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Abstract For any finite group G, we impose an algebraic condition, the Gnil-coset condition, and prove
that any finite Oliver group G satisfying the Gnil-coset condition has a smooth action on some sphere
with isolated fixed points at which the tangent G-modules are not isomorphic to each other. Moreover, we
prove that, for any finite non-solvable group G not isomorphic to Aut(A6) or PΣL(2, 27), the Gnil-coset
condition holds if and only if rG � 2, where rG is the number of real conjugacy classes of elements of
G not of prime power order. As a conclusion, the Laitinen Conjecture holds for any finite non-solvable
group not isomorphic to Aut(A6).
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1. The Laitinen Conjecture

Let G be a finite group. A real G-module V is a finite-dimensional real vector space
equipped with a linear action of G, i.e. the action is given by a representation G → GL(V ).

Let U and V be two real G-modules. Following [48], U and V are called Smith equiva-
lent if there exists a smooth action of G on a homotopy sphere Σ with exactly two fixed
points, say ΣG = {x, y}, at which the tangent G-modules are isomorphic to U and V ,
respectively. The tangent G-modules are determined on the tangent spaces Tx(Σ) and
Ty(Σ) at x and y by taking the derivatives at x and y of the diffeomorphisms Σ → Σ,
z �→ gz, for all g ∈ G.

Following [40], U and V are called Laitinen–Smith equivalent if U and V are Smith
equivalent and the action of G on Σ is such that for any element g ∈ G of order 2a for
a � 3, the set Σg = {z ∈ Σ | gz = z} is connected. Here, G is not a cyclic group of order
2a for a � 3.

In 1960, Paul A. Smith posed a question which can be restated as follows.∗

∗ The question is posed in [54], in the footnote on p. 406.
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Problem 1.1 (the Smith Equivalence Problem). Let G be a finite group. Is it true
that any two Smith equivalent (respectively, Laitinen–Smith equivalent) real G-modules
are isomorphic?

Following [24], for a finite group G, we denote by rG the number of real conjugacy
classes (g)± = (g) ∪ (g−1) of elements g ∈ G which are not of prime power order.

In August 1996, Erkki Laitinen posed the following conjecture (see [24, Appendix], in
which the Laitinen–Smith equivalence is called 2-proper Smith equivalence).

Conjecture 1.2 (the Laitinen Conjecture). A finite Oliver group G has two non-
isomorphic Laitinen–Smith equivalent real G-modules if and only if rG � 2.

A finite group G is called a Laitinen group if G is not of prime power order and there
exist two non-isomorphic Laitinen–Smith equivalent real G-modules. So, the Laitinen
Conjecture predicts that a finite Oliver group G is a Laitinen group if and only if rG � 2.

Let Aut(A6) be the group of automorphism of the alternating group A6 on six letters,
and let PΣL(2, 27) be the splitting extension associated with the exact sequence

1 → PSL(2, 27) → PΣL(2, 27) → Aut(F27) → 1

for the projective special linear group PSL(2, 27) and the group Aut(F27) of automor-
phisms of the field F27 of 27 elements. The groups Aut(A6) and PΣL(2, 27) are not
solvable.

In Definition 5.1, for any finite group G, we impose the Gnil-coset condition, which
implies that rG � 2. But, it may be that rG � 2 and G does not satisfy the Gnil-coset
condition. In fact, for G = Aut(A6) or PΣL(2, 27), rG = 2 (see [40, Proposition 3.1]) but
neither Aut(A6) nor PΣL(2, 27) satisfies the Gnil-coset condition (see Lemma 7.6).

Now, we are ready to state our main theorems (Theorems A, B and C).

Theorem A. If a finite Oliver group G satisfies the Gnil-coset condition, then G is a
Laitinen group.

Theorem B. Let G be a finite non-solvable group not isomorphic to Aut(A6) or
PΣL(2, 27). Then G satisfies the Gnil-coset condition if and only if rG � 2.

Theorem C. Let G be a finite non-solvable group. Then G is a Laitinen group if and
only if rG � 2 and G is not isomorphic to Aut(A6).

According to [29], for G = Aut(A6), any two Smith equivalent real G-modules are
isomorphic. Therefore, the Laitinen Conjecture is not true for G = Aut(A6).

