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Abstract

The presence of a soil seedbank facilitates the persistence of annual weed species in arable fields.
Soil weed seedbank is replenished by many sources, but the largest one is the seeds produced by
uncontrolled late-season weed escapes. The estimation of weed seed production potential from
late-season escapes may allow farmers to make appropriate management decisions to minimize
seedbank replenishment. The objective of this research was to evaluate the feasibility of using
unmanned aerial vehicle–based RGB and multispectral imagery for estimating seed rain poten-
tial in late-season weed escapes in crop fields. Three case studies were used to capture images of
weed escapes before crop harvest: common waterhemp [Amaranthus tuberculatus (Moq.)
Sauer] in soybean [Glycine max (L.) Merr.], Palmer amaranth [Amaranthus palmeri (S.)
Watson] in cotton (Gossypium hirsutum L.), and johnsongrass [Sorghum halepense (L.)
Pers.] in soybean. Randomly selected quadrats with different density gradients of weed escapes
were sampled at the time of crop maturity. High-resolution RGB and multispectral images of
the experimental area were collected using drones immediately before ground sample collec-
tion. Normalized difference vegetation index (NDVI), excess green index (ExG), and canopy
volume estimates derived from canopy height models were used to obtain weed biological mea-
surements (biomass and seed production). Among the indices investigated, NDVI and ExG had
very strong correlations (0.71 to 0.97) with weed biomass. No specific remote sensing variable
was ideal across the three cases examined here, suggesting that a generalized remote sensing
approach may not offer robust estimations and case-specific applications are imperative.
Nonetheless, drone imagery is a powerful tool for estimating seed production from uncon-
trolled weed escapes and assisting with management decision making.

Introduction

The soil weed seedbank allows for the persistence of annual weeds in agricultural fields (Cousens
and Mortimer 1995). For perennial weeds such as johnsongrass [Sorghum halepense (L.) Pers.],
seed is an important propagule that facilitates persistence, dispersal, and range expansion
(Horowitz 1973). The soil seedbank is replenished by many sources, the largest of which comes
from uncontrolled weed escapes present during crop maturation. Preventing viable seed pro-
duction from these escapes is important, particularly for weeds that exhibit high risk for evolving
resistance to herbicides (Bagavathiannan and Norsworthy 2012). However, practitioners largely
overlook the management of late-season weed escapes, because seed rain potential and its con-
tributions to long-term weed persistence are typically underrecognized.

Weeds such as common waterhemp [Amaranthus tuberculatus (Moq.) Sauer], Palmer ama-
ranth [Amaranthus palmeri (S.)Watson], and S. halepense are prolific seed producers. Members
of Amaranthaceae can produce as many as 200,000 to 600,000 seeds per plant when competing
with crops (Keeley et al. 1987; Sellers et al. 2003). Likewise, S. halepense has been reported to
produce up to 30,000 seeds m−2 in heavily infested areas and to grow 60 to 90 m of rhizomes in a
single season (Ghersa et al. 1985; Warwick and Black 1983). Herbicide resistance is a growing
concern in these weed species, and preventing viable seed production from uncontrolled escapes
is an important resistance management best practice (Norsworthy et al. 2012). In this regard, an
ability to rapidly and effectively map weed escapes and estimate seed rain potential in large field
areas may assist managers with appropriate management actions.

Major challenges exist for the estimation of weed seed production in large field areas under
real-world scenarios. Traditional weed evaluation methods that use visual ratings have been
shown to be weakly associated with weed seed production potential (Norsworthy et al.
2018). Mechanistic models have grown in popularity but continue to have low rates of practical
adoption. They often ignore spatial heterogeneity of weed infestations and, as a result, do not
sufficiently account for field distribution patterns and community structure (Bagavathiannan
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et al. 2020; Wilkerson et al. 2002); the patchiness of weed popula-
tions makes estimating seed rain especially difficult (Forcella et al.
1992). As our understanding of complex weed systems increases,
so does the need to incorporate spatial heterogeneity of weed pop-
ulations to inform management approaches (Cardina et al. 1997;
Hughes 1996). Thus, developing a method that can effectively esti-
mate weed seed rain potential across large scales is warranted and is
expected to promote the implementation of seedbank reduction
strategies.

