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On the use of expansion series for stream ciphers

Claus Diem

Abstract

From power series expansions of functions on curves over finite fields, one can obtain sequences
with perfect or almost perfect linear complexity profile. It has been suggested by various authors
to use such sequences as key streams for stream ciphers. In this work, we show how long parts
of such sequences can be computed efficiently from short ones. Such sequences should therefore
be considered to be cryptographically weak. Our attack leads in a natural way to a new measure
of the complexity of sequences which we call expansion complexity.

1. Introduction

It is well known that linearly recurrent sequences, that is, sequences generated from linear
feedback shift registers (LFSR), are cryptographically weak. This observation leads to the
following well-established definitions; cf. [15, 17] and other works on linearly recurrent
sequences.

We set N := {1, 2, . . . }. Let q be a prime power. By a sequence over Fq we mean a map from
a subset of the form {1, . . . , m} or from N to Fq. For a finite sequence a = (a1, a2, . . . , an)
over Fq one defines the linear complexity, La, as the least ` such that a is generated by a linear
recurrence relation of order `. Now, for a finite or infinite sequence a = (a1, a2, . . . ) of length
m over Fq and for n6m, one defines La(n) as the linear complexity of the finite subsequence
consisting of the first n terms of a, and one defines the linear complexity profile as (La(n))m

n=1.
An infinite sequence a = (ai)i∈N over a finite field Fq is said to have perfect linear

complexity profile if |2La(n)− n|6 1 for all n and d-almost perfect linear complexity profile if
|2La(n)− n|6 d for all n.

In [20] a general construction of sequences with almost perfect complexity profile was given.
The construction is based on function expansion into expansion series and will be recalled
below. The motivation stated in [20] to consider this construction is the generation of key
streams for stream ciphers. Also in [15], the consideration of the construction is motivated by
applications to stream ciphers.

In this work, we show that the coefficients of the sequences constructed via the method in [20]
can be efficiently computed from relatively short subsequences. Therefore, the sequences should
be considered as cryptographically weak.

The proposed attack leads to a new notion of complexity which we call expansion complexity.
The expansion complexity of a sequence is always at most the linear complexity and captures
the immunity against our attack.

Additionally, we show how one can apply well known results on continued fraction expansion
in order to obtain further insight into the sequences suggested in [20]. In particular, we refute
the conjecture in [20] that all sequences with almost perfect linear complexity profile can be
obtained with the construction in [20].

This work is organized as follows: in the next section, we briefly recall how one is naturally
lead from linearly recurrent sequences to expansion sequences. The third section is devoted
to an analysis via continued fraction expansion. In the fourth section, we give the theoretical
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background of our attack, and in the fifth section, we discuss computational aspects. The final
section contains a discussion and some research proposals based on our attack.

Some definitions. Let k be a field. By a function field over k we mean a finitely generated
extension of k of transcendence degree 1. Let F be a function field with exact constant field k
(which means that F is a function field over k and k is algebraically closed in F ), and let f ∈ F
be non-constant (that is, f /∈ k). Then we define the degree of f as deg(f) := [F : k(f)]. Thus
the degree of f is the degree of f as a function on the corresponding complete non-singular
curve over k. In particular, the degree of a non-constant rational function r = a/b ∈ k(t) with
coprime polynomials a, b ∈ k[t] is max{deg(a), deg(b)}. Additionally, we define the valuation
degree of r as valdeg(r) := deg(a)− deg(b). We therefore have v∞(r) =− valdeg(r). We caution
the reader to not confuse the degree of a rational function with the valuation degree. The latter
will only be used in Section 3 on continued fractions.

2. From linearly recurrent sequences to power series expansions

Let us first recall some facts about linear complexity. These facts lead naturally to the
consideration of continued fraction expansions and to the construction in [20].

Let q be a prime power, and let a = (a1, a2, . . . ) be an infinite sequence over Fq. Then we
have the associated generating series

s :=
∑
i∈N

ait
i ∈ Fq[[t]].

With x := t−1 ∈ Fq(t) we obtain that

s=
∑
i∈N

aix
−i ∈ Fq[[x−1]].

Both these descriptions of the series s are of importance in the following.
The sequence a is generated by a linear feedback shift register with generating polynomial

g(x) if and only if s · g is a polynomial in x, which is then automatically of degree < deg(g).
Therefore, a is linearly recurrent with recursion order d if and only if s is a rational function
in x of degree d. Moreover, we have Ln(a) 6 ` if and only if there exists a rational function
f ∈ Fq(x) of degree at most ` with s= f +O(x−(n+1)), where the O-notation is used as in
infinitesimal calculus.

It is now natural to consider the continued fraction expansion of s to study the linear
complexity profile of a. This is done in [12] and in [15]. In the next section we recall some
results obtained in this way and make some more observations. Here, we mention just one basic
result which can be obtained in this way (see Proposition 2 in the next section).

As above, let a be an arbitrary infinite sequence over Fq and let d ∈ N. Then a has d-almost
perfect linear complexity profile if and only if Ln(a) > 1

2 (n+ 1− d) for all n ∈ N.
Whereas the first description of the sequence s is important for the analysis via continued

fraction expansion, it is the second description which leads naturally to the construction via
function expansion into power series as described in [20] and also in [15]. We observe that s
is a rational function of degree d in x if and only if it is a rational function of degree d in t.
Therefore, s is linearly recurrent with recurrence order d if and only if s is a rational function
of degree d in t.

