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ABSTRACT

We reconsider the problem of producing fair and accurate tariffs based on
aggregated insurance data giving numbers of claims and total costs for the
claims. J0rgensen and de Souza (Scand Actuarial J., 1994) assumed Poisson
arrival of claims and gamma distributed costs for individual claims. Jorgensen
and de Souza (1994) directly modelled the risk or expected cost of claims
per insured unit, n say. They observed that the dependence of the likelihood
function on ju is as for a linear exponential family, so that modelling similar
to that of generalized linear models is possible. In this paper we observe
that, when modelling the cost of insurance claims, it is generally necessary to
model the dispersion of the costs as well as their mean. In order to model the
dispersion we use the framework of double generalized linear models. Model-
ling the dispersion increases the precision of the estimated tariffs. The use of
double generalized linear models also allows us to handle the case where only
the total cost of claims and not the number of claims has been recorded.
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1. INTRODUCTION

We reconsider the problem considered by Jargensen and de Souza (1994),
namely that of producing fair and accurate tariffs based on aggregated insur-
ance data giving numbers of claims and total costs for the claims. Jorgensen
and de Souza (1994) assumed Poisson arrival of claims and gamma distributed
costs for individual claims. These assumptions imply that the total cost of
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claims in each category over a given time period follows a Tweedie compound
Poisson distribution. Jorgensen and de Souza (1994) directly modelled their
parameter of interest, namely the risk or expected cost of claims per insured
unit, fi say. They observed that the dependence of the likelihood function
on fi is as for a linear exponential family, so that modelling similar to that of
generalized linear models is possible.

In this paper we observe that, when modelling the cost of insurance
claims, it is generally necessary to model the dispersion of the costs as well as
their mean. In order to model the dispersion we use the framework of double
generalized linear models developed by Nelder and Pregibon (1987), Smyth
(1989) and Smyth and Verbyla (1999). Modelling the dispersion increases the
precision of the estimated tariffs. The use of double generalized linear models
also allows us to handle the case where only the total cost of claims and not
the number of claims has been recorded.

The method used by Jargensen and de Souza (1994) implicitly assumes
that explanatory variables affect the expected cost of claims fi by simultane-
ously increasing or decreasing both the frequency of claims and the average
claim size. In practice however, some explanatory factors will have a greater
impact on the frequency of claims than on their size, while other variables may
impact more on the size of claims. It is also possible for certain factors, such
as a no-claims bonus, to affect the frequency of claims and the claim size in
opposite directions. This does not invalidate the method of J0rgensen and de
Souza (1994), which continues to provide consistent estimators of the risk.
It does mean though that insurance claims data are likely to display non-
constant dispersion, so that it is necessary to model the dispersion as well as
the mean in order to obtain efficient estimation of ju. We add that refinement
to the method in this paper.

Double generalized linear models allow the simultaneous modelling of
both the mean and the dispersion in generalized linear models. Estimation of
the dispersion is affected by a second generalized linear model, the dispersion
submodel, in which the responses are the unit deviances from the original
model. The unit deviances are approximately <pxx\, where tpt is the dispersion
parameter, so that the dispersion submodel is a gamma generalized linear
model with its own dispersion parameter, which is 2. When modelling insurance
data with counts of claims as well as total costs, we use the same double gen-
eralized linear model framework, but modify the definition of the response
and the weights in the dispersion submodel. When only the total claim costs
are observed and not the claim counts, the definitions of the response and
weights in the dispersion submodel revert to their customary values.

Excellent recent reviews of generalized linear models and their actuarial
applications are given by Renshaw (1994), Haberman and Renshaw (1998),
Millenhall (1999) and Murphy, Brockman and Lee (2000). Of these, Millenhall
(1999) gives most information on the compound Poisson models used in this
application. Mathematical details on the compound Poisson distributions them-
selves are given by Jorgensen (1997) and by Rolski, Schmidli, Schmidt and
Teugels (1999). McCullagh and Nelder (1989) and Dobson (2001) give thorough
general introductions to generalized linear models and the first of these books

https://doi.org/10.2143/AST.32.1.1020 Published online by Cambridge University Press

https://doi.org/10.2143/AST.32.1.1020


TWEEDIE'S COMPOUND POISSON MODEL 145

includes in Sections 8.4.1 and 12.8.3 the earliest example of non-normal gen-
eralized linear modelling of insurance claims.