Remote sensing has emerged as an important tool for collecting
high-resolution agricultural data (Maes and Steppe 2019). Cost-
effective platforms such as unmanned aerial vehicles (UAVs)
can be reliably used to obtain high-resolution field data for detailed
analysis (Bhandari et al. 2020; Sapkota et al. 2020; Singh et al. 2020.
Vegetation indices (VIs) and digital surface models (DSM) are two
important methods that have been used commonly for obtaining
information on plants in aerial imagery. Tsouros et al. (2019)
dividedVIs into twomain groups: those derived frommulti/hyper-
spectral sensors and those restricted to information from the vis-
ible light spectrum. Both methods have been used for measuring
various plant metrics (Bannari et al. 1995; de Souza et al. 2015;
Tanriverdi 2006; Wiegand et al. 1991; Zheng et al. 2016) and yield
prediction (Feng et al. 2020; Rembold et al. 2013).

Multispectral VIs that include the near-infrared (NIR) band
provide additional data that RGB-based VIs cannot. Vegetation,
for example, reflects significant amounts of NIR light or electro-
magnetic radiation otherwise undetectable to RGB sensors. We
can take advantage of this phenomenon by applying a simple
manipulation of image channels, creating the normalized differ-
ence vegetation index (NDVI), a multispectral VI that has been
commonly used for characterizing overall plant productivity,
though susceptible to saturation in dense vegetation (Chen et al.
2006; Jung et al. 2021). In characterizing biomass of various cover
crop species using NDVI, Roth and Streit (2018) and Yuan et al.
(2019) found a strong relationship between the two variables
(r2> 0.75 and r2> 0.72, respectively). Likewise, Hassan et al.
(2019) reported high association (r2= 0.83) between NDVI values
and grain yield across 32 wheat cultivars. The high spectral reso-
lution associated with multispectral sensors, however, comes at a
cost; sensors that capture NIR are generally more expensive and
have less spatial resolution. The additional information provided
by the NIR band may improve prediction accuracies, but RGB-
only based VIs may be sufficient in certain cases. For example,
Meyer andNeto (2008) showed that the Excess Green (ExG) index,
a popular RGB-based VI, could be used to separate vegetation of
interest from background areas—soil and straw mulch. Likewise,
Som-ard et al. (2018) used an ExG index calculated from UAV-
based RGB images for fast estimation of sugarcane (Saccharum
officinarum L.) yield with >90% accuracy.

Modern developments in digital photogrammetry have gener-
ated new opportunities for collecting information on plant growth
(Cucchiaro et al. 2020). In particular, DSMs that gather sub-
centimeter elevation points from multiview stereo images, have
become a cost-effective solution to estimate crop height and vol-
ume (de Souza et al. 2017; Gil-Docampo et al. 2020).With accurate
DSMs, a canopy height model (CHM) could be derived for estima-
tion of canopy volume and biomass in digital images (Sadeghi et al.
2016). Bendig et al. (2014) achieved about 80% accuracy in estimat-
ing fresh and dry biomass of 18 barley (Hordeum vulgare L.) culti-
vars using a super–high resolution DSM.

Despite their varied agronomic uses, VIs and DSMs have
rarely been applied for estimating seed production in weeds.

The objective of this research was to evaluate the feasibility of using
UAV-based multispectral imagery for estimating seed rain poten-
tial in late-season weed escapes. Three dominant weed species of
agronomic crops in southeast Texas, A. tuberculatus, A. palmeri,
and S. halepense were chosen as case studies. The relationships
between the remote sensing metrics—namely NDVI, ExG, and
plant volume—and weed seed production were investigated.

Materials and Methods

Location and Experimental Setup

Three different field experiments were carried out at the Texas
A&M AgriLife Research Farm in Burleson County, TX (30.549°
N, 96.437°W) during late summers of 2019 and 2020 (Figure 1).
The assessments targeted A. tuberculatus in soybean [Glycine
max (L.) Merr.] (Experiment 1), A. palmeri in cotton (Gossypium
hirsutum L.) (Experiment 2), and S. halepense in soybean
(Experiment 3). More details of each field experiment are provided
in Table 1.