Now let F be a function field with exact constant field Fq, and P be a place of degree 1 of
F and t a uniformizing element at P. Then we have an associated homomorphism of function
fields F ↪→ Fq((t)). The image of some f ∈ F is called the expansion of f with respect to t.
Now for any f with vP (f) > 1, we obtain a power series

∑
i∈N ait

i, and we can consider the
series (ai)i∈N defined by the coefficients.
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For example, if F = Fq(t), that is, if t has degree 1, then we obtain a linearly recurrent
sequence with recurrence order deg(f). By the above considerations, it is particularly natural
here to consider expansions of functions f ∈ Fq(x) with respect to the ‘place at infinity’ (with
respect to x), p∞, and the uniformizing element t := x−1.

It is proven in [20] that if t has degree 2 and f is in F\Fq(t) and has degree d then the
sequence (ai)i∈N has d-almost perfect linear complexity profile. More generally, for an arbitrary
uniformizing element t at P we have

La(n) >
n+ 1− deg(f)

deg(t)
for all n ∈ N.

Let us recall the easy proof. Let ` := La(n). Then we have polynomials r, u ∈ Fq[t] with
deg(r) 6 `, deg(u) 6 `, u(0) = 0 and

s · r ≡ u mod tn+1.

This is equivalent to
f · r ≡ u mod Pn+1,

that is
vP(f · r − u) > n+ 1.

This implies that deg(f · r − u) = deg(f · r − u)0 > n+ 1. On the other hand, f · r − u ∈
L((f)∞ + ` · (t)∞)− {0} and thus deg(f · r − u) 6 deg(f) + ` · deg(t). We conclude that n+ 1
6 deg(f) + ` · deg(t).

Definition. We call a power series in Fq((t)) obtained by expansion of any function as just
described an expansion series (over Fq). Furthermore, if a is a series which is the sequence of
coefficients of an expansion series (which then lies in t · Fq[[t]]), then we call the sequence a an
expansion sequence (over Fq).

3. Analysis with continued fraction expansion

Again let q be a prime power. We consider continued fraction expansions of elements of
Fq((x−1)). We expand the valuation degree function from Fq(x) to Fq((x−1)) by

valdeg
(∑

i>n

aix
−i

)
:=−n

if an 6= 0, and we set

v∞(f) :=−valdeg(f) and |f | := q−v∞(f) = qvaldeg(f).

Clearly, | · | is a non-Archimedean absolute value, and Fq((x−1)) is the completion of Fq(x)
with respect to this absolute value.

Let now a be an infinite sequence over Fq. We consider the continued fraction expansion of
s=

∑
i∈N aix

−i. Let us first fix some standard definitions and recall some basic results. We
mainly follow [15] here.

Let
s= [0;A1, A2, A3, . . . ]

be the continued fraction expansion of s. Here, by definition, the Ai are polynomials in Fq[x];
they are called the partial quotients of s.

As usual, we define

p−1 := 1, p0 := 0, pi :=Aipi−1 + pi−2 for i ∈ N
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and
q−1 := 0, q0 := 1, qi :=Aiqi−1 + qi−2 for i ∈ N.

Then for each i, the polynomials pi and qi are coprime, and we have
pi

qi
= [0;A1, . . . , Ai]

and
deg(qi) =

∑
j6i

deg(Ai).

We set wi := deg(qi).
In [12] the following proposition is proven (see also [15]).

Proposition 1. Let n ∈ N. Now let j be defined by the following inequalities

wj−1 + wj 6 n < wj + wj+1. (1)

Then Ln(a) = wj .

A consequence of this proposition is the following.

Proposition 2. Let d ∈ N. Then the following conditions are equivalent:
(a) the sequence a has d-almost regular complexity profile;
(b) Ln(a) 6 (n+ d)/2 for all n ∈ N;
(c) Ln(a) > (n+ 1− d)/2 for all n ∈ N;
(d) deg(Ai) 6 d for all i.

Later we will consider a variant of this proposition. For this reason, we now recall the proof
given in [15].

Clearly, (a) implies (b) and (c). We show that (b) implies (d) and that (c) implies (d).
Let i ∈ N with wi > 1 and let n := wi−1 + wi. Then Ln(a) = wi and n= 2wi − deg(Ai) =

2Ln(a)− deg(Ai). Therefore deg(Ai) = 2Ln(a)− n. Now if (b) is satisfied then deg(Ai) 6 d.
Now let i ∈ N with deg(Ai) > 2 and let n := wi−1 + wi − 1. Then Ln(a) = wi−1 and n=

2wi−1 + deg(Ai)− 1 = 2Ln(a) + deg(Ai)− 1. Therefore, deg(Ai) = n+ 1− 2Ln(a). Now if (c)
is satisfied then again deg(Ai) 6 d.

We now show that (d) implies (b) and (c) and therefore also (a).
Let n ∈ N. Then the inequalities (1) are equivalent to

2wj − deg(Aj) 6 n < 2wj + deg(Aj),

which is equivalent to
n− deg(Aj) + 1 6 2wj 6 n+ deg(Aj).

The claim follows immediately.

A remark on expansion sequences. Again, let d ∈ N. We see from the previous proposition
that there are uncountably many sequences over Fq with d-almost perfect complexity profile.
On the other hand, there are only countably many expansion sequences, even if one does not
require that the degree of the uniformizing element be 2. In contrast to this, in the conclusion
of [20] it is conjectured that all sequences with almost perfect complexity profile are expansion
sequences with respect to uniformizing elements of degree 2. We see that this conjecture fails
in a dramatic way.