By Theorem C, the Laitinen Conjecture holds for any finite non-solvable group that is
not isomorphic to Aut(A6). Theorem C was obtained earlier in the case where G is a finite
perfect group [24, Theorem A] or, more generally, a finite non-solvable gap group [40,
Theorem B3], except for G = PΣL(2, 27), the case covered by [30, Theorem 1.1].∗

The results of [24, Theorem A], [30, Theorem 1.1] and [40, Theorems B1–B3, p. 851]
can be restated in the following way (see Theorems 1.3, 1.4 and 1.5 herein, respectively).

∗ We refer the reader to [35,57,58,62,63] for information about gap groups. We recall that Aut(A6)
is not a gap group, while PΣL(2, 27) is a gap group.
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Theorem 1.3 (Laitinen and Pawa�lowski [24]). A finite perfect group G is a
Laitinen group if and only if rG � 2.

Theorem 1.4 (Pawa�lowski and Solomon [40]). If a finite Oliver group G is of
odd order or has a cyclic quotient of order pq for two distinct odd primes p and q, then
G is a Laitinen group. In particular, any finite abelian (more generally, nilpotent) Oliver
group G is a Laitinen group.

Theorem 1.5 (Pawa�lowski and Solomon [40]; Morimoto [30]). A finite non-
solvable gap group G, which is not isomorphic to PΣL(2, 27), is a Laitinen group if and
only if rG � 2. PΣL(2, 27) is a Laitinen group, and therefore a finite non-solvable gap
group G is a Laitinen group if and only if rG � 2.

By [43, Propositions 5.3–5.6], the following proposition holds.

Proposition 1.6 (Pawa�lowski and Sumi [43]). In every case below, G is a finite
solvable Oliver group such that any two Smith equivalent real G-modules are isomorphic,
and so G is not a Laitinen group.

(i) G = S3 × A4 with rG = 2, in the GAP libraries [16]: G = SG(72, 44).

(ii) G = (Z2
2 × Z3)2 � Z2 with rG = 2, in the GAP libraries [16]: G = SG(288, 1025).

(iii) G = Aff(2, 3) with rG = 2, in the GAP libraries [16]: G = SG(432, 734).

(iv) G = (A4 × A4) � Z2
2 with rG = 3, in the GAP libraries [16]: G = SG(576, 8654).

We refer the reader to [1,2,4,7,8,10–14,18,24,26–28,32,38–40,44–51,56–58] for
more results related to the Smith Equivalence Problem obtained before 2006. For the
results of 2006–2010, see [20,22,29,30,33,34,41–43,59–63].

In § 2, we recall the notions of Smith set Sm(G), primary Smith set PSm(G), and
Laitinen–Smith set LSm(G) of G, and we describe classes of finite groups G where
Sm(G) = 0 for rG � 1, and LSm(G) �= 0 for rG � 2 (Theorems 2.6 and 2.10).

In § 3, for a finite group G and its normal subgroup H, we describe four subgroups
PO(G), PO(G, H), PLO(G), and PLO(G, H) of the real representation ring RO(G), and
we recall their basic properties (Lemmas 3.1, 3.4, 3.6, 3.8 and Corollary 3.9).

In § 4, we define a subgroup PLO(G)gap�0 of RO(G) and a subset PSmc(G) of RO(G) such
that PSmc(G) ⊆ LSm(G) ⊆ PSm(G). Then, we prove the Smith Equivalence Theorem
(Theorem 4.9) asserting that PLO(G)gap�0 ⊆ PSmc(G) for any finite Oliver group G.

In § 5, for H � G, we introduce the H-coset condition (Definition 5.1) and state our
first key algebraic result (Theorem 5.6), which we next use to construct smooth actions
of G on spheres with isolated fixed points at which the tangent G-modules are not
isomorphic to each other (Theorem 5.8). The result is a key ingredient in the proof of
Theorem A.