Image Acquisition

In each experiment, aerial images were collected using the
MicaSense RedEdge-M multispectral sensor (MicaSense, Seattle,
WA) mounted on a DJI Matrice 600 Pro (DJI, Shenzhen, China)
UAV, as well as a high-resolution RGB camera mounted on a DJI
Phantom 4 Pro UAV, approximately 2 to 3 wk before crop harvest
when weeds reached seed maturity. For each flight, radiometric
calibration was performed using calibration panels. Two separate
flights were made on the same day with the two UAV platforms.
The aerial images were acquired by flying in a grid pattern, with
side and end overlaps of 80%. Flights were performed within 2
h of solar noon and on days with little to no cloud cover. The wind
speeds were within the normal range (6 to 10 km h−1) during
image acquisition for all the experiments.

Ground Truth Data

Ground truth data were collected on the same day of image acquis-
ition (after the flights), using multiple 1-m2 quadrats (Table 1)
placed in the experimental area before the flights in a stratified ran-
dom sampling manner to account for different density gradients of
weed species across the field. Each field had good distribution of
the target weed species, and the samples harvested contained only
the target weed. The quadrats were made of 1.27-cm-diameter
white PVC pipes for easy detection in the aerial imagery (see
Figure 1, insets). Quadrats were placed such that at least one crop
rowwas contained within. Crop rows were spaced 76 cm apart, and
the planting densities were 86,000 seeds ha−1 for cotton and
300,000 seeds ha−1 for soybean. In each quadrat, the total number
of the target weed species was counted, ground coverage (%) by the
weed within the quadrat was estimated, mature inflorescences were
collected, and shoot biomass was harvested at the ground level.
Before mature inflorescences were collected, percent seed shatter-
ing (for S. halepense only) was recorded based on visual rating (0%
to 100%), with 0% being no shattering loss and 100% being com-
plete seed loss. Seed shattering for S. halepense was 20% on average
for the 11 collected samples.

Weed samples harvested within each quadrat (i.e., inflores-
cence, shoot) were placed in separate brown bags and dried in
an oven at 60 C for 72 h and then weighed; the sum of the shoot
dry weight plus dry inflorescence weight provided the total biomass
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weight. Allmature inflorescences were threshed and cleaned using the
South Dakota seed blower (Seedburo Equipment Company, Des
Plaines, IL), and remaining debris was separated using a stack of sieves
until seeds were not further separable from plant residue. Seed num-
bers within each sample were estimated based on average 1,000-seed
weight, determined using three aliquots for each sample. The total
seed number was adjusted based on any shattering that had already
occurred.

Image Preprocessing

Both RGB and multispectral images acquired for each experiment
were processed and stitched using the Pix4D software (Pix4Dmapper,
Lausanne, Switzerland) to produce orthomosaic imagery. For multi-
spectral images, radiometric correction was performed using the
calibrated reflection panels and specifying the Camera and Sun
Irradiance option in Pix4D. The DSM and digital terrain model

(DTM) generation were enabled during multispectral image
mosaicking and were used as precursors of the CHM. The structure
from motion algorithm that makes use of a Scale Invariant Feature
Transform feature detector to generate dense point clouds from a
series of overlapping 2D images (Lingua et al. 2009) was used to
produce the DSM and DTM layers in this study. Thus, for each
experiment, four UAV-based remote sensing products were gener-
ated: (1) an RGB orthomosaic, (2) a calibrated multispectral ortho-
mosaic, (3) a multispectral sensor-derived DSM, and (4) a
multispectral DTM. These were used for further processing and
calculation of VIs and the CHM.

Calculation of Remote Sensing Variables

Following the generation of orthomosaics (Figure 2A), several
remote sensing variable layers, including NDVI (Figure 2B) and
ExG, were generated using Equations 1 and 2, respectively. Two

Figure 1. Overview of the three field experiments conducted at the Texas A&M AgriLife research farm, Burleson County, TX. Yellow squares represent locations of the exper-
imental unit setup for each experiment. Insets show the zoomed section of a representative experimental unit (1-m2 quadrat; red boxes).

Table 1. Description of the three field experiments conducted in this study.

