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Abstract. In this paper, we investigate the abstract homomorphisms of the special
linear group SLn(O) over complete discrete valuation rings with finite residue field
into the general linear group GLm(�) over the field of real numbers. We show that for
m < 2n, every such homomorphism factors through a finite index subgroup of SLn(O).
For O with positive characteristic, this result holds for all m ∈ �.
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1. Introduction. Borel and Tits showed in 1973 that in “most” cases, abstract
homomorphisms between algebraic groups are in fact algebraic [4], i.e. any
homomorphism ϕ: G(k) → G′(k′) “almost” arises out from a field-morphism k → k′.

In 1975 Margulis showed that higher rank lattices are superrigid. Employing the
Borel–Harish Chandra theorems, this means that if R and k are a suitably chosen ring
and field respectively then, any abstract homomorphism G(R) → G′(k) again almost
arises out of a ring-morphism R → k.

These results beg the following motivating question:

QUESTION. Let R and R′ be rings and G and G′ be group schemes so that G(R)
and G′(R′) are well defined. When are the homomorphisms G(R) → G′(R′) dictated
by ring-morphisms R → R′?

We purposefully leave G and G′ vaguely defined. The reader may consider algebraic
group schemes, or even the group generated by elementary unipotent matrices over R,
which will be defined shortly. Answering questions along these lines, we have

� [4] Let k be an infinite field, G and G′ be absolutely almost simple algebraic groups
with G simply connected or G′ adjoint, and G generated by k-unipotents. Modulo
the finite centres of G and G′, any abstract homomorphism G(k) → G′(k′) with
Zariski-dense image arises out of a field homomorphism k → k′.
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� [2, 3, 8] Let O be the ring of integers of a number field k and G be higher rank and
defined over k. Let G′(�) be non compact. Then, any Zariski-dense homomorphism
G(O) → G′(�) arises from a ring-morphism O → �.

� [5] Let n � 3. Every homomorphism SLn(�[x]) → GLD� is not injective. This is a
reflection of the fact that �[x] does not admit a unital ring embedding into �.

� [11] Let n � 3. Any semisimple representation SLn(�[x1, . . . , xm]) → SLD� is
virtually the direct sum of tensor products of ring homomorphisms �[x1, . . . , xm] →
�.

� [7] Let � 〈x, y〉 be the free non-commutative ring on x and y. The group
EL3(� 〈x, y〉) generated by elementary unipotents over the ring � 〈x, y〉 does not
have a faithful finite dimensional representation over any field.

� The most recent result is due to Igor Rapinchuk [10]. It applies to the very general
context of higher rank universal Chevalley–Demazure group schemes, describing
their abstract representations into GLD(�), where � is an algebraically closed field.
We state an example which we feel both captures the essence of the result and is
relevant to our current work. Let O be a local principal ideal ring and n � 3. Let
ϕ: SLn(O) → GLD(�) be an abstract homomorphism. If the image is not finite then
there exists a commutative �-algebra B, an embedding ι:SLn(O) → SLn� (induced
from a ring embedding O → B) so that, up to finite index, ϕ factors through ι

composed with a �-algebraic map SLn� → GLD(�). We remark that the general
nature of this theorem makes us believe that, with some additional work, our result
for n � 3 may be deduced from his. On the other hand, our inductive proof holds
in the case of n = 2, and is therefore distinct from Rapinchuk’s.

Let O be a complete discrete valuation ring with finite residue field. The typical
examples of such rings are Zp(the ring of p-adic integers) and Fq[[t]](the ring of formal
power series with coefficients over a finite field). Our main result is the following:

THEOREM 1.1. For every n ∈ � and D < 2n, the image of any abstract homomorphism
ϕ : SLn(O) → GLD(�) is finite. Furthermore, if O has positive characteristic then the
image of ϕ is finite for all D.

REMARK. The proof of Theorem 1.1 is completely elementary. In particular, it
does not rely on Margulis super-rigidity.

The connection between this result and our motivating question is as follows: in
the absence of unital ring-morphisms from O → �, the result means that these abstract
homomorphisms are indeed, up to finite index, dictated by ring-morphisms O → �.
Namely, up to restricting to a finite index subgroup, they arise from the zero map
O → 0 ∈ �. This interpretation is clear in the context of our proof. Our objective is
to show that a sufficient amount of the ring structure can be expressed in terms of the
group structure of SLn.