In § 6, we prove Theorem 5.6. First, for H � G, we define a subgroup PO(G, H)gap�0 of
the group PO(G, H) and we restate Theorem 5.6 by claiming that PO(G, Gnil)gap�0 �= 0
for any finite Oliver group G satisfying the Gnil-coset condition (Theorem 6.1).
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In § 7, we prove our second key algebraic result, asserting that, except for G = Aut(A6)
or PΣL(2, 27), any finite non-solvable group G with rG � 2 satisfies the Gsol-coset con-
dition (Theorem 7.1). The result is a key ingredient in the proof of Theorem B.

In § 8, by using the material of §§ 2–7, we prove Theorems A–C. Theorems A and B
call for the new key algebraic results (Theorems 6.1 and 7.1, respectively), except for
G = Aut(A6) or PΣL(2, 27); Theorem C follows from Theorems A and B.

In Appendix A, we recall the notion of Oliver group and quote results from [23,25,37].
Then, we introduce the notion of the Solomon group and restate some results from
[40,43]. At the end, we ask: is Sm(G) = 0 for any finite non-solvable Solomon group G?

We refer the reader to the books of Bredon [3, Chapters III and VI], tom Dieck
[64, Chapters I and III] and Kawakubo [21, Chapters 3–5] for the basic material on
transformation groups that is needed in this paper.

2. The subsets Sm(G), PSm(G) and LSm(G) of RO(G)

Let G be a finite group. Two real G-modules U and V are called 2-matched if the
characters χU and χV of U and V , respectively, agree on any element of G of order 2a

for a � 0.
By character theory arguments, χU and χV agree on any element of G of order 1, 2 or

4 if U and V are Smith equivalent. Hence, if U and V are Laitinen–Smith equivalent, U

and V are 2-matched. The results of Atiyah and Bott [1, (7.27)] or Milnor [27, (12.11)],
as well as Sanchez [51, (1.11)] and the character theory arguments, yield the following
corollary.

Corollary 2.1 (Atiyah and Bott [1]; Milnor [27]; Sanchez [51]). Let G be a finite
group. Then for any two Smith equivalent (respectively, 2-matched Smith equivalent) real
G-modules U and V , χU (g) = χV (g) for every element g ∈ G of order 1, 2, 4 or pa, where
p is an odd prime (respectively, p is a prime) and a � 1.

Let G be a finite group and let P(G) be the family of subgroups of G of prime power
order. Two real G-modules U and V are called P(G)-matched if for every P ∈ P(G), U

and V are isomorphic as P -modules, i.e. χU (g) = χV (g) for any g ∈ G of prime power
order.

Definition 2.2. For a finite group G, two real G-modules U and V are called primary
Smith equivalent if U and V are Smith equivalent and χU (g) = χV (g) whenever dim Ug =
dim V g = 0 for an element g ∈ G of order 2a for a � 3.

Note that two real G-modules U and V are primary Smith equivalent if and only if U

and V are 2-matched and Smith equivalent, which is equivalent to saying that U and V

are P(G)-matched and Smith equivalent (cf. Corollary 2.1).
The Smith set Sm(G), the primary Smith set PSm(G) and the Laitinen–Smith set

LSm(G) of G are the subsets of the real representation ring RO(G) consisting of the
differences of two Smith equivalent, primary Smith equivalent and Laitinen–Smith equiv-
alent real G-modules, respectively. The last equivalence is defined for G �∼= Z2a , where
a � 3.
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Clearly, Sm(G) = 0 (respectively, PSm(G) = 0, LSm(G) = 0) if and only if any two
Smith equivalent (respectively, primary Smith equivalent, Laitinen–Smith equivalent)
real G-modules are isomorphic. In the last case, we assume that G �∼= Z2a , a � 3. In
accordance with the fact that LSm(G) = 0 for G ∼= Z2 or Z4, we set LSm(G) = 0 for
G ∼= Z2a , a � 3. Now, for any finite group G, the sets Sm(G), PSm(G) and LSm(G) all
contain the zero of RO(G).

By the definition of Laitinen group given in § 1, a finite group G is a Laitinen group if
and only if G is not of prime power order and LSm(G) �= 0.

By [24, Lemma 2.1] (cf. Lemma 3.1 of this paper), the following lemma holds and it
shows that in the Laitinen Conjecture the condition that rG � 2 is necessary.

Lemma 2.3 (Laitinen and Pawa�lowski [24]). Let G be a finite group with rG � 1.
Then LSm(G) = PSm(G) = 0.