Field ID Timing Crop/growth stage Weed/growth stage Study area
Experimental

unitsa

m2

1 September 2019 Soybean/R8 Amaranthus tuberculatus/seed maturity 900 11
2 August 2020 Cotton/boll opening stage Amaranthus palmeri/seed maturity 700 8
3 September 2020 Soybean/R6 Sorghum halepense/seed maturity 900 11

aEach experimental unit represents a 1 m by 1 m quadrat.

Weed Science 655

https://doi.org/10.1017/wsc.2021.39 Published online by Cambridge University Press

https://doi.org/10.1017/wsc.2021.39


different ExG layers were generated using the RGB and multispec-
tral sensor bands, hereafter referred as “RGB-ExG” (Figure 2C)
and “Multi-ExG” (Figure 2D), respectively. Additionally, CHMs
were calculated using DSMs and DTMs, following Equation 3.
The quadrats were located in the orthomosaic imagery, and the
canopy of the target weed species growing within each quadrat
was manually outlined by creating polygon features (Figure 2F)
in ArcGIS Pro (v. 2.6; Esri 2019, www.esri.com). After canopy
delineation, the remote sensing variable layers were clipped to
the canopy boundary, and the clipped layers were then subjected
to trial/error-based thresholding to remove non-target areas. The
non-target areas within the clipped layers included soil back-
ground and crop debris underneath the plant canopy. For
NDVI, a threshold was set at 0.2 for both NIR and NDVI, and
any pixel value lower than the threshold value was eliminated.
For the CHM, the threshold was set at 20 cm. A threshold of
0.1 was used for RGB-ExG, whereas it was set at 0 for Multi-
ExG; ExG thresholds were set by visual inspection, which slightly
differed due to differences in spatial resolution and radiometric
response of the two sensor types. Further, any contour <400
cm2 was also eliminated. During thresholding, the unwanted pixels
within the canopy were assigned null values, while the remaining
pixels retained their original values. Cumulative values of NDVI,
RGB-ExG, Multi-ExG, and canopy volume estimates were then
calculated using Equations 4, 5, and 6, respectively.

NDVI ¼ NIR � Redð Þ
NIR þ Redð Þ [1]

ExG ¼ 2� Green� Red� Blueð Þ
Blueþ Greenþ Blueð Þ [2]

CHM ¼ DSM� DTM [3]

Cumulative NDVI ¼
X

i2Canopy area
NDVIi [4]

Cumulative ExG ¼
X

i2Canopy area
ExGi [5]

Canopy volume ¼
X

i2Canopy area

CHMi � Cell2size [6]

where i indicates the ith pixel in the canopy area.

Correlation Analysis

Because the goal of this study was to investigate the potential of
remote sensing variables in estimating seed production in weed
escapes, the magnitude and direction of the relationships between
the ground truth data (weed seed count) and values estimated
using remote sensing variables were investigated. The Pearson cor-
relation analysis was conducted using the R programming lan-
guage (R Core Team, Vienna, Austria). The correlation
coefficient ranges between −1 and 1, and coefficient values away
from 0 and closer to 1 indicate strong positive (þ) or negative
(−) relationships between the variables.

Results and Discussion

VIs versus Canopy Volume

Canopy volume estimates showed stronger association with seed
production estimates than VIs for two out of the three weed species
studied. Seed production was more closely related to canopy

Figure 2. Steps followed in this study in estimating weed seed production using remote sensing: (A) generation of an orthomosaic; (B–D) creating vegetation indices (VIs): (B)
normalized difference vegetation index (NDVI), (C) RGB-ExG, and (D) Multi-ExG; (E) estimating canopy volume using the canopy height model (CHM); (F) outlining the weed canopy
area; and (G) thresholding VIs and volume estimates. ExG, excess green index.
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volume estimates for A. palmeri and S. halepense (r= 0.87 and
r= 0.90, respectively) (Figure 3B and C), whereas for A. tubercu-
latus, NDVI had the strongest relationship with seed production
(r= 0.81) (Figure 3A; Table 2). Sorghum halepense typically grows
tall with an open canopy and high biomass production; ground
truth biomass was weakly correlated in this species with canopy
volume estimates (r= 0.78) and seed count (r= 0.77). The rela-
tively weak correlation observed here may be attributed to high
overlap among tall plants (Figure 1, inset), which corroborates
the findings of Watanabe et al. (2017), who also had difficulty
measuring the height of grain sorghum [Sorghum bicolor (L.)
Moench] (tall crop), but not barley (short crop). It appears that
canopy volume, which accounts for tiller spread, is a more reliable
predictor (r= 0.9) of seed production in S. halepense than biomass
(r= 0.77), though this relationship needs to be verified across
multiple populations.