Fix x ∈ O and i �= j. We denote the elementary unipotent matrix with 1’s on the
diagonal, x in the (i, j)th-entry, and 0’s elsewhere by Ei,j(x) ∈ SLn(O). Consider the
following two equations:

[E1,2(x), E2,3(y)] = E1,3(xy),

E1,3(x) · E1,3(y) = E1,3(x + y).

This shows that if n � 3 both the additive and multiplicative structures of a ring are
embedded in the group structure of SLn. This is not possible for n = 2 but there is still a
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sufficient amount of information that is held about the ring inside the group structure
of SL2, provided the ring has many units. The task is then to pass this information, via
the homomorphism from the source to the target, which is the essence of the proof.

A consequence of our result is that if D < 2n then the D-dimensional real
representations of SLn(O), as an abstract group, are continuous in the local-topology.

2. Algebraic facts. In this section, we give a few algebraic facts that we shall
need for the proof of Theorem 1.1. Recall O is a complete discrete valuation ring and
therefore is a principal ideal domain with a unique maximal ideal. Let π be a fixed
generator of the maximal ideal of O. Being a discrete valuation ring, O has a natural
topology on it and we shall consider this topology on O in the sequel.

LEMMA 2.1. For any O with zero characteristic, an additive subgroup is of finite
index if and only if it contains a subgroup of the form πkO.

Proof. Let A be a finite index subgroup of O. Then A is both open and closed
as a subgroup of O. The ring O is a finite extension of �p and therefore there exist
x1, x2, . . . , xg ∈ O which generate O over �p. By hypothesis O/A finite implies that
there exists an integer m such that for all 1 � i � g the elements mxi, and therefore
�p[mx1, mx2, . . . .mxg], are contained in the kernel of the projection map O → O/A.
But then A closed implies that m�p[x1, . . . , xg] = πval(m)O is contained in A.

�
LEMMA 2.2 (Generalized Hensel’s Lemma). Let f (x) ∈ O[x] be a polynomial. If

there exists a ∈ O such that

f (a) ≡ 0(mod f ′(a)2πO),

then there exists a0 ∈ O satisfying

f (a0) = 0 and a0 ≡ a(mod f ′(a)πO).

If f ′(a) is a nonzero divisor in O, then a0 is unique.

For a proof see [9, Theorem 2.24].

LEMMA 2.3. For any O with zero characteristic, there is a positive integer r and an
element q ∈ O∗ so that q4 = −r.

Proof. It is enough to prove this result for �p as O is a finite extension of �p. For
�p, the proof follows by applying Lemma 2.2 to the following f (x) ∈ �p[x].

f (x) =
{

x4 + 31, if p = 2;
x4 + (p − 1), otherwise.

�
Recall that, for a ring R (not necessarily unital), the elementary unipotent matrices

Eij(x) ∈ Mn(R) for x ∈ R and i �= j are the matrices with 1’s on the diagonal, x in the
(i, j)th-entry, and 0’s elsewhere. We denote by ELn(R) the group generated by the set
of elementary unipotents {Ei,j(x) ∈ Mn(R) : x ∈ R and i �= j}.
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LEMMA 2.4 ([1, Proposition 5.1]).

(1) The group SLn(O) is generated by elementary unipotents for n � 2.
(2) The subgroup ELn(πkO) is of finite index in SLn(O), for n � 2.

COROLLARY 2.5. If ρ : SLn(O) → G is a representation so that for some i �= j the
image ρ(Ei,j(O)) is finite then ρ(SLn(O)) is finite.

Proof. If the image ρ(Ei,j(O)) is finite, then there is some k so that Ei,j(πkO) �
ker(ρ). For any r �= s with 1 � r, s � n, the groups Ei,j(πkO) and Er,s(πkO) are conjugate
in SLn(O) therefore the group Er,s(πkO) is also contained in the kernel of ρ. This
means that ELn(πkO) � ker(ρ) and hence by Lemma 2.4 the kernel has finite index in
SLn(O). �

PROPOSITION 2.6. Every finite index subgroup of SLn(O) has finite abelianization,
i.e. it is strongly almost perfect. Furthermore, if either |O/πO| > 3 or n > 2 then SLn(O)
is perfect.