It is now natural to study sequences obtained with the construction in [20] via the theory
of continued fraction expansion. The following proposition is classical.
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Proposition 3. The following statements are equivalent.

(a) The sequence a is an expansion sequence of a function f in a function field F with exact
constant field Fq with respect to a place of degree 1 and a uniformizing element t of degree 2,
where f /∈ Fq(t).

(b) There exists a quadratic field extension F |Fq(x) for which the place p∞ of Fq(x) is
unramified and split into two places P1,P2 of F and there exists a function f ∈ F\Fq(x) such
that s is the expansion sequence of f at P1 with respect to the uniformizing element x−1.

(c) The sequence s is a root of an irreducible polynomial in Fq(x)[y] of degree 2 in y.
(d) The continued fraction expansion of s is periodic.

In analogy to quadratic number fields, for a field k, a quadratic extension F |k(x) in which
the place p∞ is unramified and split is often called a real quadratic function field. Note here
that this might be seen as an abuse of terminology because a ‘real quadratic function field’ is
not a function field but an extension of the field k(x). Just as the theory of continued fractions
for real quadratic number fields, the corresponding theory for real quadratic function fields over
finite fields is well developed. A good overview of many aspects for odd characteristic is [19],
the case of even characteristic is discussed in [21].

The theory of continued fraction can be used to obtain bounds on the degrees of the partial
fractions Ai. We now discuss these results and relate them to Proposition 2.

Let ay2 + by + c ∈ Fq[x, y] with a, b, c ∈ Fq[x] and a 6= 0 be an irreducible polynomial. Let
F be the extension of Fq(x) defined by the polynomial, and let f be the residue class of y.
We assume that p∞ is unramified and split in F ; let P1 be one of these places. We consider
the expansion s of f at P1 and the corresponding continued fraction expansion. We use the
notations from above.

We note first that

deg(f) = [F : Fq(f)] = degx(ay2 + by + c) = max{deg(a), deg(b), deg(c)}

and therefore

deg(Ai) 6 max{deg(a), deg(b), deg(c)} (2)

for all i ∈ N by the considerations of the previous section and Proposition 2. We now give
potentially better bounds for large enough i.

The function g := af is a root of the monic polynomial y2 + by + ac, so af is integral over
Fq[x]. Moreover, clearly, a divides ac which is the norm of g over Fq(x). We therefore have

f =
g

a

with g integral, a ∈ Fq[x] and a|N(g). We are now in the situation which is considered in
continued fraction expansions.

We make a case distinction according to whether the characteristic is odd or even.
We first consider the ‘classical’ case that the characteristic is odd. We have the discriminant

∆ = b2 − 4ac. From [19, Proposition 3.2(c)] we learn that |Ai|6 |
√

∆|, that is, |Ai|2 6 |∆|, for
large enough i. In other words:

deg(Ai) 6
deg(∆)

2
for large enough i. This inequality is always at least as strong as inequality (2). By the proof
of Proposition 2, we have

n− deg(∆)
2

+ 1 6 2Ln(a) 6 n+
deg(∆)

2
for large enough n.
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Now let the characteristic be even. Then, by [21, Section 3], we have |Ai|6 |b|, that is,

deg(Ai) 6 deg(b)

for large enough i. (In the introduction to [21] there are some assumptions on the minimal
polynomial of g (in our notation), but these assumptions are not relevant for [21, Section 3].)
We thus have

n− deg(b) + 1 6 2Ln(a) 6 n+ deg(b)

for large enough n.

4. Defining polynomials

Let an expansion sequence a over Fq, defined by some function field F with exact constant
field Fq, a place P of degree 1, and a uniformizing element t, be given. Note here that we make
no assumption on the degree of t.

Convention. We assume that F = Fq(t, f).

This convention is justified as follows: let us assume that Fq(t, f) is a proper subfield of F .
Let now P′ be the restriction of P to Fq(t, f). Then P′ is also a place of degree 1, and the
series of f defined by P and the uniformizing element t is identical to the one defined by P′

and the uniformizing element t. So, in our study of expansion sequences, we can restrict our
attention to sequences arising as above with F = Fq(t, f).

The elements t and f are algebraically dependent over Fq. So there exists a non-trivial
polynomial h= h(t, y) ∈ Fq[t, y] with

h(t, f) = 0. (3)

Equation (3) is equivalent to

h

(
t,
∑
i∈N

ait
i

)
= 0, (4)

so we have a non-trivial polynomial h which satisfies the latter condition. Now let I be the
ideal of polynomials h ∈ Fq[t, y] with h(t, f) = 0.

The ideal I is the kernel of the homomorphism

Fq[t, y]−→ F, t 7→ t, y 7→ f (5)

and also of the homomorphism

Fq[t, y]−→ Fq[[t]], t 7→ t, y 7→
∑
i∈N

ait
i. (6)

Note that the latter fact implies that I is canonically attached to the sequence a.
The ideal I is a prime ideal and V (I) is a (possibly singular) plane affine curve with function

field F . As V (I) is one-dimensional, by Krull’s Hauptidealsatz I is generated by a single
irreducible polynomial. As usual, we call such a polynomial a defining polynomial of the curve
V (I). Such a polynomial is unique up to a constant.