Among the two Amaranthus species, A. palmeri showed much
stronger correlation between ground truth biomass and seed count
(r= 0.87), compared with A. tuberculatus (r= 0.77) (Table 2). The
reason for the relatively weaker correlation between canopy vol-
ume/biomass and seed production in A. tuberculatus compared
withA. palmeri is unclear. It is possible that taller seed heads, larger
leaf area, and longer petioles ofA. palmeri compared withA. tuber-
culatus (Horak and Loughin 2000; Sellers et al. 2003) played an
important role here.

With respect to biomass prediction, VIs had stronger correla-
tions than canopy volume estimates for all three weed species. The
best VI, however, differed among the species: Multi-ExG, RGB-
ExG, and NDVI were the best predictors of biomass for A. tuber-
culatus (r= 0.97),A. palmeri (r= 0.96), and S. halepense (r= 0.82),

respectively (Table 2). Overall, VIs were more accurate for estimat-
ing biomass for all three species, whereas canopy volume was more
suitable for estimating seed production in A. palmeri and S. hale-
pense. Nevertheless, VIs were better at predicting seed production
than plant biomass.

Comparison among the VIs

Among the different VIs evaluated, NDVI had the strongest rela-
tionship with seed production inA. tuberculatus and biomass yield
as well as seed production in S. halepense, whereas RGB-ExG was
found to be the most suitable for A. palmeri biomass, and the
Multi-ExG was the most effective for A. tuberculatus biomass as
well as A. palmeri seed count (Table 2). The ExG obtained with
the two sensor types (RGB vs. multispectral) differed in values, par-
tially because the image-processing pipeline within the RGB sensor
involves color transformation and nonlinear encoding (Ramanath
et al. 2005).

Feasibility Assessment

The three case studies presented here show that remote sensing–
based variables can be used as an efficient alternative to manual
estimations of weed seed rain; remote sensing approaches are time-
and cost-effective, especially when applied in large production
fields. Significant time and labor can be reduced with remote sens-
ing approaches, considering the time it takes for traditional meth-
ods in harvesting representative field areas, drying the samples, and
counting seeds. Visual estimations of spatial distributions of weeds
across vast production fields is an additional challenge. For the
remote sensing approach, image collection, preprocessing, and

Figure 3. Steps followed in this study in estimating weed seed production using remote sensing: (A) generation of an orthomosaic; (B-D) creating vegetation indices: (B) NDVI,
(C) RGB-ExG, and (D) Multi-ExG; (E) estimating canopy volume using CHM; (F) outlining the weed canopy area; and (G) thresholding VIs and volume estimates.

Table 2. Correlation coefficient (r) between ground truth data (weed biomass and seed count) and remote sensing variables.a

Amaranthus tuberculatus Amaranthus palmeri Sorghum halepense

Biomass Seed count Biomass Seed count Biomass Seed count

Biomass — þ0.77 — þ0.87 — þ0.77
NDVIb þ0.94 þ0.81 þ0.90 þ0.88 þ0.82 þ0.88
RGB-ExGb þ0.89 þ0.70 þ0.96 þ0.87 þ0.73 þ0.79
Multi-ExGb þ0.97 þ0.70 þ0.93 þ0.89 þ0.71 þ0.80
Canopy volume þ0.86 þ0.51 þ0.83 þ0.91 þ0.78 þ0.90

aAbbreviations: ExG, excess green index; NDVI, normalized difference vegetation index.
bThree vegetation indices were included; NDVI and Multi-ExG were generated using a multispectral sensor, while RGB-ExG was created using an RGB sensor.

