ A) and spanwise force Cy =
Fy/(1/2ρU 2∞ A) coefficients as well as their partition into pressure and frictional
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Figure 10. Force coefficients decomposed between pressure and shear contribution. Coefficient of (a) drag
(Cd ) and (b) lateral force coefficient (Cy).

coefficients. Here, A = π D2/4. Additionally, Cd exhibits a systematic and moderate
increase as stratification increases until Fr = 1.9. At Fr = 1, there is a relatively larger
increase in Cd . The increased drag at Fr = 1 is primarily associated with a rise in the
pressure contribution that is a consequence of the extended zone of high pressure on the
windside that is seen at Fr = 1 (figure 8i) and not in the other cases.

Figure 10(b) shows the dependence of the lateral force coefficient (Cy) on stratification.
The weakly stratified (Fr = 6) and unstratified (Fr = ∞) flow exhibit a sideways force
consistent with the previously noted lateral asymmetry of C p and C f distributions.
It is worth noting that the Cy of Fr = ∞ and Fr = 6 are similar in magnitude but
flipped in sign. We hypothesise that the Fr = ∞ and Fr = 6 flows are bi-stable with two
different reflectional-symmetry-breaking states, each state being equally probable. The
lower Fr = 1.9 and 1 cases do not show asymmetry (associated with one streamwise vortex
being larger than its partner) since buoyancy changes the cross-flow secondary circulation
strongly (figure 6) to inhibit the rollup into streamwise vortices. Corresponding to the
lateral symmetry, Cy ≈ 0 for these cases.

5. Mean velocity and geometry of the wake
The variation of mean defect velocity, U∞ − 〈ux (x, y, z)〉, hereafter denoted by Ud , as
a function of Fr is of interest. Buoyancy effects that alter the flow at the body and its
separation were discussed in §§ 3 and 4, and are manifested as persistent differences in the
near wake. These differences in the near wake and those in the far wake are elaborated
below. The streamwise evolution will be presented as a function of x/D, where x is
measured from the centre of the body. Buoyancy time, Nt = N x/U∞ = (x/D)/Fr, which
is often used to gauge the strength of buoyancy effects, will also be used to discuss results
as appropriate.

5.1. Evolution of mean velocity on streamwise-constant planes
Figure 11 presents mean defect velocity Ud contours at various streamwise locations
(x/D = 3, 10, 20 and 30). In stratified scenarios, mean isopycnals are superimposed on
the Ud contours. In the Fr = ∞ unstratified wake, two distinct lobes are evident as the
flow leaves the body at x/D ≈ 3 (figure 11a). These lobes are also observable in the
instantaneous visualisations of Fr = ∞ (figure 5a). The asymmetry of flow at the body and
its separation persist downstream leading to the asymmetry in Ud(y, z) profiles between
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Figure 11. Mean defect velocity (Ud ) contours and isopycnals at x/D = 3, 10, 20 and 30 (row-wise) for
Fr = ∞, 6, 1.9 and 1 (column-wise). The extent of the radial domain is shown adjacent to each contour plot.
For the stratified cases, body-generated steady lee waves in the domain are not visible due to the choice of
contour ranges to focus specifically on the wake defect.

the left and right lobes. Asymmetric flow separation also occurs for Fr = 6, but with
the direction of asymmetry reversed. No preferred direction for lateral asymmetry has
been imposed by us; however, small asymmetries in the evolving flow have resulted in
the observed polarity of the asymmetry. The asymmetry observed in the Fr = ∞ wake
persists until at least x/D = 10 (figure 11e). However, by x/D = 20, the Ud contours for
the Fr = ∞ case no longer exhibit the distinct lobes observed in the near wake. Another
noteworthy observation is the continuous drift of the Ud contour in both the vertical (z) and
spanwise (y) directions due to the body’s angle of inclination and the wake’s asymmetry,
respectively. These vertical and horizontal drifts will be further quantified in subsequent
sections of the manuscript.
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Figure 12. (a) Decay of the mean defect velocity peak, U peak
d and (b) area-integrated mean kinetic energy,

{E M
K }, decay for different Fr.

Despite its weak stratification, the evolution of the Fr = 6 wake is affected early on. At
x/D = 10 or Nt = 1.67 (figure 11g), its vertical downward displacement is significantly
less than in the unstratified case. The lower boundary of the wake is seen to lie along one
of the isopycnals displaced by the flow. The restoring force of buoyancy comes into play
so that, with the downstream weakening of the wake deficit and the associated recovery of
the boundary isopycnal to its neutral position, the mean wake tends to return towards the
centreline (z = 0).

