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Abstract. It is now common practice to constrain cosmological parameters using supernovae
(SNe) catalogues constructed from several different surveys. Before performing such a joint
analysis, however, one should check that parameter constraints derived from the individual SNe
surveys that make up the catalogue are mutually consistent. We describe a statistically-robust
mutual consistency test, which we calibrate using simulations, and apply it to each pairwise
combination of the surveys making up, respectively, the UNION2 catalogue and the very recent
JLA compilation by Betoule et al. We find no inconsistencies in the latter case, but conclusive
evidence for inconsistency between some survey pairs in the UNION2 catalogue.
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1. Introduction
The original discovery of the accelerated expansion of the universe (Riess et al. 1998;

Perlmutter et al. 1999), prompted many other teams to start searches for high redshift
SNe. This resulted in SNe compilations containing data from different telescopes. Al-
though such analyses result in tighter constraints on parameters, one needs to be careful
when using data from different sources, as the presence of unaccounted systematics in
any of these data-sets can lead to misleading results. Therefore, it is extremely important
to establish whether different data-sets are consistent with each other before performing
a joint analysis using them.

A common method to check for consistency between different data-sets, in general, is
to perform a χ2 analysis and compare the best-fit values χ2

min . It is, however, impossible
to perform such a test in the standard framework of SNe analysis. Moreover tests based
on χ2

min depend only on the best-fit parameters, and are insensitive to the likelihood
over the rest of the parameter space. Thus one must seek an alternative test for testing
consistency between SNIa data-sets. We use a method based on the Bayesian consistency
test described in Marshall et al. (2006).

2. Analysis methodology
Estimation of cosmological parameters from flux measurements is a two-step proce-

dure. First, a SN light-curve fitting algorithms is applied in order to ‘standardise’ these
observations. Second, cosmological parameters are estimated using the output from the
light-curve fitting method. In our analysis, this is followed by the application of a con-
sistency test to the constraints derived both on the cosmological parameters and those
associated with the SNe population.

Light-curve fitting. They are many different algorithm to perform light-curve fitting,
in this paper we employ the SALT-II SN light-curve fitter. When fitting SN light-curves
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Parameter Symbol Prior Simulated value

Matter density Ωm ,0 U(0, 1) 0.3
Absolute magnitude M0 U(−20.3,−18.3) −19.3
Stretch multiplier α U(0, 1) 0.12
Colour multiplier β U(1, 5) 2.6

Table 1. Priors assumed on the parameters, where U (a, b) indicates the uniform distribution
in the range [a, b]. The final column gives the value assumed in generating the simulated data.

with SALT-II, the outputs are the best-fit values m̂∗
B of the apparent rest frame B-

band magnitudes of the SNe at maximum luminosity, the light-curve shape parameter
x̂1 , the colour ĉ in the B-band at maximum luminosity, and the covariance matrix of
the uncertainties in the estimated light-curve parameters Ĉ. Combining these quantities
with the estimated redshift ẑ of the SN, our basic input data for each SN are thus

Di ≡ {ẑi , m̂
∗
B,i , x̂1,i , ĉi} (2.1)

for (i = 1, . . . , NSN). The vector (m̂∗
B,i , x̂1,i , ĉi) for each SN is then assumed to be dis-

tributed as a multivariate Gaussian about their respective true values, with covariance
matrix Ĉi .

Parameter estimation. The output from the light-curve fitting constitutes the data
used to estimate parameters. In this paper we employ the χ2 method, since it is the most
common approach.

In this approach, one defines the χ2 misfit function to be

χ2(C , α, β,M0 , σint) =
N∑

i=1

[μobs
i (α, β,M0) − μ(ẑi ,C )]2

(σz
μ,i)2 + σ2

int + σ2
fit,i(α, β)

, (2.2)

where μ(ẑi ,C ) is the predicted distance modulus. In this expression, the ‘observed’ dis-
tance modulus for the ith SN is

μobs
i = m̂∗

B,i − M0 + αx̂1,i − βĉi , (2.3)

where M0 is the (unknown) B-band absolute magnitude of the SNe, and α, β are (un-
known) nuisance parameters controlling the stretch and colour corrections. The three
dispersion components are: (i) the error σz

μ,i in the distance modulus; (ii) the intrinsic
dispersion σint , which describes the global variation in the SNIa absolute magnitudes;
and (iii) the fitting error σfit,i(α, β).

We also assume that dark energy is in the form of a cosmological constant (w = −1) and
that the universe is spatially-flat; thus we vary only the parameters {Ωm ,0 ,M0 , α, β, σint}.

In keeping with standard practice, we define the ‘likelihood’ to be simply

L(Ωm ,0 ,M0 , α, β, σint) = exp[− 1
2 χ2(Ωm ,0 ,M0 , α, β, σint)] (2.4)

which is clearly not properly normalized. More importantly, this ‘likelihood’ is not (pro-
portional to) the probability Pr(D|Ωm ,0 ,M0 , α, β, σint).