Following [40, p. 853], we say that a finite group G satisfies the 8-condition if G does not
contain an element of order 8, or for any element g ∈ G of order 2a with a � 3, dimV g > 0
for any irreducible real G-module V (see [24, Example 2.5] and [40, Examples E1–E3]).∗

In general, LSm(G) ⊆ PSm(G) ⊆ Sm(G), but if G satisfies the 8-condition, the con-
verse inclusions also hold by [24, Lemma 2.6] or [40, the 8-condition lemma, p. 854].

Lemma 2.4 (Laitinen and Pawa�lowski [24]; Pawa�lowski and Solomon [40]).
If a finite group G satisfies the 8-condition, any two Smith equivalent real G-modules are
Laitinen–Smith equivalent, and so LSm(G) = PSm(G) = Sm(G).

Lemmas 2.3 and 2.4 yield immediately the following corollary.

Corollary 2.5. If a finite group G satisfies the 8-condition and rG � 1, Sm(G) = 0.

We wish to find classes of finite groups G such that Sm(G) = 0 for rG � 1, and, for
rG � 2, LSm(G) �= 0, and therefore PSm(G) �= 0 and Sm(G) �= 0.

Theorem 2.6 (Atiyah and Bott [1]; Laitinen and Pawa�lowski [24]; Pawa�low-
ski and Solomon [40]). Let G be a finite simple group. Then the Smith set Sm(G) = 0
for rG � 1, and the Laitinen–Smith set LSm(G) �= 0 for rG � 2.

Proof. According to [1, (7.27)] or [27, (12.11)], Sm(G) = 0 and rG = 0 for G = Zp,
where p is a prime. Now, assume that G is a finite non-abelian simple group.

If rG � 1, G satisfies the 8-condition by [40, Theorem C1, p. 851, and Example E1,
p. 854], and therefore Sm(G) = 0 by Corollary 2.5.

If rG � 2, then LSm(G) �= 0 by [24, Theorem A] (cf. Theorem 1.3 herein). �

Now, we shall describe other classes of finite groups G such that Sm(G) = 0 for rG � 1
and LSm(G) �= 0 for rG � 2. First, we focus on two finite groups G with rG = 1,
which do not satisfy the 8-condition, and hence we cannot apply Corollary 2.5 to prove
that Sm(G) = 0. The groups of interest are the general linear group GL(2, 3) and the
projective general linear group PGL(2, 7) of two-by-two matrixes with coefficients in the
fields F3 and F7, which consist of three and seven elements, respectively.

∗ In [24], a finite group G satisfying the 8-condition is called 2-proper.
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Proposition 2.7. Let G = GL(2, 3). Then rG = 1, G does not satisfy the 8-condition,
and any two Smith equivalent real G-modules are isomorphic, i.e. Sm(G) = 0.

Proof. According to [15, § 5.2] or [19, Chapter 28], the group G = GL(2, 3) of order
48 has eight conjugacy classes of elements of orders 1, 2, 2, 3, 4, 6, 8 and 8, respectively,
where the last two classes can be represented by the following two elements of order 8:

h =

(
1 2
1 1

)
and h−1 =

(
2 2
1 2

)
.

It follows that there exists exactly one real conjugacy class (h)± in G of elements of order
8, and rG = 1 due to the unique real conjugacy class of elements of order 6.

By looking at the character table of G (see, for example, [15, p. 70] or [19, p. 327])
and computing the dimensions dimχh = 1

8

∑8
n=1 χ(hn) for the irreducible characters

χ of G, we see that there exist characters χ with dimχh = 0. Therefore, G does not
satisfy the 8-condition. However, G satisfies the 2-condition of [43, Definition 2.4], and
so Sm(G) = 0 by [43, Theorem 2.5]. �

Proposition 2.8. Let G = PGL(2, 7). Then rG = 1, G does not satisfy the 8-condition,
and any two Smith equivalent real G-modules are isomorphic, i.e. Sm(G) = 0.

Proof. According to [55], the group G = PGL(2, 7) of order 336 has nine conjugacy
classes of elements of orders 1, 2, 2, 3, 4, 6, 7, 8 and 8, respectively, where the last two
classes can be represented by the elements hZ(GL(2, 7)) and h3Z(GL(2, 7)) of order 8,
where

h =

(
1 1
1 0

)
and h3 =

(
3 2
2 1

)
.

