Canad. Math. Bull. Vol. **57** (2), 2014 pp. 303–309 http://dx.doi.org/10.4153/CMB-2012-044-7 © Canadian Mathematical Society 2012

Octonion Algebras over Rings Are Not Determined by their Norms

Philippe Gille

Abstract. Answering a question of H. Petersson, we provide a class of examples of a pair of octonion algebras over a ring having isometric norms.

1 Introduction

If *Q* is a quaternion algebra over a field *k*, we know from Witt that *Q* is determined by its norm [12, §1.7]. This result has been extended over rings by Knus–Ojanguren–Sridharan [7, prop. 4.4], [6, V.4.3.2] and holds over an arbitrary base (§2).

If *C* is an octonion algebra over *k*, we know from van der Blij–Springer that it is determined by its norm form [14, claim 2.3] (see also [12, \S 1.7]); more generally it is true over local rings (Bix, [1, lemma 1.1]). In his Lens lecture (May 21–25, 2012), H. Petersson raised the question whether it remains true over arbitrary commutative rings.

The goal of this note is to produce a counterexample to this question, namely an example of two non-isomorphic octonion algebras over some commutative ring R having isometric norms. Our argument is based on the study of fibrations of group schemes and uses topological fibrations, which makes clear why it holds for quaternion algebras and not for octonions.

For the theory of reductive group schemes and related objects (*e.g.*, Lie algebra sheaves, homogeneous spaces, quadratic spaces, etc.) we refer to SGA3 [11] and to the book by Demazure–Gabriel [3]. The sheaves in sets or groups are denoted as \underline{F} and are for the fppf (also called flat) topology over a base scheme S.

2 Quaternion Algebras and Norms

Let *S* be a scheme. By a quaternion¹ algebra over *S*, we mean a rank 4 Azumaya \mathcal{O}_S -algebra \mathcal{Q} . Equivalently, it is an étale *S*-form of the matrix algebra $M_2(\mathcal{O}_S)$, namely the twist of $M_2(\mathcal{O}_S)$ by the PGL₂-torsor $E = \underline{\text{Isom}}_{alg}(M_2(\mathcal{O}_S), \mathcal{Q})$.

By descent, it follows that isomorphism classes of quaternion S-algebras correspond to the étale cohomology set $H^1(S, \text{PGL}_2)$. The reduced norm (resp. trace) Nrd: $\Omega \to \mathcal{O}_S$ (resp. Trd) is the twist by *E* of the determinant map $M_2(\mathcal{O}_S) \to \mathcal{O}_S$ (resp. the trace), it is a quadratic (resp. linear) form over *S*.

Received by the editors October 16, 2012; revised November 15, 2012.

Published electronically December 29, 2012.

AMS subject classification: 14L24, 20G41.

Keywords: Octonion algebras, torsors, descent.

¹Knus' definition requests fewer conditions [6, 1.3.7], so here we deal with "separable quaternion algebras".

Furthermore the canonical involution $X \mapsto \operatorname{tr}(X) - X$ on $M_2(\mathcal{O}_S)$ induces by descent the canonical involution of Ω . The *S*-group scheme $\operatorname{SL}_1(\Omega)$ (resp. $\operatorname{PGL}_2(\Omega)$, $\operatorname{SO}(\Omega, N_{\Omega})$) is the twist by *E* of SL_2/S (resp. PGL_2/S , $\operatorname{SO}(M_2, \det)/S$). The point is that the semisimple group scheme $\operatorname{SO}(\Omega, N_{\Omega})$ is of type $A_1 \times A_1$ and its universal cover is $\operatorname{SL}_1(\Omega) \times \operatorname{SL}_1(\Omega)$.

Lemma 2.1 We have an exact sequence of group schemes

$$1 \longrightarrow \mu_2 \longrightarrow SL_1(\mathbb{Q}) \times SL_1(\mathbb{Q}) \xrightarrow{f} SO(\mathbb{Q}, N_{\mathbb{Q}}) \longrightarrow 1$$

where $f(x, y).q = xq y^{-1}$ for every $q \in Q$.