Proof. Let G � SLn(O) be a finite index subgroup. Then, for each i, j with i �= j the
subgroup G ∩ Ei,j(O) must be of finite index in Ei,j(O) and hence G � ELn(πkO) for
some k. Therefore, it is sufficient to show that ELn(πkO) has finite abelianization.

For n � 3 this follows from the Steinberg relations which in fact shows that both
ELn(πkO) and SLn(O) are perfect.

For the case of n = 2 we further subdivide to consider two cases according to
whether |O/πO| > 3 or |O/πO| � 3.

Assume |O/πO| > 3. Then, there is an ξ ∈ O∗ such that ξ 2 − 1 is invertible.
Indeed, (O/πO)∗ is a cyclic group of order greater than 2, which means that there
is an element of order greater than 2. Let ξ be a lift of this element under the natural
map O → (O/πO). Then ξ 2 − 1 is not in the kernel πO and hence ξ 2 − 1 is invertible.
Then by Lemma 1.6 [1] which states that if there is ξ ∈ O∗ such that ξ 2 − 1 is invertible
then SLn(O) is perfect, we obtain our result.

For general |O/πO| and n = 2, Observe that
(

1 πk

0 1

)(
1 0
πk 1

)
=

(
1 + π2k πk

πk 1

)
.

Therefore, after multiplying by suitable elements of EL2(πkO) we see that for some
x ∈ O the following element belongs to EL2(πkO):

(
1 + π2kx 0

0 (1 + π2kx)−1

)
.

Let q = 1 + π2kx. Then, q2 − 1 = πk0 x′ for some k0 � 2k and x′ ∈ O∗. Therefore,
the commutator subgroup of EL2(πkO) contains

(
q 0
0 q−1

)
,

(
1 t
0 1

)
=

(
1 (q2 − 1)t
0 1

)
, for every t ∈ πkO, (1)

and in particular, contains the subgroup
(

1 πk0+kO

0 1

)
.
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Considering the transpose analogue of the commutator relation (1) we see that the
commutator subgroup of EL2(πkO) contains the finite index subgroup EL2(πk1O) for
k1 = k0 + k. Hence EL2(πkO) has finite abelianization.

�

LEMMA 2.7. If S � GLD(�) is a solvable subgroup then there exists a finite index
subgroup S0 � S such that [S0, S0] is unipotent and is conjugate to an upper triangular
unipotent group via an element of GLD(�).

Proof. Let S0 be the finite index subgroup so that the Zariski closure S
Z
0 (�) is

Zariski-connected. By the Lie–Kolchin theorem [6] S
Z
0 (�) is conjugate into the upper

triangular group and the commutator subgroup [S
Z
0 (�), S

Z
0 (�)] is unipotent. This

means that [S0, S0] � [S
Z
0 (�), S

Z
0 (�)] is unipotent. Since the entries of S are in �, there

is an �-basis which upper-triangulates the unipotent group [S0, S0]. �

For a ring R we will denote by Nn(R), Un(R), Dn(R) � ELn(R) the maximal
upper triangular group, maximal upper triangular unipotent group, and the maximal
diagonal group respectively.

LEMMA 2.8. If N0 is a finite index subgroup of Nn(O) then Un(O) ∩ [N0, N0] has
finite index in Un(O).

Proof. The proof is by induction on n.
For n = 2, let N0 � N2(O) be the finite index subgroup of interest. Observe that,

since N0 ∩ D2(O) is finite index in D2(O), there is an integer k � 0 such that

(
1 + πk 0

0 (1 + πk)−1

)
∈ N0.

Similarly, N0 ∩ E12(O) has finite index in E12(O) and by Lemma 2.1 contains
E12(π rO) for some positive integer r.

Apply the commutation relation (1) with q = 1 + πk and t ∈ π rO and we see that
[N0, N0] ∩ Un(O) contains the finite index subgroup

(
1 πk+rO

0 1

)
.

Now, assume it is true for n and let us show it for n + 1. Consider Nn(O) ↪→
Nn+1(O) by taking the last column of Nn+1(O) to be trivial. Similarly, we have Un(O) ↪→
Un+1(O). Let N0 � Nn+1(O) be the finite index subgroup in question. And let N ′

0 =
N0 ∩ Nn(O).

Consider, [N ′
0, N ′

0] ∩ Un(O). Then, by induction [N ′
0, N ′

0] ∩ Un(O) � Un(πkO) for
some k � 0. Observing that [N0, N0] ∩ Un+1(O) is normal in Un+1(O) the following
commutator relation gives the desired result:

[Ei,n(πkO), En,n+1(O)] = Ei,n+1(πkO).