Let us consider the situation from the point of view of projective geometry. For this, let C be
the complete non-singular curve over Fq corresponding to F , where we fix an isomorphism of
function fields Fq(C)' F . The place P corresponds to an Fq-rational point of C which we denote
by P . Now let h0(t, y) be a defining polynomial of V (I), and let H0(T, Y, Z) ∈ Fq[T, Y, Z] be
the homogenization of h0. Let

D0 := sup{−div(t),−div(f), 1}= sup{(t)∞, (f)∞}, (7)

where for some function g ∈ F ∗, (g)∞ is the pole divisor of g. Clearly, deg(D0) 6 deg(t) +
deg(f). By definition, t, f, 1 generate O(D0). Thus O(D0) and the global sections t, f, 1
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of O(D0) define a morphism C → P2
Fq

which is given on an open subset U of C by Q 7→ (t(Q) :
f(Q) : 1) for Q ∈ U(Fq). (Every rational map from C to some projective space Pn

Fq
over Fq can

be extended to a morphism from C to Pn
Fq

. Here we have the stronger condition that t, f, 1
as global sections of O(D0) directly define a morphism. See [7, Section II.7] for background
information.)

As by assumption F = Fq(t, f), the morphism is birational onto its image. It follows that
the image V (H0) has degree deg(D0). We therefore have

deg(h0) = deg(H0) = deg(D0) 6 deg(t) + deg(f). (8)

We now turn the situation around and just assume that we are given some sequence a
over Fq for which a non-trivial polynomial h ∈ Fq[t, y] with h(t,

∑
i∈N ait

i) = 0 exists. Then
the polynomials h with this property define again a non-trivial proper ideal of Fq[t, y]; let Ia
be this ideal. Just as above, let h0 be a polynomial of Ia of minimal degree. Clearly, h0 is
irreducible.

Let F := Fq(t)[y]/(h0) and f be the residue class of y. Then we have the embedding
F → Fq((t)) given by t 7→ t and f 7→

∑
i∈N ait

i over Fq. This embedding defines in a unique way
a valuation v on F with v(t) = 1 and thus a place P of F of degree 1. Moreover, the expansion
of f at P with respect to t is of course the power series

∑
i∈N ait

i.
The ideal Ia is now by definition the kernel of the homomorphism in (5) and thus also the

kernel of the homomorphism in (6). By the previous considerations we conclude that Ia is
generated by h0.

We have proven the following.

Proposition 4. The expansion sequences are exactly the sequences a for which a non-trivial
polynomial h ∈ Fq[t, y] with h(t,

∑
i∈N ait

i) = 0 exists. Furthermore, if such a polynomial exists,
the ideal of such polynomials is generated by a single irreducible polynomial.

This leads to the following definition.

Definition. Let a be an expansion sequence. We call the ideal Ia the defining ideal of a,
any non-trivial element of Ia a defining polynomial of a and a generating element h0 of Ia a
minimal defining polynomial of a. Finally, we call the degree of a minimal defining polynomial
of a the degree of a (as an expansion sequence).

Note that a necessary condition that a polynomial h0 ∈ Fq[t, y] is a defining polynomial of
any expansion sequence is that its constant term is trivial.

Now let h0 be an irreducible polynomial in Fq[t, y] with trivial constant term. As above, let
F = Fq(t)[y]/(h0), and let f be the residue class of y.

Now the expansion sequences with minimal defining polynomial h0 correspond bijectively
to the places P of F of degree 1 with t, f ≡ 0 mod P. From a geometric point of view, the
situation is as follows: let H0 be the homogenization of h0 and (C, ϕ) a non-singular curve C
over Fq together with a birational morphism ϕ : C → V (H0); this datum is unique up to unique
isomorphism. Now the places P of F of degree 1 with t, f ≡ 0 mod P correspond in a unique
way to points P ∈ C(Fq) with ϕ(P ) = [0 : 0 : 1].

By this geometric description, two facts are immediate.
First, there are at most deg(h0) expansion sequences with minimal defining polynomial h0.
Second, if V (h0) is non-singular at (0, 0) then there is exactly one such sequence. Now let

h0 =
∑

i,j ci,jt
iyj . Then h0 is singular at (0, 0) if and only if c1,0 = c0,1 = 0.

For the general case, we have the following lemma.

Lemma 5. An expansion sequence of degree d0 is uniquely determined by its defining
polynomial and its initial sequence of length d2

0.
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Proof. We consider h0 as a polynomial in y. As t is a uniformizing element at P, the extension
F |Fq(t) is separable, and therefore h0 is a separable polynomial. Let h0 =

∑d
i=0 ci(t) · yi with

ci(t) ∈ Fq[t] and cd(t) 6= 0, let ∆ be the discriminant of h0, and let R be the resultant of
h0 and h′0 = ∂h0/∂y. We have R=±cd ∆, and R is the determinant of a matrix of size
(2d0 − 1)× (2d0 − 1) whose entries are polynomials in Fq[t] of degree at most d0. Thus R is a
non-trivial polynomial of degree at most d0(2d0 − 1), and the discriminant ∆ is a non-trivial
polynomial in Fq[t] of degree 6 d0(2d0 − 1) too.