Proof We first prove the case of $S = \text{Spec}(\mathbb{Z})$ and $\Omega = M_2(\mathbb{Z})$. We have $\mu_2 \subset \text{ker}(f)$, and let us show the converse inclusion. Let R be a ring and pick $(x, y) \in \text{ker}(f)(R)$. Such an element satisfies $xAy^{-1} = A$ for each $A \in M_2(R)$. By taking A = y, we see that x = y so that $xAx^{-1} = A$ for each $A \in M_2(R)$. By taking the canonical R-basis of $M_2(R)$, it follows that $x \in \mathbb{G}_m(R)$. Since $x \in \text{SL}_2(R)$, we conclude that $(x, y) \in \mu_2(R)$. Thus $\mu_2 = \text{ker}(f)$.

Since μ_2 is a central subgroup of $SL_2 \times_R SL_2$, we can mod out by μ_2 [11, XXII.4.3] and get a monomorphism $\tilde{f}: (SL_2 \times_R SL_2)/\mu_2 \to SO(M_2, det)$ of semisimple group schemes. According to [11, XVI.1.5.a], it is a closed immersion. On both sides, each \mathbb{Q} -fiber is smooth connected of dimension 6. It follows that $\tilde{f}_{\mathbb{Q}}$ is an isomorphism. Since $SO(M_2, det)$ is flat over \mathbb{Z} , we conclude that \tilde{f} is an isomorphism.

The general case follows again by twisting everything by the PGL₂-torsor *E*.

The adjoint map Ad: $PGL_2 \rightarrow GL(M_2)$ gives rise to the closed S-immersion $PGL_2 \rightarrow O(M_2, \det)$, where $O(M_2, \det)$ stands for the orthogonal group scheme of the nonsingular quadratic form det [3, III.5.2]. It is equipped with the Dickson map D: $O(M_2, \det) \rightarrow \mathbb{Z}/2\mathbb{Z}$ whose kernel is by definition the special linear group $SO(M_2, \det)$.

By twisting by the torsor *E*, it provides a closed *S*-immersion

Ad:
$$PGL_1(Q) \longrightarrow O(Q, Nrd), q \longmapsto Ad(q)$$

where $PGL_1(\Omega)$ stands for the group scheme $GL_1(\Omega)/\mathbb{G}_m$ of projective units. On the other hand, the orthogonal *S*-group $O(\Omega, Nrd)$ acts on

$$SL_1(\mathbb{Q}) = Ker(GL_1(\mathbb{Q})) \longrightarrow \mathbb{G}_m)$$

by the action induced from the standard action of $GL_1(Q)$ on Q.

- **Proposition 2.2** (i) The S-scheme $SL_1(Q)$ is a left homogeneous space (with respect to the flat topology) under the action of SO(Q, Nrd) and a fortiori under the action of O(Q, Nrd).
- (ii) The orbit map

$$u: \operatorname{SO}(\mathbb{Q}, \operatorname{Nrd}) \longrightarrow \operatorname{SL}_1(\mathbb{Q}), \quad g \longmapsto g.1$$

is a split $PGL_1(\Omega)$ *-torsor.*

Proof We put G/S = SO(Q, Nrd), $H/S = PGL_1(Q)$, and $X/S = SL_1(Q)$.

- (i) We have to check the definition [11, IV.6.7], namely to establish the following properties:
 - (a) the map $G \times_S X \to X \times_S X$, $(g, x) \mapsto (x, g. x)$ is an epimorphism of flat sheaves;
 - (b) $f: X \to S$ has sections locally with respect to the flat topology.

The condition (b) is obvious in our case, since f has a global section given by the unit of $X = SL_1(\Omega)$. Condition (a) will follow from the following stronger condition:

(c) X(T) is homogeneous over G(T) for each S-scheme T.

We are given T/S and a couple of quaternions $q_1, q_2 \in X(T)$ of reduced norm one. We put $q = q_2 q_1^{-1} \in X(T)$. The left translation L_q is an element of G(T) that satisfies $L_q.q_1 = q_2$. This shows (c).