�

Combining Lemmas 2.7 and 2.8, we obtain the following:
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LEMMA 2.9. Let ϕ : Nn(O) → GLD(�) be a homomorphism. Then, there exists a
normal finite index subgroup N0 of Nn(O) such that U0 = [N0, N0] ∩ Un(O) is of finite
index in Un(O) and so that the image ϕ(U0) is unipotent.

3. Proof of Theorem 1.1.

3.1. Proof in positive characteristic. Let O be a complete discrete valuation ring
of positive characteristic. Let ϕ: SLn(O) → GLD(�) be a homomorphism. We shall
show that the image of ϕ is finite.

With Lemma 2.9 we find a finite index subgroup U0 � U so that ϕ(U0) is unipotent.
The ring O has positive characteristic implies all the elements in U0, and therefore of
ϕ(U0), have finite order. Being a unipotent subgroup of GLD(�) we obtain ϕ(U0) is
finite. By Corollary 2.5 we conclude that the image ϕ(SLn(O)) is finite.

3.2. Proof in characteristic zero. Now onwards we assume that O is a complete
discrete valuation ring of zero characteristic. We use induction for this case. We prove
this for n = 2 first.

Step 1: SL2(O) → GL2(�)
Proof in this case follows from the following proposition combined with

Corollary 2.5.

PROPOSITION 3.1. For any representation ϕ : N2(O) → GL2(�) the image ϕ(U2(O))
is finite.

Proof. With the representation fixed, let U0 � U2(O) be the finite index subgroup
guaranteed by Lemma 2.9 so that ϕ(U0) is unipotent.

If the 1-eigen space of ϕ(U0) is 2-dimensional then the map ϕ factors through U0

and the result follows. Therefore, assume by contradiction that it is 1 dimensional.
Since the image ϕ(U0) has �-entries, the 1-eigen space is defined over � and so, up to
post composing with an inner automorphism of GL2� we may assume that the image
ϕ(U0) is upper triangular unipotent.

Since the image of the centralizer (respectively normalizer) of U0 must centralize
(respectively normalize) the image of U0 we see that the image ϕ(U2(O)) is upper
triangular with ±1 on the diagonal (and respectively the image ϕ(N2(O)) is upper
triangular).

This gives rise to an additive map ψA : O → � and multiplicative maps ψi : O∗ →
�∗ as follows:

ϕ

(
1 x
0 1

)
=

(±1 ψA(x)
0 ±1

)
,

and

ϕ

(
q 0
0 q−1

)
=

(
ψ1(q) ∗

0 ψ2(q)

)
=

(
ψ1(q) 0

0 ψ2(q)

) (
1 ∗
0 1

)
.

Consider the following relation for q2 ∈ O∗, x ∈ O, r ∈ �:
(

q2 0
0 q−2

) (
1 x
0 1

) (
q−2 0
0 q2

)
=

(
1 q4x
0 1

)
.
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Using our definitions of ψi and ψA, after applying ϕ to both sides of the equation
above and observing that

(1 ∗
0 1

)
centralizes the image of U0 we get the following:

(
ψ1(q)2 ∗

0 ψ2(q)−2

) (±1 ψA(x)
0 ±1

) (
ψ1(q)2 ∗

0 ψ2(q)−2

)
=

(±1 ψA(q4x)
0 ±1

)
.

Performing the matrix multiplication, we obtain the following equation, which
holds for every x ∈ O and q ∈ O∗:

ψ1(q)2ψ2(q)2ψA(x) = ψA(q4x). (2)

By Lemma 2.3, we can find q ∈ O∗ so that q4 is a negative integer, say −r. Using
the fact that additive maps between abelian groups are �-equivariant, equation (2)
becomes

(ψ1(q)2ψ2(q)2 + r)ψA(x) = 0.

But the above expression is in � so that ψ1(q)2ψ2(q)2 + r must be positive. Therefore we
must have ψA(x) = 0 for all x ∈ O. This contradicts our assumption that the 1-eigen
space of ϕ(U0) is 1 dimensional. �

Step 2: SL2(O) → GL3(�)

Proof. We begin by giving the proof in case ϕ: SL2(O) → GL3(�) is reducible. We
then show that any representation into GL3(�) must either be reducible or have finite
image.