It follows that there are exactly two real conjugacy classes in G of elements of order 8,
and rG = 1 due to the unique real conjugacy class of elements of order 6.

Let N be the subgroup of the real representation ring of G consisting of the differences
U − V of real G-modules U and V with characters χ = χU − χV such that χ(g) = 0
for any element g ∈ G of order |g| �∈ {6, 8}. Then N is spanned by the following three
elements:

(2V1a ⊕ V8a) − (2V1b ⊕ V8b), V6a − V6b and (2V7a ⊕ V8a) − (2V7b ⊕ V8b),

where Vna and Vnb denote two distinct n-dimensional irreducible real G-modules and V1a

is the trivial G-module R. Just two of the G-modules V1a, V1b, V6a, V6b, V7a, V7b, V8a,
V8b, namely V1b and V7a, have zero-dimensional h-fixed point sets. So, G does not satisfy
the 8-condition.

If two real G-modules U and V are Smith equivalent, it follows from the description
of N and Corollary 2.1 that U − V ∈ N and thus, dimUh = dimV h > 0 and dimUh3

=
dim V h3

> 0. Hence, U and V are Laitinen–Smith equivalent, proving that LSm(G) =
PSm(G) = Sm(G).∗ Consequently, as rG = 1, it follows from Lemma 2.3 that Sm(G) = 0.

�
∗ By [61, Theorems 4.3 and 5.3], LSm(G) = PSm(G) = Sm(G) for G = PGL(2, q), q prime power.
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Consider the projective general linear groups PGL(n, q), the general linear groups
GL(n, q), and the affine groups Aff(n, q). By using the two canonical epimorphisms
Aff(n, q) → GL(n, q) and GL(n, q) → PGL(n, q), we see that rAff(n,q) � rGL(n,q) �
rPGL(n,q).

Proposition 2.9. Let G = PGL(n, q), GL(n, q) or Aff(n, q) for any integer n � 2
and any prime power q � 2. Assume that rG = 0 or 1. Then Sm(G) = 0 and, except
for the case where G = GL(2, 3) or PGL(2, 7), G satisfies the 8-condition. Moreover, the
following hold:

rG = 0 : G = PGL(2, 2), PGL(2, 3), PGL(2, 4), PGL(2, 8), PGL(3, 2),
GL(2, 2), GL(3, 2) or Aff(2, 2),

rG = 1 : G = PGL(2, 5), PGL(2, 7), PGL(3, 3), GL(2, 3) or Aff(3, 2).

Proof. By straightforward computation, or using [9], we obtain the complete list of
groups G with rG = 0 or 1 as in the conclusion, and we see that, except for the two cases
where G = GL(2, 3) or PGL(2, 7), every G listed above satisfies the 8-condition, and
therefore Sm(G) = 0 by Corollary 2.5. In the two exceptional cases, G does not satisfy
the 8-condition, and Sm(G) = 0 by Propositions 2.7 and 2.8, respectively. �

Theorem 2.10. In each of the cases (i)–(v), the Smith set Sm(G) = 0 for rG � 1,
and the Laitinen–Smith set LSm(G) �= 0 for rG � 2.

(i) G = PSL(n, q) or SL(n, q) for any n � 2 and any prime power q.

(ii) G = PSp(n, q) or Sp(n, q) for any even n � 2 and any prime power q.

(iii) G = An or Sn for any n � 2.

(iv) G = PGL(n, q) or GL(n, q) for any n � 2 and any prime power q.

(v) G = Aff(n, q) for any n � 2 and any prime power q, except for (n, q) = (2, 3).

Proof. Cases (i)–(iii) are covered by [40]. For rG � 1, every group G in (i)–(iii)
satisfies the 8-condition by [40, Theorems C1–C3, pp. 851–852, and Examples E1–E3,
pp. 854–855], and thus Sm(G) = 0 by Corollary 2.5. For rG � 2, every group G in
(i)–(iii) is a non-solvable gap group, and thus LSm(G) �= 0 by [40, Theorem B3, p. 851]
(cf. Theorem 1.5 herein).