(ii) The map $u \circ f: SL_1(\Omega) \times SL_1(\Omega) \to SL_1(\Omega)$ reads as follows: $(u \circ f)(x, y) = xy^{-1}$. Therefore $SL_1(\Omega) \times_S SL_1(\Omega)/SL_1(\Omega) \xrightarrow{\sim} SL_1(\Omega)$, where $SL_1(\Omega)$ acts on $SL_1(\Omega) \times_S SL_1(\Omega)$ by $z.(x, y) = (xz, z^{-1}x)$. After modding out by the diagonal μ_2 of $SL_1(\Omega) \times_S SL_1(\Omega)$, we get an isomorphism of flat sheaves

$$SO(Q, Nrd)/PGL_1(Q) \longrightarrow SL_1(Q),$$

where $PGL_1(Q)$ embeds by *h* in SO(Q, Nrd).

Lemma 2.3 $O(Q, Nrd) = SO(Q, Nrd) \times_S \mathbb{Z}/2\mathbb{Z}$, where $\mathbb{Z}/2\mathbb{Z}$ is the S-subgroup O(Nrd) defined by the canonical involution.

Proof We have to show that the Dickson map D: $O(\Omega, Nrd) \rightarrow \mathbb{Z}/2\mathbb{Z}$ is split by applying 1 to the canonical involution. To check that the Dickson invariant of the canonical involution is 1, we can reason étale locally; that is, we check it for each strict henselization $O_{S,s}^{sh}$, where *s* is a point of *S*. In particular, it enables us to assume that Ω is the split quaternion algebra that is defined over \mathbb{Z} .

We can then deal with $S = \text{Spec}(\mathbb{Z})$ and $\Omega = M_2(\mathbb{Z})$, and it remains to show that $D(\sigma) = 1$, where σ is the canonical involution of $M_2(\mathbb{Z})$. It is enough to check it over \mathbb{Q} , and then the Dickson invariant is nothing but the determinant by means of the identification $(\mathbb{Z}/2\mathbb{Z})_{\mathbb{Q}} \cong \mu_{2,\mathbb{Q}}$ [3, III.5.2.6]. The basis

[1	0]	$\left[-1\right]$	0]	0	1]	0	-1]
0	1,	0	$\begin{bmatrix} 0\\ -1 \end{bmatrix}$,	1	0],	[1	0

of $M_2(\mathbb{Q})$ is a diagonalization basis for σ whose eigenvalues are 1, -1, -1, -1. The determinant of σ is then -1, as desired.

If follows that we have an isomorphism of homogeneous O(Q, Nrd)-spaces

$$O(Q, Nrd)/(PGL_1(Q) \times_S \mathbb{Z}/2\mathbb{Z}) \xrightarrow{\sim} SL_1(Q).$$

Theorem 2.4 Let Ω' be a \mathcal{O}_S -quaternion algebra. Then Ω' is isomorphic to Ω if and only if the quadratic S-form Nrd and Nrd' are isometric.

Proof Since $H^1(S, PGL_1(Q))$ classifies *S*-quaternion algebras and $H^1(S, O(Q, Nrd))$ classifies the isometry classes of nonsingular quadratic forms of dimension 4, it follows that the kernel of the map

$$\operatorname{Ad}_*: H^1(S, \operatorname{PGL}_1(\mathbb{Q})) \longrightarrow H^1(S, \operatorname{O}(\mathbb{Q}, \operatorname{Nrd}))$$

classifies the isomorphism classes of quaternion S-algebras Ω' such that the quadratic S-form Nrd and Nrd' are isometric. By applying [4, III.3.2.2] to the isomorphism

 $O(\mathbb{Q}, \mathrm{Nrd})/(\mathrm{PGL}_1(\mathbb{Q}) \times_S \mathbb{Z}/2\mathbb{Z}) \xrightarrow{\sim} \mathrm{SL}_1(\mathbb{Q}),$

we get an exact sequence of pointed sets

$$O(\mathfrak{Q}, \operatorname{Nrd})(S) \xrightarrow{J} \operatorname{SL}_1(\mathfrak{Q})(S) \longrightarrow H^1(S, \operatorname{PGL}_1(\mathfrak{Q}) \times_S \mathbb{Z}/2\mathbb{Z}) \longrightarrow H^1(S, O(\mathfrak{Q}, \operatorname{Nrd})).$$

By Proposition 2.2, the map f admits a retraction so that the kernel of

$$H^1(S, \mathrm{PGL}_1(\mathbb{Q}) \times_S \mathbb{Z}/2\mathbb{Z}) \longrightarrow H^1(S, \mathrm{O}(\mathbb{Q}, \mathrm{Nrd}))$$

is trivial. A fortiori, the kernel of $H^1(S, PGL_1(\Omega)) \to H^1(S, O(\Omega, Nrd))$ is trivial, as desired.