In the strongly stratified cases of Fr = 1.9 and 1, the mean flow leaving the body is
no longer laterally asymmetric, as seen in figure 11(c,d). It was shown previously that
the sideways force coefficient (Cy) approaches zero at Fr = 1.9 and Fr = 1 (figure 10b).
Similar to the Fr = ∞ and Fr = 6 cases, most of the wake at x/D = 3 is below the z = 0
plane for both Fr = 1.9 and 1. Similar to the Fr = 6 wake, the Fr = 1.9 wake and its corre-
sponding isopycnals are constrained by the restoring force of buoyancy, which is stronger
and is manifested as lee-waves-induced oscillations as the wake progresses downstream.
By x/D = 30 (figure 11o), an elliptical Ud topology appears for the Fr = 1.9 wake.

The downstream evolution of the Fr = 1 wake differs significantly from the other
three cases. Immediately after the body, the wake assumes a double-lobed structure with
isopycnals extending both upward and downward. These two lobes evolve independently
of each other. By x/D = 30, the Fr = 1 wake has a significantly greater vertical extent
than the Fr = 1.9 wake due to the initial emergence and persistence of the double-
lobed structure, which eventually transitions into a double-layered wake, as shown in
figure 11(p). The upper lobe – a secondary wake – originates from the region of separated
flow from the top, recall the discussion of figure 9(g).

5.2. Evolution of peak defect velocity and mean kinetic energy

Figure 12(a) shows the decay of peak mean defect U peak
d as a function of x/D for all four

cases. The magnitude of U peak
d for strongly stratified wakes (Fr = 1.9 and 1) is significantly

higher than in the Fr = ∞ and 6 wakes, verifying that the longstanding hypothesis that
stratified wakes ‘live’ longer (Spedding 1997). The U peak

d values for Fr = 1.9 and Fr = 1
are 3−4 times higher than for Fr = ∞ and 6 by x/D = 40. We refrain from attempting to fit
decay rates for the U peak

d evolution since the streamwise domain available for curve fitting,
approximately 30D from x/D = 10 onward, is relatively small for a high-confidence fit.
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However, for the Fr = 6 wake, a careful reader can observe that the decay rate of U peak
d

slows down compared with the Fr = ∞ wake around x/D ≈ 20 (Nt ≈ 3.33). Ohh &
Spedding (2024) also reported a similar slowdown in the decay of Ud for Fr � 8 wakes
compared with the Fr = ∞ baseline around Nt ≈ 2 (see their figure 17b).

In figure 12(b), the decay of area-integrated mean kinetic energy, {E M
K } = ∫

(U 2
d +

〈uy〉2 + 〈uz〉2)/2 dA, is compared among the four cases. Circles of radii r/D = 2 and
r/D = 3.5 are used as cross-sections for the stratified cases and the unstratified case,
respectively, ensuring that the wakes remain inside the domain of integration for all x/D.
The area-integrated energy in both Fr = 1.9 and 1 wakes is of comparable magnitude
throughout the domain. Lee-waves-induced oscillations with wavelength approximately
equal to 2πFr are clearly visible in both Fr = 1.9 and Fr = 1 wakes. These lee-wave-
induced oscillations were identified by Bonnier & Eiff (2002) as an ‘accelerated’ collapse
in the Ud evolution profile. DNS simulations by Pal et al. (2017) showed that this
‘accelerated’ collapse region in the Ud profiles is actually an imprint of the surrounding
steady lee waves, having (a) a time scale of Nt = 2π and (b) a wavelength of λ/D = 2πFr.
This effect is particularly pronounced at Fr ∼ O(1), where the lee waves are the strongest.
Ortiz-Tarin et al. (2019, 2023) observed similar lee-wave-induced modulations in the wake
of 4:1 and 6:1 spheroids at zero-degree pitch angles. More recently, Ohh & Spedding
(2024) reported the presence of these lee-wave-induced oscillations in the wake trajectory
of non-zero pitch angle spheroids at Fr � 8 (see figures 13 and 14 in their manuscript), a
phenomenon also present in figure 13.

The decay of the unstratified wake and the Fr = 6 wake {E M
K } remain similar until

x/D ≈ 4, after which the decay rate of the Fr = 6 wake increases compared with the
unstratified wake until x/D ≈ 25. At x/D ≈ 25, the decay rate of {E M

K } reduces, implying
that ultimately, the Fr = 6 wake will be more ‘long-lived’ than the Fr = ∞ wake, in
agreement with previous experimental and numerical studies on stratified wakes.

5.3. Evolution of wake geometry
Figure 11 makes it clear that the wake of a prolate spheroid at a pitch angle exhibits a
pronounced buoyancy effect both in terms of its centre and its length scales. Figure 13
presents the evolution of the wake centre and length scales in the spanwise and vertical
direction as a function of x/D.

These quantities are calculated as follows:

〈yc〉 =
∫

yU 2
d dA∫

U 2
d dA

, 〈zc〉 =
∫

zU 2
d dA∫

U 2
d dA

, (5.1)

L2
y =

∫
(y − 〈yc〉)2U 2

d dA∫
U 2

d dA
, L2

z =
∫
(z − 〈zc〉)2U 2

d dA∫
U 2

d dA
, (5.2)

where 〈yc〉, 〈zc〉 are the temporally averaged wake-centre coordinates and L y , Lz are
the mean wake length scales in the cross-sectional planes normal to the streamwise
coordinate x .