If ϕ is reducible, then there is an invariant subspace V of dimension one or two. By
extending a basis for V to a basis of �, we may conjugate with an element of GL3(�)
so that ϕ(SL2(O)) is an upper block triangular subgroup of GL3(�). This gives rise to
a map from the image ϕ(SL2(O)) → GL1(�) × GL2(�) with abelian kernel. Applying
the previously established fact that any representation SL2(O) → GL2(�) has finite
image, we see that ϕ(SL2(O)) contains a finite index abelian subgroup. But, as SL2(O)
is strongly almost perfect (Lemma 2.6), we deduce that ϕ(SL2(O)) is finite.

We now show that either ϕ is reducible or has finite image. As before, we apply
Lemma 2.9 to find U0 of finite index in U2(O) so that ϕ(U0) is unipotent.

Let V1 ⊂ �3 be the 1-eigen space of ϕ(U0). Recall that it is N2(O) invariant since
U0 � N. If V1 is a 3-dimensional space then the image of U0 is trivial and hence by
Corollary 2.5, we get that the image of SL2(O) is finite. If V1 is not 3-dimensional, then
either V1 or �3/V1 is two dimensional.

Again, since V1 is N2(O)-invariant, we get two homomorphisms N2(O) → GL(V1)
and N2(O) → GL(�3/V1). By Proposition 3.1, we must have that the image of U2(O)
in each is finite. In particular, by choice of V1 the image of U0 in both GL(V1) and
GL(�3/V1) is trivial.

Therefore, up to post-composing ϕ with the transpose inverse automorphism of
GL3(�) if necessary, we may assume that the 1-eigen space of ϕ(U0) has dimension
two.

Now, since U0 and Ut
0 (the group consisting of transpose matrices of U0) are

conjugate inside SL2(O), the 1-eigen space of the image ϕ(Ut
0) has dimension two as

well. Therefore, the intersection of these two 2-dimensional spaces must be non-trivial
in �3 which means that the image of the group

〈
U0, Ut

0

〉
has a non-trivial 1-eigen space.
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The group
〈
U0, Ut

0

〉
is of finite index in SL2(O). Up to passing to a further finite

index subgroup if necessary, we may assume that it is normal in SL2(O) and hence
the non-trivial 1-eigen space of this finite index normal subgroup is invariant under
SL2(O). This means that ϕ is reducible.

�
Step 3: The general case

Proof. Now onwards, whenever we speak of SLn−1(O) � SLn(O) we mean that we
view SLn−1(O) as a subgroup of SLn(O) embedded in the upper left-hand corner of
SLn(O).

To proceed by induction, we assume that the image of any homomorphism
SLn−1(O) → GL2n−3(�) is finite. By considering SLn−1(O) � SLn(O) and using
Corollary 2.5 we get that SLnO → GLD(�) has finite image for all D < 2n − 3.

We are left to prove that if 2n − 3 < D � 2n − 1 then the image of ϕ : SLn(O) →
GLD(�) is finite. The following argument works for both D = 2n − 2 and D = 2n − 1.
The argument for D = 2n − 1 follows by the induction hypothesis. After proving for
D = 2n − 2, we apply the same argument for D = 2n − 1 and use the result for D =
2n − 2 in this.

As before, let U0 be determined by Lemma 2.9. Let

L = {(lij) ∈ SLn(O) | lii = 1, lij = 0 ∀ i �= j and j �= n},

be the abelian subgroup of SLn(O) consisting of matrices having 1’s on the diagonal
and non-trivial entries only in the last column. It is easily verified that L is normalized
by SLn−1(O) � SLn(O). By intersecting L with U0, we obtain a finite index subgroup
L0 of L whose image is unipotent. By Lemma 2.1, we can pass to a further finite index
subgroup and assume that there exists an integer m such that

L0 = {(lij) ∈ L | lij ∈ πmO ∀ i �= j},

is contained in U0 and is also normalized by SLn−1(O).
The image ϕ(L0) is unipotent, therefore there exists a flag

{0} = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vk = �D, (3)

of susbpaces of �D with the property that V1 is the maximal 1-eigen space for ϕ(L0)
and Vj is the maximal 1-eigen space for the quotient action on �D/Vj−1. Since ϕ(L0)
is normalized by ϕ(SLn−1(O)), the flag in (3) is preserved by ϕ(SLn−1(O)).