In normal regression and multivariate modelling it is well known that there
are advantages to using residual maximum likelihood (REML) for estimating
the variances rather than maximum likelihood estimation. The idea of REML
is to adjust the variance estimators to take account of the fact that the means
were estimated and are therefore closer to the data than the true means can be
expected to be. REML produces more nearly unbiased estimators for the vari-
ances, and can produce consistent estimators of the variances when the num-
ber of parameters affecting the mean grows with the sample size, a situation
in which maximum likelihood estimation fails. Lee and Nelder (1998), Smyth
and Verbyla (1999) and Smyth, Huele and Verbyla (2001) study in some detail
the problem of approximate REML for double generalized linear models, where
the interest is to modify estimation of the dispersion submodel for estimation
of the means. In this paper we extend the REML method of Smyth, Huele
and Verbyla (2001) to the insurance claims context.

In the next section we review the Tweedie compound Poisson model.
Section 3 reviews double generalized linear models and describes the case when
the claim counts are not observed. Section 4 considers the joint likelihood
using the counts and the costs. In Section 5 we estimate tariffs from the Swedish
third party automobile portfolio of 1977.

2. THE COMPOUND-POISSON MODEL

Let Nj be the number of claims observed in the rth classification category and
Z, be the total claim size for that category. Suppose that the number of units
at risk (typically measured in policy years) is wh and write Yt = Z,/w, for the
observed claim per unit at risk. We suppose that N( is Poisson distributed with
mean X-wh and that the size of each claim is gamma distributed with mean T,
and shape parameter a. It follows that Nt and Yt are zero with probability e~x'Wl and
that Yj is otherwise continuous and positive. Individual claims are assumed to
arrive independently so that the conditional distribution of Y, given Nt is also
gamma distributed with mean A^T, I w, whenever Nt is positive. We suppose that
independent observations («,-, y,) are available for categories i = 1,..., m.

Jorgensen and de Souza (1994) observed that the parameter of interest from
the point of view of setting tariffs is //,• = E{Yt) - A,-T(-. From Jorgensen (1987,
1997) it is known that the distribution of Yt forms a linear exponential family
as fj.i varies, and that var(7,) = q>tfif'lwt where p = (a + 2) / (a + 1) and (pt is
the so-called dispersion parameter. The positivity of a implies that 1 < p < 2.
The joint density of Nt and Yt can usefully be parametrized in terms of //,-, <pt
and p, which describe the mean and variance of the claim per unit risk. The
variance parameters (pt and p are statistically orthogonal to fih meaning that
the off-diagonal elements of the Fisher information matrix are zero. This
parametrization has the advantage, over the alternative parametrization in
terms of Xh T, and a, that it focuses attention of the parameter of interest and
two other parameters which are orthogonal to it.
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The variance of Y, can be obtained directly as EN. var (Y, \Nt)+varw E (Y, |
A,T,2/(aw,)+A,Ti

2/w,= (l/a + l)/l/Ti
2/H',-. Equating this to the alternative expression

%n\' lwt for the variance gives the dispersion parameter in terms of X and T as

The exponent 1 -p for Xt here is negative, so it can be seen that any factor which
increases the frequency of claims Xt without affecting their average size will
decrease the dispersion <pt while increasing the mean \ix. On the other hand the
exponent 2 -p for T, is positive, so any factor which increases the average claim
size T, without increasing their frequency will increase both the mean and the
dispersion. Any factor which affects the mean but not the dispersion must affect
Xt and T, in such a way that Xi~

pxi ~P remains constant.
We therefore assume a model which allows both fit and q>t to very depend-

ing on the values of covariates. As in generalized linear models, we assume a
link-linear model for the mean cost

g<Mi) = *JP- (1)

Here g is a known monotonic link function, x, is a vector of covariates, and /?
is a vector of regression coefficients. As in double generalized linear models,
we simultaneously assume another link-linear model

gd(<Pi)=zJy (2)

for the dispersion, where z, is a vector of covariates thought to affect the dis-
persion and y is another vector of regression parameters to be estimated.

In many cases it will be convenient to take both g and gd to be logarithmic,
in which case (1) and (2) imply log-linear models also for the expected claim
frequency Xt and for the expected claim size T,. The model we describe is then
equivalent to separate log-linear modelling of the claim frequency and the
claim size, with the added-value that complete information is used for all
inferences and the results are automatically collated for the cost per unit risk
which is of direct interest.

In all of the following we assume that a, and hence also p, does not vary
between cases.