Weed Science 657

https://doi.org/10.1017/wsc.2021.39 Published online by Cambridge University Press

https://doi.org/10.1017/wsc.2021.39


analysis could be accomplished within 72 to 96 h for an average
hectare area. However, the actual time and cost incurred can be
influenced by multiple variables.

Among the remote sensing approaches investigated here, multi-
spectral variables were generally more robust compared with RGB
imagery, but RGB sensors are cost-effective and inmany cases may
be sufficient. Though the cost of multispectral sensors has dropped
significantly over the years, it is still about 10 times the average cost
of an RGB sensor. Moreover, consumer-grade UAV platforms that
integrate RGB sensors have become widely accessible and are
much cheaper compared with platforms used with multispectral
sensors. Unlike multispectral sensors, the consumer-grade RGB-
based drones offer ease of use to practitioners. Further, image-
processing workflows have become more standardized with
over-the-counter software packages tailored to widely available
RGB sensors. However, the time required for image analysis does
not significantly differ between the two sensors. Thus, low-cost
RGB-based imagery has the potential to aid researchers, extension
agents, and farmers in determining seed rain potential in uncon-
trolled weed escapes and tailoring management that meets seed-
bank reduction goals.

This study provides novel insights into how remote sensing–
based variables, like VIs and canopy volume, can replace conven-
tional approaches for estimating weed biomass and seed count.
The goal of this study was to determine whether remote sensing
can be an efficient alternative to manual estimations of seed pro-
duction in weed escapes, not to identify the best predictor for each
of the weed species investigated. The three weed species and asso-
ciated crops served as valuable case studies to understand the
potentials and limitations of using simple remote sensing
approaches for weed seed rain estimation. Our results clearly show
that the choice of the best remote sensing approach may vary
across production scenarios, and here we provide select examples
of how and in what cases certain variables performed the best.
Further research is required to shed more light on the best
approach to adopt.

Major limitations exist for using remote sensing–based var-
iables to estimate weed biomass and seed count. In this study,
the female plant canopies were manually identified in situ
and delineated in aerial images using GIS software. This process
is burdensome and difficult to scale up across large areas.
Moreover, both male and female plants typically coexist in
the field and exhibit highly similar morphological characteris-
tics (Keeley et al. 1987). Females have rough inflorescences with
spines located in bracts, whereas males have soft inflorescences
and spineless bracts (Spaunhorst and Johnson 2017). These
subtle differences are difficult to detect using traditional remote
sensing and likely require an advanced machine learning
approach.

A notable machine learning approach is to utilize convolutional
neural networks to detect and segment out just the female seed
head in RGB images. These neural network models have been suc-
cessfully used for various detection and localization tasks, includ-
ing identifying rice (Oryza sativa L.) panicles (Xiong et al. 2017)
and counting grain sorghum panicles (Malambo et al. 2019).
These techniques can be adequately applied to estimate and mea-
sure the seed heads for several weed species, including the target
species in this study. The detection results can be coupled with seed
count regression models to estimate seed count at the desired
scales. While these techniques have great promise, it should be
noted that they are technically complex and require high computa-
tional power.

Overall, this study proves the concept that UAV-based remote
sensing holds great promise for seed rain estimation from uncon-
trolled weed escapes. This information can be used to generate field
maps of seed rain potential, which can be utilized for precision
management with drone-based treatments or harvest weed seed
control tactics. For drone-based applications, estimations of seed
rain potential before seed production can be more useful.
Additional experiments are required to better understand the rel-
ative importance of different remote sensing variables for estimat-
ing seed rain potential for the weed species of interest in a given
geography.
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Chen P-Y, Fedosejevs G, Tiscareño-López M, Arnold JG (2006) Assessment of
MODIS-EVI, MODIS-NDVI and VEGETATION-NDVI composite data
using agricultural measurements: an example at corn fields in western
Mexico. Environ Monit Assess 119:69–82

Cousens R, Mortimer M (1995) Dynamics of Weed Populations. Cambridge:
Cambridge University Press. 331 p

Cucchiaro S, Fallu DJ, Zhang H, Walsh K, Van Oost K, Brown AG, Tarolli P
(2020) Multiplatform-SfM and TLS data fusion for monitoring agricultural
terraces in complex topographic and landcover conditions. Remote Sens
12:1946