Figure 13(a,b) presents the streamwise evolution of the wake centre in both the spanwise
(y) and vertical (z) directions as a function of x/D. The four wakes under consideration
exhibit distinct evolutions. The unstratified wake moves away from the centreline (r/D = 0
axis) as the flow evolves, with more pronounced movement in the vertical (z) direction
compared with the spanwise (y) direction. Its drift in the z direction is associated with the
induced downward velocity at the centre of the counter-rotating streamwise vortex pair in
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Figure 13. Evolution of wake centre in the (a) horizontal (〈yc〉) and (b) vertical (〈zc〉) directions. Evolution
of wake (c) horizontal (L y) and (d) vertical (Lz) length scales. In panel (a), −〈yc〉 is plotted for Fr = 6 to
compare the magnitudes of lateral displacement of wake of Fr = ∞ and 6 wakes.

the separated flow, as will be discussed in § 6. The drift in the y direction is due to the
initial lateral asymmetry of the wake vortices with one vortex being larger than the other.

Despite its relatively weak stratification, the descent of the Fr = 6 wake is strongly
modified by buoyancy as seen in the trajectory of 〈zc〉. The descent rate is already smaller
than its unstratified counterpart at x/D = 4, a mere body diameter behind the trailing
edge of the spheroid. At x/D ≈ 10, the wake descent changes to an ascent until the
wake reaches its neutral configuration. The locations of maximum descent and ascent
of the wake are separated by πFr ≈ 18.8, demonstrating that even at a relatively weaker
stratification of Fr = 6, the wake is strongly influenced by the surrounding lee waves.
The lee-wave-induced modulation of the wake trajectory in the vertical direction aligns
with the findings of Ohh & Spedding (2024), who reported a similar modulation with a
wavelength of λ/D = 2πFr for their ReL = 30 000, Fr = 8 and α = 20◦ wake (see their
figure 8d). To compare the lateral drift magnitude with that of the unstratified wake, we
plot −〈yc〉 in figure 13(a) for the Fr = 6 wake. While the lateral drift is comparable in
magnitude near the body, the two cases diverge significantly beyond x/D ≈ 5, highlighting
notable qualitative and quantitative differences in the wake trajectory evolution between
the Fr = ∞ and 6 wakes.

The values of 〈yc〉 of the Fr = 1.9 and Fr = 1 wakes remain zero throughout their
evolution (figure 13a). In the vertical direction, the Fr = 1.9 wake shows a lee-waves-
induced oscillation in the 〈zc〉 trend (figure 13b), also evident in contours of Ud of the
Fr = 1.9 wake (figure 11c,g,k,o). Interestingly, 〈zc〉 of the Fr = 1 wake also stays close
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to zero, which implies that the U 2
d weighted mean of the vertical coordinate of the two

distinct lobes of the double wake in figure 11(d,h,l,p) approximately balance each other
out. Both Fr = 1 and 1.9 wakes show a clear lee-waves-induced oscillation in the 〈zc〉
evolution with wavelength equal to 2πFr.

5.4. Evolution of wake length scales
Figures 13(c) and 13(d) show the evolution of horizontal (L y) and vertical (Lz) length
scales, respectively. Here, L y and Lz of the Fr = ∞ and 6 wakes evolve similarly in rate
and magnitude until x/D ≈ 15 (Nt ≈ 2.5). Beyond x/D ≈ 25 (Nt ≈ 4), the growth of Lz
in the Fr = 6 wake slows down owing to the increasing influence of stratification. The
Nt location of this reduction in the growth rate of Lz is consistent with the findings of
Ohh & Spedding (2024), who reported that the Lz of their stratified wakes deviated from
that of the unstratified wake at Nt ∼ 2−4 for α = 20◦ and Fr � 8 (see their figure 17).
Furthermore, to preserve momentum deficit, i.e. Ud L y Lz ∼ constant, L y increases for the
Fr = 6 wake as compared with the Fr = ∞ wake (see figure 13c). The streamwise location
of the reduction in the growth rate of Lz for the Fr = 6 wake aligns with the decrease
in the decay rates of Ud and E M

K (figure 12). This contraction of Lz (compared with the
Fr = ∞ wake) in conjunction with the decreased decay of Ud has been widely reported
in stratified wake literature of spheroids (Ortiz-Tarin et al. 2019, 2023) as well as other
bluff bodies (Chongsiripinyo & Sarkar 2020; Pal et al. 2017) for a variety of Re and Fr
values. The contours of wake defect velocity (figure 11) revealed the strong coupling of
the wake topology to the isopycnal geometry, which in turn is significantly modified by
the steady lee wave field (Bonnier & Eiff 2002; Pal et al. 2017) at Fr = 1.9 and 1. The
behaviour of L y and Lz reflects this coupling. Additionally, the buoyancy effect on flow
separation in the cases with higher relative stratification is also important. For example, Lz
at Fr = 1 is significantly larger than in the other cases until almost the end of the domain
owing to the structure of the Fr = 1 wake (figure 11d,h,l,p) with an upper and a lower
lobe. Owing to the peculiar geometry of the Fr = 1 wake, calculation of Lz using (5.2)
underestimates its vertical extent. Visually, the Fr = 1 wake is discernible within z = ±0.7
in figure 11(d,h,l,p).