Now, we deal with cases (iv) and (v). According to Proposition 2.9, Sm(G) = 0 when
rG = 0 or 1. In [42, Proposition 5.5], it has been checked that the affine group G =
Aff(2, 3) is a finite solvable Oliver group such that rG = 2 and Sm(G) = 0.

As PGL(n, q) is solvable only for (n, q) ∈ {(2, 2), (2, 3)}, the groups PGL(n, q), GL(n, q)
and Aff(n, q) are non-solvable when (n, q) �∈ {(2, 2), (2, 3)}. So, if rG � 2 for G in (iv)
or (v), then G is non-solvable, and thus LSm(G) �= 0 by Theorem C, completing the
proof. �

Theorems 2.6 and 2.10 immediately yield the following corollary.
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Corollary 2.11. For G as in Theorems 2.6 or 2.10, the following two claims hold:

(i) if rG � 1, then LSm(G) = 0, PSm(G) = 0 and Sm(G) = 0;

(ii) if rG � 2, then LSm(G) �= 0, PSm(G) �= 0 and Sm(G) �= 0.

3. The subgroups PO(G, H) and PLO(G, H) of RO(G)

Let G be a finite group and let RO(G) be the Grothendieck ring of the differences U −V

of real G-modules U and V . Recall that, as a group, the real representation ring RO(G)
is a finitely generated free abelian group whose rank, rk RO(G), is equal to the number
of real conjugacy classes (g)± = (g) ∪ (g−1) of elements g ∈ G.

Let PO(G) be the subgroup of RO(G) consisting of the differences U − V of real
G-modules U and V which are P(G)-matched, i.e. U and V are isomorphic as real
P -modules for any P ∈ P(G). By [24, Lemma 2.1], PO(G) = 0 for rG = 0 and
rk PO(G) = rG for rG � 1.

Let RO(G, G) be the kernel of the homomorphism RO(G) → Z that maps the difference
U − V into the difference dim UG − dim V G. Set PO(G, G) = PO(G) ∩ RO(G, G).

Lemma 3.1 (Laitinen and Pawa�lowski [24, Lemma 2.1]). For a finite group G,
the following two conclusions hold:

(i) PO(G, G) = 0 for rG = 0 or 1;

(ii) rk PO(G, G) = rG − 1 for rG � 2.

Lemma 3.2. Let G be a finite group acting smoothly on a disc (respectively, sphere)
M with two (respectively, three) or more isolated fixed points. If rG � 1, then at any
two points x and y fixed by the action of G on M the tangent G-modules Tx(M) and
Ty(M) are isomorphic.

Proof. Set U = Tx(M) and V = Ty(M). For any prime p dividing |G|, consider an
element g ∈ G of order pa for a � 1. Then, by the Smith Theory, the set Mg = {z ∈ M |
gz = z} is connected, and thus U and V are isomorphic as 〈g〉-modules, where 〈g〉
is the cyclic subgroup of G generated by g. Therefore, U and V are P(G)-matched,
i.e. U − V ∈ PO(G).

As dim UG = dimV G = 0 by the Slice Theorem, U − V ∈ PO(G, G), and hence if
rG � 1, U and V are isomorphic by Lemma 3.1 (i). �

For H � G, let PO(G, H) be the subgroup of RO(G) consisting of the differences
U − V of real G-modules U and V which are P(G)-matched, i.e. U − V ∈ PO(G), and
which are also G/H-matched, i.e. the fixed point sets UH and V H are isomorphic as real
G/H-modules, where G/H acts on UH and V H in the standard way.∗

∗ In [40], PO(G) and PO(G, H) are denoted by IO(G) and IO(G, H), respectively.
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Definition 3.3. Let G be a finite group. For a subgroup H � G, let r(G,H) be the
number of real conjugacy classes (gH)± in G/H such that the coset gH contains an
element of G that is not of prime power order. By the definition, r(G,H) � rG/H .∗

Lemma 3.4 (Pawa�lowski and Solomon [40, Second Rank Lemma, p. 856]).
For a finite group G and any H � G, the inequality rG � r(G,H) is true and the following
two conclusions hold:

(i) PO(G, H) = 0 for rG = r(G,H);

(ii) rk PO(G, H) = rG − r(G,H) for rG > r(G,H).