Feng A, Zhou J, Vories ED, Sudduth KA, Zhang M (2020) Yield estimation in
cotton using UAV-based multi-sensor imagery. Biosyst Eng 193:101–114

Forcella F, Wilson RG, Renner KA, Dekker J, Harvey RG, Alm DA, Buhler DD,
Cardina J (1992) Weed seedbanks of the U.S. Corn Belt: magnitude, varia-
tion, emergence, and application. Weed Sci 40:636–644

Ghersa CM, Satorre EH, Esso MLV (1985) Seasonal patterns of johnsongrass
seed production in different agricultural systems. Israel J Bot 34:24–30

Gil-Docampo ML, Arza-García M, Ortiz-Sanz J, Martínez-Rodríguez S,
Marcos-Robles JL, Sánchez-Sastre LF (2020) Above-ground biomass estima-
tion of arable crops using UAV-based SfM photogrammetry. Geocarto Int
35:687–699

Hassan MA, Yang M, Rasheed A, Yang G, Reynolds M, Xia X, Xiao Y, He Z
(2019) A rapid monitoring of NDVI across the wheat growth cycle for grain
yield prediction using a multi-spectral UAV platform. Plant Sci 282:95–103

Horak MJ, Loughin TM (2000) Growth analysis of four Amaranthus species.
Weed Sci 48:347–355

Horowitz M (1973) Spatial growth of Sorghum halepense (L.) Pers. Weed Res
13:200–208

Hughes G (1996) Incorporating spatial pattern of harmful organisms into crop
loss models. Crop Prot 15:407–421

658 Kutugata et al: UAV for seed rain estimation

https://doi.org/10.1017/wsc.2021.39 Published online by Cambridge University Press

https://doi.org/10.1017/wsc.2021.39


Jung J, MaedaM, Chang A, Bhandari M, Ashapure A, Landivar-Bowles J (2021)
The potential of remote sensing and artificial intelligence as tools to improve the
resilience of agriculture production systems. Curr Opin Biotechnol 70:15–22

Keeley PE, Carter CH, Thullen RJ (1987) Influence of planting date on growth of
Palmer amaranth (Amaranthus palmeri). Weed Sci 35:199–204

Lingua A, Marenchino D, Nex F (2009) Performance analysis of the SIFT oper-
ator for automatic feature extraction and matching in photogrammetric
applications. Sensors 9:3745–3766

Maes WH, Steppe K (2019) Perspectives for remote sensing with unmanned
aerial vehicles in precision agriculture. Trends Plant Sci 24:152–164

Malambo L, Popescu S, Ku N-W, Rooney W, Zhou T, Moore S (2019) A deep
learning semantic segmentation-based approach for field-level sorghum
panicle counting. Remote Sens 11:2939

Meyer GE, Neto JC (2008) Verification of color vegetation indices for auto-
mated crop imaging applications. Comput Electron Agric 63:282–293

Norsworthy JK, Korres NE, Bagavathiannan MV (2018) Weed seedbank man-
agement: revisiting how herbicides are evaluated. Weed Sci 66:415–417

Norsworthy JK, Ward SM, Shaw DR, Llewellyn RS, Nichols RL, Webster TM,
Bradley KW, Frisvold G, Powles SB, Burgos NR,WittWW, Barrett M (2012)
Reducing the risks of herbicide resistance: best management practices and
recommendations. Weed Sci 60:31–62

Ramanath R, SnyderWE, Yoo Y, DrewMS (2005) Color image processing pipe-
line. IEEE Signal Process Mag 22:34–43

Rembold F, Atzberger C, Savin I, Rojas O (2013) Using low resolution satellite
imagery for yield prediction and yield anomaly detection. Remote Sens
5:1704–1733

Roth L, Streit B (2018) Predicting cover crop biomass by lightweight UAS-based
RGB and NIR photography: an applied photogrammetric approach.
Precision Agric 19:93–114

Sadeghi Y, St-Onge B, Leblon B, SimardM (2016) Canopy height model (CHM)
derived from a TanDEM-X InSAR DSM and an airborne Lidar DTM in
boreal forest. IEEE J Sel Top Appl Earth Obs Remote Sens 9:381–397