Assume now that we have two distinct roots ρ, ρ̃ of h0 as a polynomial over Fq[[t]] with
ρ≡ ρ̃ mod tn+1 for some n. Then ρ− ρ̃≡ 0 mod tn+1. Now (ρ− ρ̃)2 is a divisor of ∆. Therefore
∆≡ 0 mod t2n+2. We obtain that 2n+ 2 6 d0(2d0 − 1), and therefore n < d2

0. 2

So far, we have fixed the minimal defining polynomial. The minimal defining polynomial of
an expansion sequence of degree d0 is however also uniquely determined by its initial sequence
of degree d2

0. The key statement is the following lemma. The proof of the lemma is an easy
adaption of the proof of [1, Lemma 2.2].

Lemma 6. Let a be an expansion sequence over Fq of degree d0. Let h ∈ Fq[t, y] be a
non-trivial polynomial such that with d := deg(h) and n := dd0 we have

h

(
t,

n∑
i=1

ait
i

)
≡ 0 mod tn+1. (9)

Then h is a defining polynomial for a.

Proof. Let a be an expansion sequence defined by F, f, t,P, where these objects are
as above. Let D0 be as in (7). Then h(t, f) ∈ L(d ·D0). If now h(t, f) is non-trivial then
deg(h(t, f)) = deg(h(t, f)∞) 6 deg(h) · deg(D0) = dd0.

Let us assume that congruence (9) holds for some n ∈ N. Then h(t, f)≡ 0 mod Pn+1. Under
the assumption that h(t, f) is non-trivial, we now have deg(h(t, f)) > vP (h(t, f)) > n+ 1.

If n> dd0 this is a contradiction. Therefore, we then have h(t, f) = 0 and thus
h(t,

∑
i∈N ait

i) = 0. 2

Together these two lemmata give the following result.

Proposition 7. An expansion sequence of degree d0 is uniquely determined by its initial
sequence of length d2

0.

5. Computations

We now discuss computational aspects.
Our main goal here is as follows: given an initial sequence of length at least d2

0 of an expansion
sequence a of degree d0, we want to compute large initial sequences of a. For this, we proceed
as follows: first, we compute a minimal defining polynomial. Then from the minimal defining
polynomial and the initial sequence we compute the further coefficients of the expansion
sequence.

At the end of the section we also discuss why the results also apply if a finite intermediate
sequence is given. This case is particularly relevant for cryptanalytic applications.

Recovering the minimal defining polynomial. Lemma 6 immediately gives rise to an
algorithm to determine a minimal defining polynomial from a suitable initial sequence. Let
some finite initial sequence of length at least d2

0 of an expansion sequence of degree d0 be
given. The degree d0 itself need not be known a priori.
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For d= 1, 2, . . . , we make an ansatz for h0 as a polynomial of degree d with unknown
coefficients. Then (9) with n= d2 gives d2 homogeneous linear equations on the coefficients
of h. We solve this system of equations by linear algebra. If we have found a non-trivial solution,
we compute the corresponding polynomial. This is then a minimal defining polynomial.

Note that the number of monomials in Fq[t, y] of degree at most d is
(
d+2
2

)
. Thus a particular

system to be solved has size d2 ×
(
d+2
2

)
. We therefore obtain the following proposition.

Proposition 8. A minimal defining polynomial of an expansion sequence of degree d0 can
be computed in polynomial time in d0 · log(q) from an initial sequence of length d2

0 or more.

We remark that in practice, one might try to apply this idea with n at least
(
d+2
2

)
but smaller

than d2.

Approaches to compute initial sequences. Let us now assume that we are given an initial
sequence of length n> d2

0 and a minimal defining polynomial h0 of an expansion sequence
a of degree d0. We wish to efficiently compute further coefficients of the sequence a. Three
approaches to this problem come to mind.

1. A direct approach. For some m> n, we use the congruence h0(t,
∑m

i=1 ait
i)≡ 0 mod

tm+1 to obtain a system of equations for the unknowns an+1, . . . , am. We then solve this
system.

2. Expansions of functions with a function field theoretic approach. Let F := Fq[t, y]/(h0),
and let f be the residue class of y. Now every place P of F of degree 1 with t, y ≡ 0 mod P
uniquely determines an expansion sequence of F , and one of these is

∑
i∈N ait

i. By (5), the series
a determines a unique place. We therefore have the following approach. First we determine all
places P with t, y ≡ 0 mod P. For each such place P, we compute the expansion of f at P
to the power d2

0. From this, we determine which place is the correct one. Then we compute
further coefficients as desired.

3. Hensel’s lemma. We use a non-Archimedean variant of Newton’s iteration or, in other
words, we use some effective version of Hensel’s lemma.

The use of Hensel’s lemma (as formulated in [10]) to compute expansion sequences was
already suggested in [9] for the case that t has degree 2. It is extremely efficient. However, in
order that it can be applied, the initial sequence has to satisfy a condition (see condition (13)
below). This condition is missing in [9].

Because Hensel’s lemma cannot always be applied and also because of independent interest,
we now first discuss the function field theoretic approach. Then we come to Hensel’s Lemma
and give a criterion under which (13) is satisfied. The direct approach is not discussed in the
following.

Let us fix a definition.

Definition. Let
∑

i∈N0
ait

i ∈ Fq[[t]] and n ∈ N0. Then we call the polynomial
∑n

i=0 ait
i the

initial series of
∑

i∈N0
ait

i of length n.