Remark 2.5 Knus–Ojanguren–Sridharan's proof uses the even Clifford algebra of the norm forms to encode the algebra. Somehow we also use the Clifford algebra by means of the Dickson invariant, which is, in this case, related to the fact that the simply connected cover of $SO(Q, N_Q)$ is $SL_1(Q) \times_S SL_1(Q)$.

3 Octonion Algebras and Norms

Let *R* be a commutative ring (with unit). From [8, §4], a non-associative algebra *C* over *R* is called an octonion *R*-algebra² if it is a finitely generated projective *R*-module of rank 8, contains an identity element 1_C , and admits a norm, *i.e.*, a map $n_C : C \to R$ satisfying the two following conditions:

- (a) n_C is a nonsingular quadratic form;
- (b) $n_C(xy) = n_C(x) n_C(y)$ for all $x, y \in C$.

This notion is stable under base extension and descends under faithfully flat base change of rings.

The basic example of an octonion algebra is the split octonion algebra (*ibid*, 4.2) denoted C_0 and called the algebra of Zorn vector matrices, which is defined over \mathbb{Z} . There is another description of this algebra in [12, §1.8] over fields by the "doubling process". It actually works over \mathbb{Z} ; we take

$$C_0' = M_2(\mathbb{Z}) \oplus M_2(\mathbb{Z})$$

with multiplication law $(x, y).(u.v) = (x u + v \sigma(y), \sigma(x)v + u y)$ (σ is the canonical involution of $M_2(\mathbb{Z})$) and norm $n_{C'_0}(x, y) = \det(x) - \det(y)$. We know that the fppf \mathbb{Z} -group sheaf $\underline{\operatorname{Aut}}(C_0) \cong \underline{\operatorname{Aut}}(C'_0)$ is representable by an affine smooth group \mathbb{Z} -scheme Aut (C_0) [8, 4.10].

 $^{^{2}}$ One can of course globalize this definition, see [10].

Octonion Algebras

Proposition 3.1 The \mathbb{Z} -group scheme Aut (C_0) is the Chevalley group of type G_2 .

Proof Let us first show that $Aut(C_0)$ is a semisimple group scheme of type G_2 that is by definition a smooth affine group scheme whose geometrical fibers are semisimple groups of type G_2 [11, XIX].

The fibers of the affine smooth group \mathbb{Z} -scheme Aut(C_0) are indeed semisimple groups of type G_2 according to [12, theorem 2.3.5]. Hence Aut(C_0) is a semisimple group scheme of type G_2 . By Demazure's unicity theorem [11, cor. 5.5] the Chevalley group of type G_2 is the unique split semisimple group scheme of type G_2 , that is, the unique semisimple group scheme of type G_2 admitting a split torus of rank two. Since PGL₂ × PGL₂ embeds in Aut(C'_0), Aut(C'_0) contains a two dimensional split torus. Thus Aut(C_0) \cong Aut(C'_0) is the Chevalley group of type G_2 .

We come now to the question of whether an octonion algebra is determined by its norm. Let C be an octonion algebra over R. We have natural closed group embeddings of group schemes

$$\operatorname{Aut}(C) \xrightarrow{j} \operatorname{O}(n_C) \subset \operatorname{GL}(C).$$

We get a map in cohomology

$$j_*: H^1(R, \operatorname{Aut}(C)) \longrightarrow H^1(R, \operatorname{O}(n_C)).$$

The left-hand side classifies octonion algebras over R while the right-hand side classifies 8-dimensional nonsingular quadratic R-forms. By descent, we have $j_*([C']) = [n_{C'}]$ for each octonion R-algebra C'. It follows that the kernel of j_* classifies the octonion algebras over R whose norm form is isometric to n_C .