Sapkota B, Singh V, Neely C, Rajan N, Bagavathiannan M (2020) Detection of
Italian ryegrass in wheat and prediction of competitive interactions using
remote-sensing and machine-learning techniques. Remote Sens 12:2977

Sellers BA, Smeda RJ, Johnson WG, Kendig JA, Ellersieck MR (2003)
Comparative growth of six Amaranthus species in Missouri. Weed Sci
51:329–333

Singh V, Rana A, Bishop M, Filippi A, Cope D, Rajan N, Bagavathiannan M
(2020) Unmanned aircraft systems for precision weed detection and man-
agement: prospects and challenges. Adv Agron 159:93–134

Som-ard J, HossainMD,Ninsawat S, Veerachitt V (2018) Pre-harvest sugarcane
yield estimation using UAV-based RGB images and ground observation.
Sugar Tech 20:645–657

de Souza CHW, Lamparelli RAC, Rocha JV, Magalhães PSG (2017) Height
estimation of sugarcane using an unmanned aerial system (UAS) based
on structure from motion (SfM) point clouds. Int J Remote Sens
38:2218–2230

de Souza CHW, Mercante E, Johann JA, Lamparelli RAC, Uribe-Opazo MA
(2015) Mapping and discrimination of soya bean and corn crops using
spectro-temporal profiles of vegetation indices. Int J Remote Sens 36:
1809–1824

Spaunhorst DJ, Johnson WG (2017) Variable tolerance among Palmer ama-
ranth (Amaranthus palmeri) biotypes to glyphosate, 2,4-D amine, and pre-
mix formulation of glyphosate plus 2,4-D choline (Enlist Duo®) herbicide.
Weed Sci 65:787–797

Tanriverdi C (2006) A review of remote sensing and vegetation indices in pre-
cision farming. J Sci Eng 9:69–76

Tsouros DC, Bibi S, Sarigiannidis PG (2019) A review on UAV-based applica-
tions for precision agriculture. Information 10:349

Warwick SI, Black LD (1983) The biology of Canadianweeds: 61. Sorghumhale-
pense (L.) PERS. Can J Plant Sci 63:997–1014

Watanabe K, Guo W, Arai K, Takanashi H, Kajiya-Kanegae H, Kobayashi M,
Yano K, Tokunaga T, Fujiwara T, Tsutsumi N, Iwata H (2017) High-
throughput phenotyping of sorghum plant height using an unmanned aerial
vehicle and its application to genomic prediction modeling. Front Plant Sci
8:421

Wiegand CL, Richardson AJ, Escobar DE, Gerbermann AH (1991) Vegetation
indices in crop assessments. Remote Sens Environ 35:105–119

Wilkerson GG,Wiles LJ, Bennett AC (2002)Weed management decision mod-
els: pitfalls, perceptions, and possibilities of the economic threshold
approach. Weed Sci 50:411–424

Xiong X, Duan L, Liu L, Tu H, Yang P, Wu D, Chen G, Xiong L, YangW, Liu Q
(2017) Panicle-SEG: a robust image segmentationmethod for rice panicles in
the field based on deep learning and superpixel optimization. Plant Methods
13:104

Yuan M, Burjel JC, Isermann J, Goeser NJ, Pittelkow CM (2019) Unmanned
aerial vehicle–based assessment of cover crop biomass and nitrogen uptake
variability. J Soil Water Conserv 74:350–359

Zheng Z, Zeng Y, Li S, Huang W (2016) A new burn severity index based on
land surface temperature and enhanced vegetation index. Int J Appl Earth
Obs Geoinf 45:84–94

Weed Science 659

https://doi.org/10.1017/wsc.2021.39 Published online by Cambridge University Press

https://doi.org/10.1017/wsc.2021.39

	Seed rain potential in late-season weed escapes can be estimated using remote sensing
	Introduction
	Materials and Methods
	Location and Experimental Setup
	Image Acquisition
	Ground Truth Data
	Image Preprocessing
	Calculation of Remote Sensing Variables
	Correlation Analysis

	Results and Discussion
	VIs versus Canopy Volume
	Comparison among the VIs
	Feasibility Assessment

	References