Expansions of functions. We now describe the function field theoretic approach in detail.
A first problem is how to represent the objects for computational purposes, most importantly

the place of degree 1.
There are several approaches here, but one approach has proven itself to be particularly

successful. The general idea of this approach is to adapt ideas which are successfully used
for number fields. This approach has been popularized by F. Heß in his work [8]. It is also
implemented in the computer algebra system MAGMA [2]. We describe this approach briefly.
Besides [8], more information on this approach can be found in [6], and even more information,
including proofs of all the following claims, can be found in [5, Chapter 2].
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Let F be a function field over Fq, and let C be a non-singular proper curve over Fq with a
fixed isomorphism Fq(C)' F . (As we do not assume that Fq is the exact constant field of F
here, the curve C need not be geometrically irreducible.) The field F itself shall be given by an
irreducible polynomial h0 ∈ Fq[t, y] which is separable in y. (The curve C is then birational to
V (h0).) We consider the separable field extension F |Fq(t). We have the ‘finite’ order, which is
the closure of Fq[t] in F , and the ‘infinite’ order, which is the closure of Fq[1/t](1/t) in F . Bases
of the orders over the base rings Fq[t], respectively Fq[1/t](1/t), can be computed in polynomial
time in deg(h0) · log(q). Now a divisor on C is represented by a pair of two fractional ideals,
one fractional ideal for each order. Note that this means in particular that closed points of C
are represented by prime ideals of the two orders. The fractional ideals themselves are also
represented by bases over the base rings Fq[t], respectively Fq[1/t](1/t). Basic arithmetic can
now be performed just as for ideals in number fields and as described for example in [3].
Furthermore, as shown in [8], there is an easy algorithm to compute, for a given divisor
D on C, the Riemann–Roch space L(D). With appropriate representations of the objects
involved (which we have not described in detail), divisor arithmetic and the computation of the
Riemann–Roch spaces can be performed in polynomial time in deg(h0), log(q) and the heights
of the divisors involved. (The height of a divisor D1 −D2 for two disjoint effective divisors
D1, D2 is max{deg(D1), deg(D2)}.)

On the way to an algorithm to compute initial series of expansion series, we now discuss the
problem of how to evaluate a function at a rational point.

Let a function field F over Fq, a place P of degree 1 and a function f ∈ F , regular at P,
be given as input. The objects shall be represented as described above. Again, let C be a non-
singular proper curve over Fq with a fixed isomorphism F ' Fq(C), and let P ∈ C(Fq) be the
point corresponding to the place P. The goal is to compute f(P ) ∈ Fq.

Let us first mention that this problem is not completely trivial for various reasons. One
reason is that the point P is not given by t- and y-coordinates but by a prime ideal in an order
of F . But let us now assume that we know the coordinates t(P ), y(P ). Then if f is given by
a polynomial in Fq[t, y], it is trivial to evaluate f at P . If however f is given as a fraction of
polynomials or a sum of fractions of polynomials, it is not a priori clear how to perform the
evaluation in complete generality.

There is however an easy solution via Riemann–Roch spaces. Note first that f(P ) is the
unique element a ∈ Fq such that f − a vanishes at P . All functions f − a lie in L((f)∞), and
they lie in L((f)∞ − P ) if and only if a= f(P ).

So we first compute a basis b1, . . . , b` of the space L((f)∞ − P ). Then 1, b1, . . . , b` is a
basis of L((f)∞). We determine a, a1, . . . , a` ∈ Fq with f = a+ a1b1 + . . .+ a`b` with a linear
algebra computation. Then f − a ∈ L((f)∞ − P ) and therefore f(P ) = a. This computation
can be performed in polynomial time in deg(f) · deg(h0) · log(q).

We now discuss the computation of initial series of expansion series. For this, let P be a
place with t(P ) = 0.

Let fi for i ∈ N0 be inductively defined as follows:

f0 := f, fi+1 :=
fi − fi(P )

t
. (10)

Then the expansion sequence of f at P with respect to t is
∑∞

i=1 ait
i with ai = fi(P ).

Now fi lies in L((f)∞ + k · (t)∞) and therefore deg(fi) 6 deg(f) + i · deg(t) 6 deg(f) + i ·
deg(h0). It follows that the computation of the initial series

∑m
i=1 ait

i can be performed in
polynomial time in m · deg(f) · deg(h0) · log(q).

Let us return to our initial problem, the computation of further coefficients of an expansion
sequence from an initial sequence of length at least d2

0 and a defining polynomial h0. As
described above, let F be the function field defined by h0(t, y). Let f be the residue class of y
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in F . Note that by construction F has a place P of degree 1 with t, f ≡ 0 mod P, thus the
extension F |Fq(t) is again separable. Moreover, deg(f) 6 deg(h0) = d0.

We first determine which place of F defines the series. For this, we compute all places P
of F of degree 1 with t, f ≡ 0 mod P as follows. Let D := inf{(t)0, (f)0}. Then the places we
search for are exactly the places of degree 1 in the support of D. Now, D can be computed in
polynomial time in d0 · log(q). The factorization of D as a formal sum of prime divisors (the
so-called ‘free representation’ of D) can be computed in an expected time which is polynomially
bounded in d0 · log(q). (Here we have to factor polynomials, so this part of the algorithm is
randomized.) From this factorization, the desired places can be read off. For each of these
places, we consider the expansion of f with respect to t up to degree d2

0 and in this way
determine which place is the correct one.

After the correct place has been determined, an initial sequence of length m> d2
0 can be

computed in polynomial time in m · d0 · log(q).

Hensel’s lemma. The computation via Hensel’s lemma is particularly efficient, provided
that it is possible.

The following lemma and proposition are crucial.

Lemma 9. Let R be a complete discrete valuation ring with normalized valuation v, and let
t be a local parameter. Let g ∈R[y], and let r ∈R be such that v(g(r))> 2v(g′(r)). Let

r̃ := r − g(r)
g′(r)

.