6. Evolution of mean streamwise vorticity
Shifting focus from the mean wake evolution, we now delve into the dynamics of
streamwise vortices that develop at the body and into the wake. Figure 14 presents the
distribution of instantaneous streamwise vorticity ωx at positions x/D = 0, 1, 2 and 2.75
on the body. Views at these four locations from both the left and right perspectives are
provided to provide a complete picture. The flow remains laminar over the body for all Fr
values at the present ReL = 30 000 until it separates.

At both Fr = ∞ and Fr = 6, the counter-rotating vortex pair is evident as early as the
body centre (x/D = 0), see figure 14(a−d). The development is similar on both sides until
x/D = 1, maintaining symmetry about the vertical centreplane of the spheroid. However,
at x/D = 2, lateral asymmetry emerges as one side undergoes a stronger vortex rollup
than the other. As was surmised from the Ud contours, the polarity of the stronger vortex is
reversed at Fr = 6 relative to Fr = ∞. Specifically, the positive vortex filament (figure 14b)
is larger at Fr = ∞ in contrast to Fr = 6 (figure 14c) where the negative vortex filament
is larger. At x/D = 2.75, the vortex asymmetry becomes even more pronounced in both
cases, consistent with the asymmetry in Ud (figure 11) and force coefficients (figure 10).
Previous studies on slender bodies have documented the presence of asymmetry in a
counter-rotating vortex pair under two conditions: (a) at high pitch angle α and moderate
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Figure 14. Instantaneous streamwise vorticity (ωx ) on the spheroid at x/D = 0, 1, 2 and 2.75 for all Fr at
α = 10◦. Views from the (a,c,e,g) left and (b,d,f,h) right.

Reynolds numbers Re (Jiang et al. 2014, 2015, 2016); or (b) at moderate α and high Re
(Ashok et al. 2015a). The present study reports lateral vortex asymmetry in yet another
unstratified wake, namely moderate α and moderate Re. Furthermore, the study reveals
that this asymmetry persists for mild stratifications too, until Fr decrease to 6.

Vortex asymmetry is absent at the stronger relative stratifications of Fr = 1.9 and 1.
Additionally, the vortex-pair geometry changes. For example, the two filaments at x/D =
2.75 in the Fr = 1.9 wake appear thinner and less curved than at Fr = ∞ or 6. At Fr = 1,
the vorticity field becomes even more complex. There is a primary vortex pair whose
filaments roll up even less than that at Fr = 1.9. Furthermore, the region above the vortex
pair also contains ωx , unlike the other three cases (compare the x/D = 2.75 slice between
the bottom row and other three rows). This distinct upper region of ωx corresponds to the
upper lobe of the double-lobed mean wake structure in figure 11(d).

6.1. Streamwise vortex pair in the unstratified wake
The downstream evolution of the counter-rotating vortex pair is of interest. Figure 15
presents 〈ωx 〉 contours at four locations in the wake, x/D = 3, 10, 20 and 30. The black
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Figure 15. Mean streamwise vorticity 〈ωx 〉 contours at x/D = 3, 10, 20 and 30 for Fr = ∞. r/D denotes the
radial extent of the contour at the respective x/D locations. The black dot and cross represent the centre of the

negative and the positive vortex filament, respectively.
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Figure 16. Location of the streamwise vortex pair in the y−z plane as a function of x/D. 〈zc
ω〉 and 〈yc

ω〉 denote
the evolution in the vertical and spanwise direction, respectively. Results from the point and Lamb dipole
modelling are shown for the geometrical centre of the centroids of the negative and positive vortex.

circle and cross show the centroid of the positive and negative vortex filaments, which are
computed following Jemison et al. (2020):

〈yc(+,−)
ω 〉 =

∫
y〈ωx 〉(+,−)dA∫ 〈ωx 〉(+,−)dA

, 〈zc(+,−)
ω 〉 =

∫
z〈ωx 〉(+,−)dA∫ 〈ωx 〉(+,−)dA

, (6.1)

where + and − denote the positive and the negative vortex filament, respectively.
The asymmetric vortex pair on the body propagates downstream as two distinct patches

of 〈ωx 〉. The centroids exhibit downward descent as well as lateral shifts. It is worth noting
that, despite the spatial asymmetry in the organisation of the negative and positive fila-
ments, the magnitudes of their time-averaged circulation remain equal throughout the com-
putational domain, i.e. 〈Γ +〉 = −〈Γ −〉, owing to the conservation of angular momentum.