If k = 1 then �D is the 1-eigenspace of ϕ(L0), that is to say the image of L0 is
trivial. Therefore the image of E1,n(O) � L is finite and again, Corollary 2.5 shows that
the image of SLn(O) is finite.

We now assume that k > 1. The argument proceeds in two cases depending on
whether 2 � dim(Vj) � D − 2 for some j or not. Assume that 2 � dim(Vj0 ) � D − 2
for some j0. By assumption on D this means that the dimension, and co-dimension of
Vj0 both satisfy the inequality

2 � dim(Vj0 ), D − dim(Vj0 ) < 2(n − 1).

This now allows us to apply the induction hypothesis to the action of ϕ(SLn−1(O))
on both Vj0 and �D/Vj0 and we get that the image of the map from ϕ(SLn−1(O))
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to GL(Vj0 ) × GL(�D/Vj0 ) is finite. Let 	 � SLn−1(O) be the finite index subgroup
with trivial image in GL(Vj0 ) × GL(�D/Vj0 ). Since the kernel of the map stab(Vj0 ) →
GL(Vj0 ) × GL(�D/Vj0 ) is abelian, we see that ϕ(	) is abelian, and hence finite since
SLn−1(O) is strongly almost perfect (Lemma 2.6). In particular, this implies that the
image of E12(O) is finite, which concludes the proof in this case.

Now we are left with the case for which dim(Vj) = 1 or D − 1 for every
j = 1, . . . , k − 1. This means that the flag (3) for ϕ(L0) is {0} ⊂ V1 ⊂ �D, with V1

being either of dimension or co-dimension one. Again, by postcomposing ϕ with
the transpose inverse automorphism of GLD(�) if necessary, we can assume that the
1-eigen space of L0 is D − 1 dimensional.

Consider the n distinct conjugates of L that correspond to the distinct columns
of SLn(O). By taking these conjugates of L0, we generate ELn(πmO). Each of these
column spaces has a D − 1 dimensional 1-eigenspace, let us call these W1, . . . , Wn.
Then, ∩n

i=1Wi is a 1-eigenspace for ϕ(ELn(πmO)). The following shows that since
D � n + 1, the intersection is not trivial:

LEMMA 3.2. Let W1, W2, . . . , Wn be co-dimension one subspaces in a D dimensional
space. Then dim(∩n

i=1Wi) � D − n.

Proof. This result follows by dim(W1 ∪ W2) = dim(W1) + dim(W2) − dim(W1 ∩
W2). �

Let us pass to a finite index subgroup of ELn(πmO) which is normal in SLn(O).
Then V , the 1-eigenspace for the image of this subgroup is at least (D − n)-dimensional,
at most (D − 1)-dimensional and SLn(O)-invariant.

This gives a map ϕ(SLn(O)) → GL(V ) × GL(�D/V ). The dimension and co-
dimension of V are both less than D. We have already established that this means that
the image of SLn(O) in GL(V ) × GL(�D/V ) is finite (notice that for D = 2n − 2, we
have dim(V ) � 2n − 3 and result follows by induction and for D = 2n − 1, dim(V ) �
2n − 2 and result follows from D = 2n − 2). We see that ϕ(SLn(O)) has to contain a
finite index abelian subgroup. But, as SLn(O) is strongly almost perfect, we deduce
that ϕ(SLn(O)) is finite.

�

COROLLARY 3.3. Assume that |O/πO| > 3. The image of any representation
SL2O → GL2� is trivial.

Proof. Theorem 1.1 shows that the image of any representation SL2(O) → GL2(�)
is finite, therefore compact, and hence contained in a conjugate of the maximal compact
subgroup SO2(�). Since SO2(�) is abelian and SL2O is perfect whenever |O/πO| > 3,
we conclude that the image is trivial.

�

ACKNOWLEDGEMENTS. The authors would like to thank Uri Bader for useful comments
on a preliminary version of this work and Igor Erovenko for a useful conversation
regarding the context of this work. They also would like to thank Technion University
for their hospitality as this work was initiated during a workshop hosted there. The first
and second listed authors were partially supported by the European Research Council
(ERC) grant agreement 203418 and the Center for Advanced Studies in Mathematics
at Ben Gurion University respectively.

https://doi.org/10.1017/S001708951500018X Published online by Cambridge University Press

https://doi.org/10.1017/S001708951500018X
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