Then

v(g′(r̃)) = v(g′(r)), v(g(r̃))− 2v(g′(r̃)) > 2(v(g(r))− 2v(g′(r))).

This lemma is proven in the course of the proof of Proposition 2 in [10, Section II.2]. The next
proposition follows easily.

Proposition 10. Let R be a complete discrete valuation ring with normalized valuation v,
and let t be a local parameter. Let g ∈R[y], and let r0 ∈R be such that

v(g(r0))> 2v(g′(r0)). (11)

Let b := v(g(r0))− 2v(g′(r0)). Now let (rk)k∈N be a sequence in R such that for k ∈ N0

rk+1 ≡ rk −
g(rk)
g′(rk)

mod t2
k+1b+2v(g′(r0)). (12)

Then

v(g′(rk)) = v(g′(r0)), v(g(rk))− 2v(g′(rk)) > 2k · b,
rk+1 ≡ rk mod tb·2

k+v(g′(r0)), g(rk)≡ 0 mod tb·2
k+2v(g′(r0))

for all k ∈ N0. In particular, (rk)k∈N0 converges to a root ρ of g with ρ≡ r0 mod tv(g(r0))−v(g′(r0))

and, more generally, ρ≡ rk mod tb·2
k+v(g′(r0)). Moreover, ρ is the unique root of g with

ρ≡ r0 mod tv(g′(r0))+1 (and thus in particular with ρ≡ r0 mod tv(g(r0))−v(g′(r0))).

The proposition is one of the various statements which might be called ‘Hensel’s lemma’.
It is closely related to Proposition 2 in [10, Section II.2]. However, we only require that the
congruence (12) is satisfied. In contrast in [10, Section II.2] an equality in R is demanded.

Proof. Note first that the congruences in the conclusion follow immediately from the first
two statements and (12).
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The statements for arbitrary k follow immediately by induction from the lemma. The
induction base k = 0 is trivial. So let us assume that the statements hold for a particular
natural number k. Let r̃k+1 := rk − (g(rk)/g′(rk)). Then by the lemma applied with rk
and r̃k+1 we obtain that v(g′(r̃k+1)) = v(g′(rk)) = v(g′(r0)) and v(g(r̃k+1))− 2v(g′(r̃k+1)) >
2(v(g(rk))− 2v(g′(rk))) > 2k+1b, that is, v(g(r̃k+1)) > 2k+1b+ 2v(g′(r0)). As rk+1 ≡ r̃k+1 mod
t2

k+1b+2v(g′(r0)) it follows that v(g(rk+1)) > 2k+1b+ 2v(g(r0)) and v(g′(rk)) = v(g′(r̃k)) =
v(g′(r0)).

The uniqueness is essentially stated in [4, Proposition 4.1.37]. For the convenience of the
reader, we recall the easy proof here.

Let us assume that there are two distinct roots ρ1, ρ2 ∈R of g with ρ1 ≡ ρ2 ≡ r0 mod
tv(g′(r0))+1. By Gauß’ Lemma we have g = (y − ρ1)(y − ρ2)h with some h ∈R[y]. This gives
g′(ρ1) = (ρ1 − ρ2)h(ρ1) and therefore v(g′(r0)) = v(g′(ρ1)) > v(ρ1 − ρ2), that is, ρ1 6≡ ρ2 mod
tv(g′(r0))+1, a contradiction. 2

Just as previously, let h0 ∈ Fq[t, y] be an irreducible polynomial, let F := Fq[t, y]/(h0), and
let f be the residue class of y. We wish to apply the above ‘Hensel’s Lemma’ with R= Fq[[t]],
v the corresponding normalized valuation, g = h0 and r0 =

∑n
i=1 ait

i for some initial sequence
(a1, . . . , an).

We now address the task of finding a suitable condition under which

v(h0(r0))> 2v
(
∂h0

∂y
(r0)

)
(13)

holds.
Note first that the condition is satisfied if (∂h0/∂y)(r0) 6= 0. We now consider the general

case.

Proposition 11. Let a be an expansion sequence of degree d0 with minimal defining
polynomial h0 =

∑d
i=0 ci(t)y

i, and let n> 2d3
0. Then r0 :=

∑n
i=1 ait

i fulfills the condition
v(h0(r0))> 2v((∂h0/∂y)(r0)).

Proof. Let Z be the splitting field of h0 ∈ Fq(t)[y] over Fq(t). We fix an embedding F ↪→ Z,
and we prolong the valuation v to Z. We denote the resulting valuation again by v.

Let h0 = c ·
∏m

j=1(y − fj) ∈ Z[y], where c ∈ Fq[t] and f1 = f . By Gauß’ Lemma, v(fj) > 0 for
all j. Furthermore v(h0(r0)) > v(c) + v(r0 − f) > v(c) + n+ 1 > n+ 1. With an easy adaption
of the proof of Lemma 5 we have v(f − fj)< d2

0 for j > 1, and thus v(r0 − fj)< d2
0 too. Indeed,

let e := v(f − fj) and let ∆ be the discriminant of h0. Then ∆≡ 0 mod t2e and therefore
2e6 deg(∆)< 2d2

0.
We have (∂h0/∂y)(r0) = c ·

∑m
`=1

∏
j 6=`(y − fj). Now for ` > 1, v(

∏
j 6=`(r0 − fj)) > v(r0 −

f) > n+ 1. Furthermore v(
∏

j>1(r0 − fj))< (m− 1) · d2
0 6 d3

0 − d2
0. Therefore v((∂h0/∂y)