Figure 16 provides a comparison of the actual trajectoriy of the geometric centre of
the two vortices with the predictions of point vortex and Lamb dipole models. In an
unstratified medium, according to the point vortex approximation, the vortex pair travels
in its plane with the following vortex-induced velocity (Hill 1975):

V (x) = 〈Γ 〉(x)

2πd
n. (6.2)

Here, 〈Γ 〉(x) represents the time-averaged circulation in constant-x planes, n is the unit
normal to the vector d between the positive and negative vortex centroids, and d is the
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Figure 17. Variation of Frω, the hypothetical Froude number of the counter-rotating streamwise vortex pair in
the Fr = ∞ wake if subjected to Fr = 6 stratification, as a function of streamwise distance x for both positive
and negative vortex filaments.

magnitude of d. Assume that the vortex pair moves with constant speed U∞ in the x
direction so that the vortex travel time is t = x/U∞ and integrate V (t = x/U∞) with
respect to t . The result is the vortex centroid displacement in y- and z-directions under
the point vortex modelling assumption. The Lamb dipole modelling follows the same
approach, e.g. Flór et al. (1994):

V = 〈Γ 〉
(6.832/2π)d

n . (6.3)

Both the point vortex and Lamb dipole models overestimate the vertical displacement
magnitude (figure 16a) until x/D ≈ 15−20 followed by an overestimate. These models
satisfactorily capture the spanwise drift of the geometric centre of the vortex pair
(figure 16b). While the simplified models capture the order of magnitude of the vertical
and horizontal vortex displacement in the current unstratified simulation until x/D = 40,
the accuracy of these simplified models is marginal in capturing the streamwise trend,
indicating that the spatial organisation of the vortices shed from the body is more complex
than that of a point-vortex pair.

6.2. Buoyancy effects on the streamwise vorticity
The Fr = 6 wake showed a significant reduction in the wake descent (〈zc〉 in figure 13(b)
as early as x/D = 4, only 1 body diameter behind the trailing edge of the spheroid, or
at Nt = 2/3 in buoyancy units behind the body centre. This relatively early buoyancy
effect, despite a relatively weak initial stratification of Fr = 6, can be understood by
consideration of the hypothetical Froude number (Frω(x)) if the vortex pair in the
unstratified wake was subjected to the buoyancy frequency (N ) of the Fr = 6 case.
Here, Frω(x) = Wc(x)/Nd(x), where Wc(x) = d〈zc

ω〉/dt = U∞d〈zc
ω〉/dx is the measured

descent velocity, and d(x) is the distance between the centroids of the positive and negative
vortex. Remarkably, Frω is already O(1) by x/D ≈ 5 (figure 17), indicating that the
streamwise vortices of the Fr = ∞ cases would be strongly impacted by buoyancy, right
from the beginning, if exposed to the Fr = 6 stratification. In what follows, we will delve
deeper into the effect of buoyancy on streamwise wake vortices.

Figure 18 displays the contours of 〈ωx 〉 for the stratified wakes. At x/D = 3, the
presence of counter-rotating streamwise vorticity is evident across all three stratified
cases. Buoyancy significantly affects the subsequent streamwise variation of 〈ωx 〉. With
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Figure 18. Mean streamwise vorticity 〈ωx 〉 at x/D = 3, 10, 20, 30 for Fr = 6, 1.9 and 1. r/D denotes the radial
extent of the contour at the respective x/D locations.

decreasing Fr, not only does the magnitude of 〈ωx 〉 increase, but also its spatial
organisation.

Notably, in the Fr = 6 wake (figure 18a,d,g,j), the integrity of the streamwise counter-
rotating vortex filaments disintegrates rapidly, unlike the Fr = ∞ wake. This buoyancy
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effect will be attributed to the baroclinic torque shortly. Given the absence of distinct
positive and negative vortex filaments in the Fr = 6 wake, a simplified point vortex
or Lamb vortex model prediction is not attempted. In the case of stronger relative
stratifications of Fr = 1.9 and 1, the 〈ωx 〉 fields exhibit increased complexity at x/D = 10
and beyond. These wakes display a larger spatial extent of 〈ωx 〉 owing to steady lee waves
outside the wake core. Also, the interaction between the wake vorticity and the lee waves
vorticity is intricate, making it challenging to discern the fate of the shed vortices based
solely on the contours, in contrast to the Fr = ∞ wake.