3. CLAIM COST ONLY IS OBSERVED

3.1. Maximum Likelihood

Consider now the case in which only the total cost of claims in each category
and not the actual number of claims has been recorded, i.e., we observe w,
and Y, =yh i= 1,..., m, but not Nt. The amount of information available is
rather lower than when iV,- is observed as well but, as J0rgensen and de Souza
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(1994) observed, the information in the frequencies is directed mainly at the
(pt and p, and is therefore of second order regarding the estimation of pLt and
the tariffs. In this case we have a double generalized linear model (Smyth,
1989; Smyth and Verbyla, 1999) in which the response, Y, follows a Tweedie
compound Poisson distribution. Approximate maximum likelihood estimates
of the mean coefficients /? and the dispersion coefficients y can be obtained by
alternating between two generalized linear models. With y and p fixed, /? can
be estimated from a generalized linear model with response yh mean fi(, vari-
ance function V(jij) = fif, link function g, linear predictor xj ft, weights wt I (pt

and dispersion parameter 1. Let dt be the unit deviances from this generalized
linear model. With /? and p fixed, y can be estimated from a generalized linear
model with the dt as responses.

The saddlepoint approximation ensures that the dt are approximately dis-
tributed as ftx* for (pt reasonably small (Nelder and Pregibon, 1987; Jorgen-
sen, 1997; Smyth and Verbyla, 1999). The dt therefore follow approximately a
gamma generalized linear model, with mean <pt, variance function Vd ^pi)=<pi,
link function gd, linear predictor zjy and dispersion parameter 2.

The Fisher scoring equations for /? and y are as follows. The Fisher scoring
update equation for /? is

pk+l=(XT WX)'X XTWz (3)

where W is the diagonal matrix of working weights

with variance function V(ji) = jup, z is the working vector with components

and all terms on the right-hand-side of (3) are evaluated at the previous iterate
ffc (McCullagh and Nelder, 1989, Section 2.5). Standard errors for /? are obtained
from the inverse of the Fisher information matrix

The unit deviances for the generalized linear model can be defined as

dt = 2% {log fY (y;.; y(, <pt lwt ,p) - l o g / r (yt; fit, <pt /wi ,p)},

where fY(y', H, <p, p) is the marginal density function of the Yh which in our case
gives

dt- 2wt yt —p 2=p~ •
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Note that dt does not depend on <pt. The approximate Fisher scoring iteration
for y is

yk+l=(ZTWdZ)'lZTWdzd (4)

where Wd is the diagonal matrix of working weights

1 1

with variance function Vd (<p) = <p2,zd is the working vector with components

and all terms on the right-hand-side of (4) are evaluated at the previous iterate
/" (Smyth, 1989). Standard errors for y are obtained from the inverse of the
Fisher information matrix

3y=ZTWdZ

Since /? and y are orthogonal, alternating between (3) and (4) results in an effi-
cient algorithm with typically rapid convergence (Smyth, 1996). The iteration
can be initiated at fit = yt and q>,,= 1. Score tests and estimated standard errors
from each generalized linear model are correct for the combined model (Smyth,
1989). Finally, estimation of p can be obtained by maximizing the saddlepoint
profile likelihood for/? (Nelder and Pregibon, 1987; Smyth and Verbyla, 1999).
We have not adjusted the standard errors for y for estimation of p, although
this could be done as in Jergensen and de Souza (1994). The standard errors
for /?, which are of most interest, do not require such adjustment as /? is orthog-
onal to p.

The accuracy of the saddlepoint approximation for the density fr(y; JLI, <p,p)
has been discussed by Smyth and Verbyla (1999) and by Dunn (2001). In the
context of the likelihood calculations in this Section, the saddlepoint approxi-
mation is most accurate when the number of claims per risk category is large
or when the estimated variability 0,/w, is small. In particular, the approxi-
mation is likely to be satisfactory when the proportion of categories with zero
claims is small. When there are many categories with zero claims, the ft will
tend to be overestimated. However this will have only a secondary effect on the
estimated values for /z, and corresponding risk factors.

Use of the saddle-point approximation for estimation of y and p is essen-
tially equivalent to the extended quasi-likelihood (EQL) of Nelder and Pregi-
bon (1987) and Nelder and Lee (1992). The EQL approach emphasises the fact
that the estimators depend only on second moment assumptions about the
distribution of the Yt. The properties of the estimators therefore are not highly
dependent in the compound Poisson distribution assumptions about the Yh
as long as the mean and dispersion are correctly specified.
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3.2. Approximate REML

It is well known in linear regression that the maximum likelihood variance
estimators are biased downwards when the number of parameters used to
estimate the fitted values is large compared with the sample size. The same
principle applies to double generalized linear models. The maximum likelihood
estimators fa are biased downwards and the estimated variances fafif/wi are
too small by an average factor of about klm where k is the dimension of /?
and m is the sample size. In normal linear models, restricted or residual maxi-
mum likelihood (REML) is usually used to estimate the variances, and this
produces estimators which are approximately and sometimes exactly unbiased.