(r0)) 6 v(c) + d3
0 − d2

0 6 d3
0 and 2(∂h0/∂y)(r0) 6 2d3

0 < n+ 1 6 v(h0(r0)). 2

The computation is in principle straightforward. Let an irreducible polynomial h0 such that
(13) holds and a finite sequence (a1, . . . , an) be given. Let us assume that (13) holds with
r0 :=

∑n
i=1 ait

i.
We apply Hensel’s Lemma with g := h0. As above, let b := v(g(r0))− 2v(g′(r0)). In the kth

iteration, we compute the unique polynomial of minimal degree rk+1 for which (12) holds. The
computation takes place inside the residue class ring Fq[t]/(t2

k+1b+2v(g′(r0))).
Note that this computation is very efficient because we essentially double the length of the

computed initial sequence at every iteration. One can now combine this method with fast
arithmetic. In this way, one obtains the following.

https://doi.org/10.1112/S146115701200109X Published online by Cambridge University Press

https://doi.org/10.1112/S146115701200109X


338 C. DIEM

Proposition 12. There exists a Turing machine with the following specification: upon input
of an irreducible polynomial h0 and a finite initial sequence (a1, . . . , an) for which (13) holds
the machine never terminates and it outputs the coefficients of an expansion sequence with
minimal defining polynomial h0 and initial sequence (a1, . . . , an). Moreover, the running time
until the mth coefficient is output is in Õ(m · deg(h0)).

Storage requirements. With the two methods discussed above and also with the ‘direct
approach’ mentioned above, the storage requirements are enormous: in order to compute an+1,
the complete initial sequence (a1, . . . , an) has to be stored. It is an interesting question if there
is any method to compute entries of a which uses less storage.

For the time being, the storage requirements put serious constraints on the use of expansion
sequences for stream ciphers, independently of our attack.

Finite intermediate sequences. We now consider a variant of the above. In cryptanalytic
applications, it is unlikely that one has access to an initial sequence. It is more realistic
to assume that one has access to a finite subsequence (ak+1, . . . , ak+m) of an expansion
sequence a.

Let a be given by F,P, t, f as above, and furthermore let fk+1 be defined as in (10). Then
the sequence (ak+i)i∈N is the expansion sequence of t · fk+1 with respect to t at P. So all the
above considerations hold when applied to this sequence.

Now let dk be the degree of this expansion sequence. (This generalizes the definition of d0

given above.) As t · fk+1 ∈ L((f)∞ + k · (t)∞), we have

dk 6 deg(f) + k · deg(t).

In terms of d0, we have
dk 6 (k + 1) · d0.

The dependence on k is surely a weakness of the attack. We remark again, however, that
for any of the three methods mentioned above, for the generation of some element an+1, the
complete initial sequence (a1, . . . , an) has to be computed and stored.

6. Outlook and comments

We have seen that expansion sequences should be regarded as cryptographically weak. It is
now natural to define a new notion of complexity of sequences over Fq.

For a finite sequence a of length n we define the expansion complexity, Ea, as the minimum
of the degrees of non-trivial polynomials h(t, y) ∈ Fq[t, y] with h(t,

∑n
i=1 ait

i) = 0 mod tn+1.
Clearly, we always have Ea 6 La. We define the expansion complexity profile of a finite or
infinite sequence a of length m as (Ea(n))m

n=1, where Ea(n) is the expansion complexity of the
initial sequence of length n of a. We remark that for a given sequence, one should not only
consider the expansion complexity profile of the sequence but in fact all expansion complexity
profiles for arbitrary starting points (that is, for the corresponding left-shifted sequences). In
the realm of linear complexity, the corresponding suggestion was already made in [16], and a
first study in this direction is [13].

The new notion of expansion complexity leads to some new research directions. One
interesting task is to develop a probabilistic theory of expansion complexity, just as a
probabilistic theory of linear complexity has been developed in [11, 14]. A first task here
is to study the probability distributions of expansion complexities for uniformly randomly
distributed sequences of a fixed length.

After such a theory has been developed, pseudorandom generators proposed for
cryptographic use should be analyzed from a statistic point of view via the theory. Let us
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note here that a corresponding statistic program for linear complexity is part of a test suite,
issued by NIST, for pseudorandom sequences for cryptographic use [18].

Finally, we would like to make a remark on terminology: in [12, 17] and various other
works, the authors speak of ‘sequences with perfect linear complexity profile’. In the beginning
of [20] the authors speak of sequences with ‘perfect linear complexity profile’ or with ‘almost
perfect linear complexity profile’. However, later in this work and also in [15], the authors speak
of ‘(almost) perfect’ sequences instead. Moreover, sequences with d-almost perfect complexity
profile are called ‘d-perfect’. Here we would like to make the following remark: the former
expressions are completely adequate. However, the latter expressions are questionable. It is one
thing to express that a mathematical object is ‘(almost) perfect’ with respect to a particular
aspect under consideration. It is, however, something else to say that a mathematical object
is ‘(almost) perfect’ by itself. Concretely, having in mind the results of this work, we would
like to suggest a return to the older terminology and to discontinue speaking of ‘(almost)
perfect sequences’ and of ‘d-perfect sequences’. Consequently, we have avoided the usage of the
expressions ‘(almost) perfect sequence’ and ‘d-perfect sequence’ in this article.
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