The baroclinic torque, which measures the direct influence of buoyancy on vorticity, is
useful to understand the observed dependence of 〈ωx 〉 on Fr. On taking the curl of the
Reynolds average of (2.2), it follows that there is a baroclinc torque

ωBT = − 1
Fr2 ∇ × 〈ρd〉e3

(ωBT )i = − 1
Fr2 εi jk

∂〈ρd〉
∂x j

δk3 = − 1
Fr2 εi j3

∂〈ρd〉
∂x j

. (6.4)

The mean streamwise contribution of the baroclinic torque is ωBT x = −(1/Fr)2∂〈ρ〉/∂y
and follows from (6.4) with i = 1. It involves only the lateral (spanwise) mean buoyancy
gradient, apart from the Fr-dependent normalisation factor.

The magnitude of ωBT x is substantial and increases with increasing stratification
(figure 19). At x/D = 3, it is especially large at the wake boundaries as suggested by
the organisation of mean isopycnals in figure 11. Further downstream, the contribution of
lee waves to ωBT x becomes progressively important. For Fr = 6, the initial distribution
of −(1/Fr)2∂〈ρ〉/∂y (figure 19a) is laterally asymmetric since transport by the laterally
asymmetric flow in the Fr = 6 wake (evident through the previous analyses) leads to
buoyancy asymmetry. In contrast, the Fr = 1.9 and 1 cases exhibit lateral symmetry except
for a sign change upon spanwise reflection. This contrast is evident when comparing the
left column to the right two columns in figure 19. As these wakes progress downstream,
the coherence of the baroclinic torque field in the Fr = 6 wake diminishes significantly
when compared with the Fr = 1 and 1.9 wakes.

7. Summary and conclusions
The stratified wake of a 6:1 prolate spheroid at angle of attack α = 10◦ is studied using
large eddy simulations (LES). Cases with Fr = U∞/N D = 6, 1.9 and 1 are simulated
along with its unstratified (Fr = ∞) counterpart at a length-based Reynolds number
ReL = U∞L/ν = 30 000. The focus of the present manuscript is on the mean wake and
vorticity dynamics along with the on-body flow. Subsequent work that includes higher
values of ReL will report on turbulence, unsteady coherent structures and mixing aspects.

Visualisations of instantaneous ux -isovolumes, streamlines and λ2-structures
(figures 4–7) reveal overall changes in flow topology as Fr decreases. At Fr = ∞
and Fr = 6, flow separation at the body aligns with previous findings in the literature.
In both cases, a pair of streamwise vortices emerges from the lateral sides of the
body, initially laminar, but transitioning to turbulence near the spheroid. Even at the
relatively weaker stratification of Fr = 6, stratification effects are evident. Similar to
the observations by Ohh & Spedding (2024), the wake at Fr = 6 does not descend as
much as the Fr = ∞ wake, due to buoyancy forces inhibiting vertical displacement. As
stratification strength increases, the wake topology and streamline distribution change
significantly. Small-scale variability (turbulence) in the wake is inhibited at Fr = 1.9 and
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Figure 19. Mean streamwise baroclinic torque −1/Fr2∂〈ρ〉/∂y at x/D = 3, 10, 20, 30 for Fr = 6, 1.9 and 1.
r/D denotes the radial extent of the contour at the respective x/D locations. Note that as x/D increases,
colourbar limits are reduced to accentuate the spatial structure of the mean streamwise baroclinic torque.

Fr = 1. At Fr = 1.9, the λ2-structures and ux -isovolumes remain laminar up to x/D = 20,
with even later transition at Fr = 1.

The analysis of averaged pressure and friction contours on the spheroid provides further
insight into the effect of stratification on the mean flow at the spheroid. Specifically, the
C f contours across different Fr values reveal that stratification alters the flow separation
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topology (figure 9). At Fr = ∞ and Fr = 6, flow separates from both sides of the body.
However, at Fr = 1.9, flow separation occurs from both sides as well as the central region
(y/D = 0). By Fr = 1, lateral separation is completely suppressed since the cross-stream
windward-to-leeward surface flow is arrested by buoyancy. Furthermore, Fr = ∞ and 6
exhibit asymmetric separation, quantified further by Cy in both cases (figure 10). At
stronger stratifications, the overturning motion in the vortex rollup weakens as evidenced
by the secondary flow streamlines (figure 6) and the vorticity is no longer laterally
asymmetric.

The evolution of the mean wake topology, both quantiatively and qualitatively, is also
analysed for all four Fr cases. In unstratified conditions and in the Fr = 6 case, the initial
wake drifts both in the vertical and horizontal direction owing to vertical momentum
imparted by non-zero α and initial lateral asymmetry present in the flow (figure 11a,e,i,m).
Previous studies on flow past slender bodies at both high (Jiang et al. 2014, 2015, 2016) and
low-to-moderate (Ashok et al. 2015a,b) angles of attack have found lateral asymmetry in
the wake. We hypothesise that the Fr = ∞ (and Fr = 6) flows at ReL = 30 000 are bistable,
being locked in two distinct reflectional-symmetry-breaking states, with each state being
equally probable. The above-mentioned studies reporting flow asymmetry also found that
the orientation of asymmetry remained constant over time, similar to our findings for both
Fr = ∞ and Fr = 6. A caveat is that the present averaging time span of approximately
100D/U∞ is not long and the polarity could conceivably switch at longer times, although
it did not do so in the laboratory experiments of Ashok et al. (2015a,b).