Lemma 3.2 The fppf quotient $O(n_C)/Aut(C)$ is representable by an affine scheme of finite presentation over R.

Proof According to [2, 6.12], the fppf quotient GL(C) / Aut(C) is representable by an affine scheme of finite type over *R*. It is of finite presentation over *R* by the standard limit argument [11, VI_B.10.2]. On the other hand, the fppf sheaf $GL(C)/O(n_C)$ is representable by an affine scheme of finite presentation over *R* [13, lemme 2.26]. Therefore the "kernel" $O(n_C) / Aut(C)$ of the natural map

$$\operatorname{GL}(C)/\operatorname{Aut}(C) \to \operatorname{GL}(C)/\operatorname{O}(n_C)$$

is representable by an affine scheme of finite type.

We denote by A(C) the coordinate ring of the affine scheme $O(n_C)/Aut(C)$.

Theorem 3.3 Assume that R is a nontrivial \mathbb{Q} -ring. Then the Aut(C)-torsor $O(n_C) \rightarrow \operatorname{Spec}(A(C))$ is not trivial, so that ker $(j_{*,A(C)})$ is not trivial.

Remark 3.4 By inspection of the proof, the result holds also for

$$SO(n_C) \longrightarrow SO(n_C) / Aut(C).$$

If $R = \mathbb{C}$, then it provides a counterexample over a connected smooth complex affine variety.

Let us consider first a special case.

Proposition 3.5 Let C/\mathbb{R} be the "compact" Cayley octonion algebra. Then Theorem 3.3 holds is this case.

Proof In this case $G = \operatorname{Aut}(C)/\mathbb{R}$ is the anisotropic real form of G_2 , and we consider its embedding in the "compact" O_8 . We reason by contradiction assuming that the G-torsor $O_8 \to O_8/G$ is split. It follows that there is a G-equivariant isomorphism $O_8 \cong O_8/G \times_{\mathbb{R}} G$ over O_8/G . Hence the map $G \to O_8$ admits a section. Taking the real points, it follows that the map $G(\mathbb{R}) \to O_8(\mathbb{R})$ admits a continuous section, hence the homotopy group $\pi_n(G(\mathbb{R}), \cdot)$ is a direct summand of $\pi_n(O_8(\mathbb{R}), \cdot)$ for all $n \ge 1$.

From the tables [9, p. 970], we have $\pi_6(G(\mathbb{R}), \cdot) \cong \mathbb{Z}/3\mathbb{Z}$ and $\pi_6(O_8(\mathbb{R}), \cdot) = \pi_6(SO_8(\mathbb{R}), \cdot) = 0$, hence a contradiction.

We can proceed to the proof of Theorem 3.3.

Proof We claim that the above counterexample survives when extending the scalars to \mathbb{C} . According to the Cartan decomposition, there are homomeorphisms $G(\mathbb{C}) \cong G(\mathbb{R}) \times \mathbb{R}^m$ and $O_8(\mathbb{C}) \cong O_8(\mathbb{R}) \times \mathbb{R}^n$. Hence $\pi_6(G(\mathbb{C}), \cdot) = \mathbb{Z}/3\mathbb{Z}$ and does not inject in $\pi_6(O_8(\mathbb{C}), \cdot) = 0$.

In other words, Theorem 3.3 holds for the case $R = \text{Spec}(\mathbb{C})$ and $C = C_0$. It holds over $\overline{\mathbb{Q}}$ and over an arbitrary algebraically closed field of characteristic zero.

For the general case, we consider a morphism $R \to F$, where *F* is an algebraically closed field. Since the Aut(*C*)_{*F*}-torsor $O(n_C)_F \to O(n_C)_F / Aut(C)_F$ is not split, it follows that the Aut(*C*)_{*F*}-torsor $O(n_C) \to O(n_C) / Aut(C)$ is not split.