Note that r(G,H) = 0 if and only if rG = 0, and rG = 0 if and only if each element of
G has prime power order. Moreover, for H = G, one of the following three cases occurs:

rG = r(G,G) = 0, rG = r(G,G) = 1 or rG > r(G,G) = 1.

Therefore, rG = r(G,G) if and only if rG = 0 or 1. So, Lemma 3.4 generalizes Lemma 3.1.
For two subgroups H � G and K � G, consider the homomorphism

FixH∩K
K : RO(K) → RO(K/(H ∩ K))

given by FixH∩K
K (U − V ) = UH∩K − V H∩K for two real K-modules U and V .

Recall that PO(G, H) consists of the differences U − V of P(G)-matched and G/H-
matched real G-modules U and V . So,

PO(G, H) = PO(G) ∩ Ker(FixH
G : RO(G) → RO(G/H)).

Now, consider the induction homomorphism

IndG
K : RO(K, H ∩ K) → RO(G, H).

We wish to compute the rank of the image of PO(K, H ∩ K) under the map IndG
K .

Definition 3.5. Let G be a finite group. For two subgroups H � G and K � G,
define two numbers rK

G and rK
(G,H) as follows.

(i) rK
G is the number of real conjugacy classes in G represented by elements of K not

of prime power order. In particular, rG
G = rG.

(ii) rK
(G,H) is the number of real conjugacy classes (gH)± in G/H such that the coset

gH has an element of K not of prime power order. In particular, rG
(G,H) = r(G,H).

Lemma 3.6. For a finite group G, H � G and K � G, the inequality rK
G � rK

(G,H) is
true and the following two conclusions hold:

(i) IndG
K(PO(K, H ∩ K)) = 0 for rK

G = rK
(G,H);

(ii) rk IndG
K(PO(K, H ∩ K)) = rK

G − rK
(G,H) for rK

G > rK
(G,H).

∗ In [40], rG and r(G,H) are denoted by aG and bG/H , respectively.
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Proof. For a real K-module W , the Frobenius reciprocity law yields the equality

dim(IndG
K(W ))H = |G/HK| dim(WH∩K).

Therefore, the homomorphism IndG
K : RO(K) → RO(G) maps RO(K, H ∩ K) to

RO(G, H). As IndG
K(PO(K)) � PO(G), it follows that IndG

K(PO(K, H ∩ K)) �
PO(G, H).

By comparing the character values, we obtain that (IndG
K(W ))H ∼= IndG

HK(U), where U

is regarded as the (HK)-module WH∩K with UH = U . The following diagram commutes:

PO(K, H ∩ K) ��

IndG
K

��

PO(K)
FixH∩K

K �� RO(K/(H ∩ K))
∼= ��

IndG
K

��

RO(HK/H)

IndG
HK

��
PO(G, H) �� PO(G)

FixH
G �� RO(G/H) = �� RO(G/H)

As the left-hand diagram above commutes, the following diagram also commutes:

PO(K, H ∩ K) ��

IndG
K

��

PO(K)
FixH∩K

K ��

IndG
K

��

RO(HK/H)

IndG
HK

��
IndG

K(PO(K, H ∩ K))
inj �� IndG

K(PO(K))
surj �� (IndG

HK ◦ FixH∩K
K )(PO(K))

By [24, Lemma 2.1], PO(G) = 0 for rG = 0 and rk PO(G) = rG for rG � 1. Moreover,
by the arguments at the end of the proof on [40, p. 857], the homomorphism

FixH
G : PO(G) → RO(G/H)

has image of rank r(G,H), rk FixH
G (PO(G)) = r(G,H). More generally, for K � G,

rk FixH∩K
K (PO(K)) = r(HK,H)

and rk IndG
K(PO(K)) = rK

G . From the commutative diagram above, it follows that

rk(FixH
G ◦ IndG

K)(PO(K)) = rk(IndG
HK ◦ FixH∩K

K )(PO(K)) = rK
(G,H).