Interestingly, the effect of stratification on the wake is evident in the Fr = 6 wake
from the outset. Specifically, focusing on the vertical motion (a descent in the present
configuration) of the wake centre 〈zc〉 (figure 13) owing to the self-induced velocity of the
vortex pair, it is found that the descent of the Fr = 6 wake is inhibited from approximately
x/D ≈ 3. A Froude number (Frω) based on the baseline unstratified descent velocity and
N is found to become O(1) in the near wake, explaining the rapid arrest of the wake
descent by buoyant deceleration. Subsequent oscillation in the evolution of 〈zc〉 with a
wavelength λ= 2πFr, consistent with observations by Ohh & Spedding (2024), is also
observed. As Fr is reduced further, the mean wake topology becomes more influenced by
stratification. At Fr = 1.9, the vertical wake drift decreases further and the wake oscillates
with a significantly stronger amplitude than at Fr = 6. The Fr = 1 case exhibits a unique
wake topology, featuring two distinct lobes due to the different separation patterns, which
persist until at least x/D = 40. Higher ReL studies at Fr = 1 in this configuration are
necessary to assess whether turbulent mixing at high ReL would prevent formation and
persistence of the intriguing double-lobed wake found here.

The streamwise evolution trends of key mean wake quantities like Ud , mean kinetic
energy and wake length scales (L y and Lz) are qualitatively similar to previous studies
of stratified wakes (Spedding 1997; Bonnier & Eiff 2002; Pal et al. 2017; Ortiz-Tarin
et al. 2019): (a) lee-waves-induced modulation is observed in all stratified wakes, with
its intensity increasing with decreasing Fr; (b) Fr = 1.9 and 1 wakes retain significantly
higher MKE and Ud than Fr = 6 or the unstratified wake; and (c) the deviation in
area-integrated quantities in the Fr = 6 wake from the Fr = ∞ wake occurs at Nt ∼ 1−3.

Shifting the focus to the mean vorticity dynamics in the wake, it was found that the
asymmetry in the Fr = ∞ and 6 wakes originates from the earlier roll-up of the vortex
on one side compared with the other (see figure 14a−d). At Fr = 1.9 and 1, the roll-up
is significantly inhibited by buoyancy (see figure 14e−h), leading to a symmetric
configuration of the streamwise vortex pair. The negative and positive vortices maintain
a clear signature for Fr = ∞ (figure 15), prompting an attempt to model them using
point vortex and Lamb dipole approaches to capture the trends in vertical descent and
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spanwise displacement of the vortex pair. While these rudimentary models provide an
order of magnitude estimate for the vertical descent and spanwise displacement (figure 16),
they do not accurately capture the streamwise trend since the topology of the relatively
close spheroid vortices is more complex than a pair of pointwise vortices. At Fr = 6, the
streamwise vortex pair loses coherence as early as x/D = 10 (figure 18d), preventing any
attempts at similar modelling for the Fr = 6 wake. The Fr = 1.9 and 1 wakes exhibit a
significantly more complex spatial distribution due to nonlinear interactions between the
vorticity carried by the wake and that carried by the steady lee waves. The influence of
steady lee waves is evident in both 〈ωx 〉 and baroclinic torque contours for Fr = 1.9 and 1
(figure 18 and 19).

The findings of this work suggest that energetic, weakly stratified wakes at Fr ∼ O(10)

need to be investigated at a higher ReL to confirm whether, close to the body, there
is strong buoyancy-induced modification of the wake descent and structure at these
elevated Reynolds numbers, similar to what is observed in the Fr = 6 wake of this study.
Future simulations of Fr ∼ O(1) wakes will help better understand how the transition to
turbulence might occur at higher ReL and how wake mixing takes place, an aspect that is
strongly suppressed in the Fr = 1 case of this study. Finally, larger values of pitch angle
are also deserving of study.

Funding. We gratefully acknowledge the support of ONR grant N00014-20-1-2253. Computational resources
were provided by the Department of Defense High Performance Computing Modernization Program.

Declaration of interests. The authors report no conflict of interest.

Author contributions. S.N. and S.J. contributed equally to this work.

REFERENCES

ASHOK, A., VAN BUREN, T. & SMITS, A.J. 2015a Asymmetries in the wake of a submarine model in pitch.
J. Fluid Mech. 774, 416–442.

ASHOK, A., VAN BUREN, T. & SMITS, A.J. 2015b The structure of the wake generated by a submarine model
in yaw. Exp Fluids 56 (6), 123.

BALARAS, E. 2004 Modeling complex boundaries using an external force field on fixed Cartesian grids in
large-eddy simulations. Comput. Fluids 33 (3), 375–404.