Concluding Remarks (1) The rings occuring in the examples are of dimension 14. The next question is to determine the minimal dimension for the counterexamples. M. Brion has communicated to us a smaller example, say over the complex numbers. Since the action of map G_2 on the complex octonions C preserves 1_C and the octonions of trace 0, the map $G_2 \rightarrow SO_8$ takes value in $SO_7 \subset SO_8$. A fortiori the G_2 -torsor SO₇ \rightarrow SO₇/ G_2 = Spec(B) provides an example of a nontrivial octonion algebra over B having trivial norm. The dimension of B is then 7. Also the homogeneous space SO₇/ G_2 occurs as the complement of a smooth quadric in \mathbb{P}^7 . Let us explain this geometric fact. First the map $G_2 \rightarrow SO_7$ lifts in $G_2 \rightarrow Spin_7$. The spinorial action of Spin₇ on \mathbb{C}^7 has been investigated by Igusa [5, prop. 4]. The Spin₇-orbits in \mathbb{C}^7 are 0, the orbit of a vector of highest weight and a one parameter family of closed orbits with stabilizers G_2 , defined by an equation g(x) = t, where g is an invariant quadratic form. It follows that the induced action of SO₇ on the projective space \mathbb{P}^7 has two orbits, one open SO₇/ G_2 and one closed which is a smooth projective quadric.

(2) For the ring \mathbb{Z} , van der Blij–Springer showed that there are only two octonions algebras and having distinct norm forms [14, §4]. Hence octonion algebras over \mathbb{Z} are determined by their norms. For other rings of integers, it seems to be an open question.

Acknowledgments We thank V. Chernousov and E. Neher for useful discussions. We thank M. Brion for his nice remark (at the end). Finally we thank the referee for his comments.

References

- R. Bix, Isomorphism theorems for octonion planes over local rings. Trans. Amer. Math. Soc. 266(1981), no. 2, 423–439. http://dx.doi.org/10.1090/S0002-9947-1981-0617543-0
- J.-L. Colliot-Thélène and J.-J. Sansuc, Fibrés quadratiques et composantes connexes réelles. Math. Ann. 244(1979), 105–134. http://dx.doi.org/10.1007/BF01420486
- [3] M. Demazure and P. Gabriel, *Groupes algébriques*. North-Holland, Amsterdam, 1970.
- [4] J. Giraud, Cohomologie non-abélienne. Die Grundlehren der mathematischen Wissenschaften, 179, Springer-Verlag, Berlin-New York, 1971.
- J.-I. Igusa, A classification of spinors up to dimension twelve. Amer. J. Math. 92(1970), 997–1028. http://dx.doi.org/10.2307/2373406
- [6] M.-A. Knus, Quadratic and hermitian forms over rings. Grundlehren der mathematischen Wissenschaften, 294, Springer-Verlag, Berlin, 1991.
- [7] M.-A. Knus, M. Ojanguren, and R. Sridharan, Quadratic forms and Azumaya algebras. J. Reine Angew. Math. 303/304(1978), 231–248.
- [8] O. Loos, H. P Petersson, and M. L. Racine, *Inner derivations of alternative algebras over commutative rings*. Algebra Number Theory 2(2008), no. 8, 927–968. http://dx.doi.org/10.2140/ant.2008.2.927
- M. Mimura, *Homotopy theory of Lie groups*. In: Handbook of algebraic topology, North-Holland, Amsterdam, 1995, pp. 951–991.
- [10] H. P. Petersson, Composition algebras over algebraic curves of genus zero. Trans. Amer. Math. Soc. 337(1993), no. 1, 473–493. http://dx.doi.org/10.1090/S0002-9947-1993-1108613-X
- Séminaire de Géométrie algébrique de l'I.H.E.S., 1963-1964, schémas en groupes. dirigé par M. Demazure et A. Grothendieck, Lecture Notes in Mathematics, 151–153. Springer-Verlag, Berlin, 1970.
- [12] T. A. Springer and F. D. Veldkamp, Octonions, Jordan algebras and exceptional groups. Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2000.
- [13] A. Steinmetz-Zikesch, Algèbres de Lie de dimension infinie et théorie de la descente. Mém. Soc. Math. Fr., to appear.
- [14] F. van der Blij and T. A. Springer, *The arithmetics of octaves and of the group* G_2 . Nederl. Akad. Wetensch. Proc. Ser. A 62 = Indag. Math. **21**(1959), 406–418.

UMR 8552 du CNRS, DMA, Ecole Normale Supérieure, F-75005 Paris, France e-mail: Philippe.Gille@ens.fr