Let the ht be the diagonal elements of the hat matrix

Wm X(XT WX)'1 XTWm,

often called the leverages for the generalized linear model for the yt. Approxi-
mately unbiased estimators of the <pt may be obtained by modifying the scoring
update for y as follows. The leverage adjusted scoring update is

where Wd is the diagonal matrix

and

See Lee and Nelder (1998) and Smyth, Huele and Verbyla (2001) for a dis-
cussion of this leverage adjustment. The appearance of the factor 1 - ht in the
information in a reflection of the fact that an observation with leverage ht = 1
provides no information about q>t. The scoring iteration (5) approximately
maximizes with respect to y the penalized profile log-likelihood

(6)

where ll(y;fi,y,p) is the ordinary log-likelihood function, fiy is the maximum
likelihood estimator of ft for given values of y and p, and W is evaluated at
P = Pr This penalized log-likelihood reduces to the REML likelihood in the
normal linear case and can be more generally justified as an approximate con-
ditional log-likelihood (Cox and Reid, 1987). Approximately unbiased estima-
tion of p can be obtained by maximizing (6) with respect to both y and/?.
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4. CLAIM COST AND FREQUENCY ARE BOTH OBSERVED

4.1. The Joint Likelihood Function

Consider Nt and Yt for a particular classification category, and for ease of
notation drop the subscript i for most of the remainder of this section. The joint
probability density function of N and Y is given by J0rgensen and de Souza
(1994, equation 11). It can be written as

with

and
\-p 2-p

The log-likelihood function for the unknown parameters /?, y and p is
m

t (n, y; /?, y,/0 = 2 log f(nt, yt; m, % / w, ,p).
i=i

It can be seen that j^ is sufficient for fi, and that the density follows a linear
exponential family as n varies. We have

d\ogf(n,y;ti,(p/w,p) w dt(y,n,p) w y-fi
dfi <P d/u <P MP • (l)

Atn = y = 0 the distribution has probability mass given by

so (7) holds over the whole range of the distribution. It follows, by differenti-
ating (7) again with respect to q> or p, that the cross derivatives with respect to
H and either cp or p have expectation zero. In other words, n is orthogonal to
both <p and p.

Now consider the estimation of <p. Although the joint density is not a linear
exponential family, we can fit the likelihood equations into a generalized linear
model structure by creating suitable pseudo working responses and working
weights. This will allow us to make use of the double generalized linear model
framework in computations and in data analysis. We have

d\ogf{n,y;n,(p/w,p) _ n w

5? -W^-f^P)
and
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Now

and

d2\ogf(n,y,{i,<p/w,p) = n \ 2w
 t(y >

d(p2 (p-l)tp (p3

,,2~P

<P 2-p

so the Fisher information for <p from a single («,-, >>,•) pair is

92 l o g / ] = wfi2-"

dcp2 ) (2-p)(p-l)<p3'

Define dispersion-prior weights to be

Then

{2-p)(p-\)(p

a2 log/

with Vd(<p) = <p2. The choice of 2<p2 in the denominator is in order to match
the dispersion model in Section 2. In insurance applications we will almost
always have wd > 1, in which case we interpret (wd-1)1 {2Vd(<p)} as the extra
information about (p arising from observation of the number of claims nt. If
wd<\, then the saddlepoint approximation which underlies the computations
in Section 3.1 is poor, and the true information about <pt arising from yt is less
than that indicated in Section 3.1. Define dispersion-responses to be

We can now write the first derivative of the log-density in the form

d\ogf(n,y;n,<p/w,P) wd(d-<p)
d<p 2Vd{<p) •

The above definitions for wd and d are somewhat artificial, but have the effect
of putting the likelihood calculations into the form of a double generalized
linear model. The components of the likelihood score vector d6 ld<p can now
be written as
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and the Fisher information matrix for the (pt is

3_ = die

4.2. Maximum Likelihood

Since /i is orthogonal to (p and p, it follows that P is orthogonal to y and p. It is
sensible therefore to consider estimation of the parameters separately. For y
and p fixed, the yt are sufficient for /? and estimation of /? can proceed exactly
as in Section 2. The estimating equations and information matrix for /? are
exactly as when the n, are not observed.