BONNIER, M. & EIFF, O. 2002 Experimental investigation of the collapse of a turbulent wake in a stably
stratified fluid. Phys. Fluids 14 (2), 791–801.

BRIDGES, D. 2006 The Asymmetric Vortex Wake Problem - Asking the Right Question. In 36th AIAA Fluid
Dynamics Conference and Exhibit. American Institute of Aeronautics and Astronautics.

BRUCKER, K.A. & SARKAR, S. 2010 A comparative study of self-propelled and towed wakes in a stratified
fluid. J. Fluid Mech. 652, 373–404.

CHEVRAY, R. 1968 The turbulent wake of a body of revolution. ASME J. Basic Engng 90 (2), 275–284.
CHONGSIRIPINYO, K. & SARKAR, S. 2020 Decay of turbulent wakes behind a disk in homogeneous and

stratified fluids. J. Fluid Mech. 885, A31.
CONSTANTINESCU, G.S., PASINATO, H., WANG, Y., FORSYTHE, J.R. & SQUIRES, K.D. 2002 Numerical

investigation of flow past a prolate spheroid. J. Fluids Engng 124 (4), 904–910.
DAIRAY, T., OBLIGADO, M. & VASSILICOS, J.C. 2015 Non-equilibrium scaling laws in axisymmetric

turbulent wakes. J. Fluid Mech. 781, 166–195.
DOMMERMUTH, D.G., ROTTMAN, J.W., INNIS, G.E. & NOVIKOV, E.A. 2002 Numerical simulation of the

wake of a towed sphere in a weakly stratified fluid. J. Fluid Mech. 473, 83–101.
FLÓR, J.B., VAN, H. & GERTIJAN, J.F. 1994 An experimental study of dipolar vortex structures in a stratified

fluid. J. Fluid Mech. 279, 101–133.
FU, T.C., SHEKARRIZ, A., KATZ, J. & HUANG, T.T. 1994 The flow structure in the lee of an inclined 6: 1

prolate spheroid. J. Fluid Mech. 269, 79–106.
GERMANO, M., PIOMELLI, U., MOIN, P. & CABOT, W.H. 1991 A dynamic subgrid-scale eddy viscosity

model. Phys. Fluids 3 (7), 1760–1765.
GRANDEMANGE, M., GOHLKE, M. & CADOT, O. 2013 Turbulent wake past a three-dimensional blunt body.

Part 1. Global modes and bi-stability. J. Fluid Mech. 722, 51–84.

1009 A58-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

20
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.204


Journal of Fluid Mechanics

HAN, T. & PATEL, V.C. 1979 Flow separation on a spheroid at incidence. J. Fluid Mech. 92 (4), 643–657.
HILL, F.M. 1975 A numerical study of the descent of a vortex pair in a stably stratified atmosphere. J. Fluid

Mech. 71 (1), 1–13.
JEMISON, M.B., DELANEY, K. & KANNEPALLI, C. 2020 A study on the effect of an experimental sting on

the wake of a prolate spheroid. In AIAA Scitech 2020 Forum, pp. 1755.
JIANG, F., ANDERSSON, H.I., GALLARDO, J.P. & OKULOV, V.L. 2016 On the peculiar structure of a helical

wake vortex behind an inclined prolate spheroid. J. Fluid Mech. 801, 1–12.
JIANG, F., GALLARDO, J.P. & ANDERSSON, H.I. 2014 The laminar wake behind a 6: 1 prolate spheroid at

45◦ incidence angle. Phys. Fluids 26 (11), 113602.
JIANG, F., GALLARDO, J.P., ANDERSSON, H.I. & ZHANG, Z. 2015 The transitional wake behind an inclined

prolate spheroid. Phys. Fluids 27 (9), 093602.
JIMENEZ, J.M., HULTMARK, M. & SMITS, A.J. 2010 The intermediate wake of a body of revolution at high

Reynolds numbers. J. Fluid Mech. 659, 516–539.
KUMAR, P. & MAHESH, K. 2018 Large-eddy simulation of flow over an axisymmetric body of revolution.

J. Fluid Mech. 853, 537–563.
LI, J.J.L., YANG, X.I.A. & KUNZ, R.F. 2024 Direct numerical simulation of temporally evolving stratified

wakes with ensemble average. J. Fluid Mech. 980, A3.
LIN, Q., LINDBERG, W.R., BOYER, D.L. & FERNANDO, H.J.S. 1992 Stratified flow past a sphere. J. Fluid

Mech. 240, 315–354.
MADISON, T.J., XIANG, X. & SPEDDING, G.R. 2022 Laboratory and numerical experiments on the near

wake of a sphere in a stably stratified ambient. J. Fluid Mech. 933, A12.
MEUNIER, P. & SPEDDING, G.R. 2006 Stratified propelled wakes. J. Fluid Mech. 552, 229–256.
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