Adopting the initial value σint = 0.1, we use the nested sampling algorithm Multi-

Nest (Feroz and Hobson 2008; Feroz et al. 2009) to sample from the (unnormalised)
‘posterior’ P(Θ, σint) = L(Θ, σint)π(Θ) assuming the separable, uniform priors π(Θ)
listed in Table 1. The value of σint is estimated by adjusting it to obtain χ2

min/Ndof ∼ 1.
Test for mutual consistency between data-sets. The standard approach to analysing

multiple data-sets jointly is simply to assume that they are mutually consistent. We
represent this (null) hypothesis by H0 . It may be the case, however, that the data-sets
are inconsistent with one another, resulting in each one favouring a different region of the
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Figure 1. Left panel: Results of the consistency test applied to surveys pairs in the UNION2
compilation. The blue histograms show the distribution of R values obtained from 104 consistent
simulations of each pair, and the red vertical line indicates the R value obtained from the real
data. The corresponding one-sided p-value is given above each panel. Right panel: Two-dimen-
sional marginalised constraints on the parameters (α, β) obtained from the individual constituent
surveys contained in the UNION2 catalogue. The red (blue) contours denote the 68 and 95 per
cent confidence regions for the survey in that row (column).

model parameter space. We represent this (alternative) hypothesis by H1 . In this case,
a joint analysis would lead to completely misleading results (see, for example, Appendix
A in Feroz et al. 2008 for a demonstration).

In order to determine which one of these hypotheses is favoured by the data, one can
perform Bayesian model selection between H0 and H1 . Assuming that hypothesis H0
and H1 are equally likely apriori, this can be achieved by calculating the ratio

R =
Pr(D|H0)
Pr(D|H1)

=
Pr(D|H0)∏
i Pr(Di|H1)

. (2.5)

where the probabilities Pr(D|H), called Bayesian evidences or marginal likelihoods.
In adapting this Bayesian test to apply it to the standard χ2 analysis of SNIa data,

one replaces Pr(D|Θ,H) by the ‘likelihood’ L(Θ, σint) given in (2.4) and Pr(Θ|H) by
the prior π(Θ) listed in Table 1. In so doing, however, one cannot interpret the terms in
(2.5) directly as probabilities, and thus the value of the R cannot be compared with the
normal Jeffrey’s scale. Nonetheless, one still expects R values to be higher for consistent
data-sets and lower for inconsistent ones ( March et al. 2011), so R may be used as a test
statistic that is ‘calibrated’ with simulations to perform a standard one-sided frequentist
hypothesis test.

Thus, we construct the distribution of R under the null hypothesis H0 by evaluating it
for the simulations in which the individual surveys are mutually consistent. The R value
obtained by analysing the real data can then be used to calculate the p-value as follows:

p =
N(Rs < Rr)

Ntot
, (2.6)

where Rs and Rr are the R values obtained by analysing simulated and real data-sets
respectively, N(Rs < Rr) is the number of simulations with R values less than that
obtained by analysing the real data and Ntot is the total number of simulations.

3. Data-sets
Real data. In this paper we consider SNe from the UNION2 catalogue (Amanullah

et al. 2010) and the ‘joint light-curve analysis’ (JLA) compilation given in Betoule et al.
(2014). These data-sets consist of SNe observed by different telescopes. Since our aim in
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this paper is to check for consistency between different SNe surveys/data-sets, we divide
these SNe according to the telescope with which they have been observed.

SNANA simulations. In order to calibrate our test statistic R and calculate the resul-
tant p-values we simulate SNe using the publicly available SNANA package† Our null
hypothesis H0 is that different data-sets are consistent with each other. Thus, we sim-
ulate all data-sets with exactly the same parameter values, which are listed in Table 1,
and an intrinsic dispersion σint = 0.106.

4. Results and conclusions
Constraints on Ωm ,0 and M0 . In analysing compilations of SNe data, it is usual to

plot the combined constraints on cosmological parameters obtained from a full joint
analysis. Here we instead calculating the constraints imposed by each constituent survey
in the UNION2 and JLA compilations. The key observation for our purposes is that the
constraints from the constituent surveys are in good agreement, as indicated by the large
degree of overlap of the confidence contours for each pairwise comparison for both the
UNION2 catalogue and the JLA.

Constraints on α and β. We now consider the constraints on the stretch and colour
corrections multipliers α and β, which are not often presented in the analysis of SNe
data. The resulting two-dimensional marginalised constraints on the parameters (α, β)
are shown in right panel Figs 1 for UNION2. One sees that for several pairings the
confidence contours for the two surveys are significantly displaced from one another,
and do not overlap at all in some cases. For the JLA compilation for each pairing the
confidence contours for the two surveys overlap well, indicating mutual consistency, in
sharp contrast to the UNION2 results.

Mutual consistency test between survey pairs. The results of the consistency test for
the UNION2 compilation are shown in left panel of Fig. 1, together with the corre-
sponding p-values. One sees that the p-values obtained agree very closely with the degree
of overlap between the confidence contours plotted in Fig. 1. In particular, we find very
strong evidence, at more than the 99 per cent significance level, for inconsistency between
the survey pairs CfA/SNLS and SNLS/HST.

The same analysis for JLA showes that none of the survey pairs shows evidence for
inconsistency, even at the 90 per cent significance level, which is in agreement with the
good degree of overlap between the confidence contours.

The consistency between the survey pairs in the JLA compilation is in sharp contrast
to inconsistencies present the UNION2 compilation. This difference must result from the
different SNe selection criteria and calibration techniques used in the construction of the
two compilations. The level of inconsistency exhibited by the UNION2 compilation sug-
gests that one must exercise caution when interpreting cosmological constraints derived
from it with the usual joint analysis.
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† The SNANA package: http://sdssdp62.fnal.gov/sdsssn/SNANA-PUBLIC/
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