Now consider the estimation of y for fixed ft and p. Since

-il

T

where Z is the design matrix with rows z( , the information matrix for y is
T

j . o(p _ o<p

y~ dy * dy ~~
where

This is the same weight matrix that we would obtain from a generalized linear
model with link function gd, variance function Vd(<p,) - f) and prior weights wdi.
The score vector for y is

7

dy~ dy d<p~^
with rdi - {dgd(q>) Id<p}{di-(pl). The scoring iteration for y can be written in the
standard generalized linear model form

k+i
7 = (ZTWdZ)~1ZTWdzd

where zdi= {dgd(<Pi)I'd<p}(dt-(p,) + gd{(p?) is the dispersion-working vector. In
this equation, all terms on the right hand size are evaluated at the current
working estimate yk and yk+x is the updated estimate. Note that wdi and <af, are
as defined in Section 4.1.

4.3. Approximate REML

When the «, are observed there is more information available for the estimation
of y and p, and correspondingly less need to adjust the estimation of y for
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estimation of /?. The adjustment may still be useful however and is relatively
straightforward. Since the information matrix for /? is unchanged by obser-
vation of «,-, we may use the same adjustment to the profile likelihood as in
Section 3.2. Therefore we need to adjust the score vector for y by the same
quantity as in Section 3.2. We adjust the working weight matrix to

where wdj - ht | is the maximum of wdj - ht and zero, and replace dt with

The adjusted scoring iteration for g is then

w i t h zdi = {dgd(<p,) I d<p}(d'i - ?>,•) + gd(tp,).

5. SWEDISH THIRD PARTY MOTOR INSURANCE

We consider the Third Party Motor Insurance data for Sweden for 1977
described by Andrews and Herzberg (1985) and previously analysed by Hallin
and Ingenbleek (1983). The data can be obtained from the URL www.statsci.
org/data/general/motorins.html. We consider only the data for Zone 1, which
consists of the three largest cities, Stockholm, Goteborg and Malmo with sur-
roundings, and exclude Make class 9 which is a miscellaneous category of all
makes other than the first eight. This leaves 5406 claims over the period in
280 categories. Of the 280 categories, 20 had no claims in 1977. The explana-
tory factors are the Make of the car (8 classes), the number of kilometres trav-
elled per year (in 5 ordered categories) and the no claims bonus class. Bonus
represents the number of years since last claim, from 1 up to 7.

Exploratory analyses of claim frequency and claim size show that Bonus
affects frequency and size in different directions, while the other two factors
affect claim frequency more than claim size. We therefore expect to find strong
factor effects on the dispersion as well as on the mean. We fit log-linear mod-
els (with g and gd both equal to the logarithmic function) to both the mean
and the dispersion. When main effects only are fitted all three factors for both
the mean and the dispersion, the maximum likelihood estimator of/? is found
to be 1.725. We find that all three factors have highly significant main effects
on both the mean and the dispersion (Table 1). The dispersion effects are
rather more significant than those for the mean, emphasizing the importance
of including the dispersion model.

There is also definite evidence of interactions in the Swedish claims data.
The likelihood ratio statistics to add interactions are given in Table 2. Although
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TABLE 1

JOINT MODELLING OF FREQUENCY AND SIZE OF CLAIMS:
DIFFERENCES IN TWICE THE LOG-LIKELIHOOD FOR REMOVING FACTORS.

Factor

Bonus
Make
Kilometres

df

6
7
4

JOINT MODELLING
DIFFERENCES IN TWICE THE

Factor

Bonus:
Bonus:
Make:

Make
Kilometres
Kilometres

Deviance to

from Mean

363.9
78.1
24.2

Remove Factor

from Dispersion

1190.9
179.8
45.1

TABLE 2

OF FREQUENCY AND SIZE OF CLAIMS:
LOG-LIKELIHOOD FOR ADDING INTERACTIONS.

df

42
24
28

Deviance

to Mean

63.3
37.1
35.6

to Add Interaction

to Dispersion

78.3
36.0
52.1

the interactions are statistically significant, they are far less so than the main
effects. Since the interactions produce a model which is too complex for prac-
tical use in setting insurance tariffs, we will treat the main effects model as the
final model. Some exploration of the data failed to find any way to explain
the interactions with a small number of degrees of freedom.

The effects for Bonus and Kilometres are monotonic, as would be
expected from their meaning, except that Bonus level 6 and Kilometres level 3
are out of sequence in the mean model. To achieve monotonic effects for the
Bonus and Kilometres, Bonus levels 5 and 6 and Kilometres levels 2 and 3
were combined. This increases minus twice the likelihood by only 1.0 on 4 df.
The resulting model for the mean is given in the first column of Table 3. The
base risk is estimated to be 694.5 Swedish kroner per car-year. This corresponds
to drivers without a no claim bonus, driving Make 1, who drive fewer than
1000 km per year. For the other categories the base risk should be multiplied
by the factors given in the table. Increasing the no-claims bonus decreases the
mean cost per unit risk but increases the dispersion. Increasing kilometres
travelled increases the mean cost but decreases the dispersion. Make 8 is the
most expensive while Make 4 (the Volkswagen bug) is the cheapest. Make 4
also has the smallest dispersion.

To investigate the stability of the results, the mean-dispersion main-effects
model was fitted using four methods: maximum likelihood and approximate
REML using the full data and approximate maximum likelihood and REML
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TABLE 3

BASE RATE RISK AND MULTIPLIERS FOR VARIOUS RISK CATEGORIES.
THE RISKS ARE ESTIMATED USING FIVE DIFFERENT METHODS. DISTANCE IS IN 1000S OF KILOMETRES PER

YEAR. THE BASE RISK SHOULD BE MULTIPLIED BY THE FACTORS GIVEN FOR EACH RISK CATEGORY.

Category

Base rate
Bonus 1
Bonus 2
Bonus 3
Bonus 4
Bonus 5-6
Bonus 7
Make 1
Make 2
Make 3
Make 4
Make 5
Make 6
Make 7
Make 8
Kilometres < 1
Kilometres 1-20
Kilometres 20-25
Kilometres > 25

Cost

ML

694.527
1.000
0.734
0.685
0.500
0.418
0.268
1.000
1.260
0.960
0.536
1.005
0.685
0.768
1.557
1.000
1.282
1.399
1.663

& Frequency

REML

694.536
1.000
0.734
0.685
0.500
0.418
0.268
1.000
1.260
0.960
0.536
1.005
0.685
0.768
1.557
1.000
1.282
1.400
1.663

Cost

ML

697.346
1.000
0.725
0.676
0.516
0.401
0.267
1.000
1.284
1.015
0.540
1.035
0.692
0.808
1.661
1.000
1.274
1.367
1.598

Only

REML

692.904
1.000
0.725
0.676
0.517
0.406
0.267
1.000
1.294
1.031
0.543
1.044
0.690
0.819
1.701
1.000
1.272
1.356
1.603

Constant
Dispersion

691.105
1.000
0.730
0.686
0.518
0.430
0.272
1.000
1.181
0.902
0.547
1.034
0.712
0.765
1.391
1.000
1.268
1.401
1.734

using the total cost of claims only. The value of the variance power/? was esti-
mated by the four methods to be 1.725, 1.735, 1.775 and 1.775 respectively. In
addition, the main-effects model for the mean was also fitted with a constant
dispersion model using approximate REML on the full data. This is the fifth
estimation method and produces the last column of Table 3. It can be seen
from the table that there is very little difference between the maximum likeli-
hood and REML methods using the full data. The difference between the full
data results and those using the total claim costs only is more noticeable but
still not large. The difference between modelling the dispersion and assuming
constant dispersion is of a similar magnitude to that between using the full data
and using the claim costs only.

The method has been implemented as an S-Plus function tariff available
from the URL www.statsci.org/s/tariff.html. In this function the number of
claims in an optional argument. When it is not given, the method defaults to
the double generalized linear model method outlined in Section 3. Software
to fit double generalized linear models and ordinary generalized linear models
with power variance functions was previously described by Smyth and Verbyla
(1999).
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6. CONCLUDING COMMENTS

The approach based on Tweedie's compound Poisson distribution pro-
vides a highly efficient method of analysing insurance claims data. The distri-
butional assumptions can be assessed using standard data analysis techniques
and in any case the relationship with extended quasi-likelihood suggests that
the method will not be very sensitive to moderate deviations from the assumed
Poisson and gamma distributions for the counts and claim sizes.

One side-effect of the efficiency is that more terms are likely to be found
to be significant in the fitted model compared with approximate methods
or methods based on the univariate likelihoods. In particular, it may be that
significant interactions will be found which are too complicated for practical
insurance applications. In most cases the main effects will be dominant, so
that the interactions might be neglected as of lesser importance, as for the
Swedish motor insurance data.
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