Therefore, rk IndG
K(PO(K, K ∩ K)) = rK

G − rK
(G,H), completing the proof. �

For a finite group G, let Gnil (respectively, Gsol) be the smallest normal subgroup of
G such that G/Gnil is nilpotent (respectively, G/Gsol is solvable). Clearly, Gsol � Gnil.
Recall that

Gnil =
⋂

p∈π(G)

Op(G),

where π(G) is the set of prime divisors p of |G|, and Op(G) is the smallest normal
subgroup of G such that |G/Op(G)| = pa for an integer a � 0.
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A subgroup H of a finite group G is called a large subgroup of G if Op(G) � H for
some prime p. Let L(G) denote the family of large subgroups of G. A real G-module V

is called L(G)-free if dimV H = 0 for all H ∈ L(G).
For a finite group G, let PLO(G) be the subgroup of RO(G) consisting of the differences

U − V of two P(G)-matched and L(G)-free real G-modules U and V .∗

More generally, for a normal subgroup H of G, let PLO(G, H) be the subgroup of
RO(G) consisting of the differences U − V of two P(G)-matched, G/H-matched and
L(G)-free real G-modules U and V . Clearly, PLO(G, G) = PLO(G).

The following two lemmas essentially go back to [40, Subgroup Lemma, p. 858].

Lemma 3.7 (Pawa�lowski and Solomon [40, p. 858]). For a finite group G and
two subgroups H, K � G with H � K,

(i) PO(G, H) � PO(G, K) � PO(G, G) and

(ii) PLO(G, H) � PLO(G, K) � PLO(G).

Lemma 3.8 (Pawa�lowski and Solomon [40, p. 858]). For a finite group G and a
subgroup H � G with H � Gnil,

PLO(G, H) = PO(G, H) � PO(G, Gnil) � PLO(G) �
⋂

p∈π(G)

PO(G, Op(G)).

Lemmas 3.4 and 3.8 yield the following corollary.

Corollary 3.9 (Pawa�lowski and Solomon [40, p. 859]). For a finite group G, the
following two inequalities hold:

rG − r(G,Gnil) � rk PLO(G) � min{rG − r(G,Op(G)) | p ∈ π(G)}.

4. The Smith Equivalence Theorem

Let G be a finite group. Let PH(G) be the set of pairs (P, H) of subgroups P < H � G

with P ∈ P(G). For a real G-module V , consider the gap function dV : PH(G) → Z

given by
dV (P, H) = dimV P − 2 dim V H for any (P, H) ∈ PH(G).

Definition 4.1. A real G-module V is called gap-positive (respectively, gap-non-
negative) if the gap function dV : PH(G) → Z is positive (respectively, non-negative)
on PH(G).

Definition 4.2. Let W be a real G-module. We say that W satisfies the weak gap
condition if W is gap-non-negative and in the case dW (P, H) = 0 for some (P, H) ∈
PH(G), [H : P ] = 2 and the following three additional conditions hold:

∗ In [40], the subgroup PLO(G) of RO(G) is denoted by LO(G).
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(i) dimWH > dim WK + 1 for any group K with H < K � G;

(ii) WH is oriented so that the map WH → WH , x �→ gx is orientation preserving for
any element g ∈ NG(H), the normalizer of H in G;

(iii) if dW (P, H ′) = 0 for some H ′ � G, then 〈H, H ′〉 �∈ L(G), where 〈H, H ′〉 is the
smallest subgroup of G containing the subgroups H and H ′ of G.

For a real G-module V and a G-submodule W of V , denote by V −W the G-orthogonal
complement of W in V . Clearly, V ∼= W ⊕ (V − W ) as real G-modules. Set

VL(G) = (V − V G) −
⊕

p∈π(G)

(V − V G)Op(G).

The real G-module VL(G) is the maximal L(G)-free G-submodule of V .
For a finite Oliver group G, set V (G) = R[G]L(G), where R[G] is the regular real

G-module. Let PH1(G) = PH(G)\PH2(G), where PH2(G) consists of (P, H) ∈ PH(G)
such that

[H : P ] = [HO2(G) : PO2(G)] = 2

and POp(G) = G for all odd primes p dividing the order of G.
Following [28], we say that V is G-oriented if for any H � G, subgroup V H is oriented

and the map g : V H → V H , x �→ gx is orientation preserving for any g ∈ NG(H).

Theorem 4.3 (Laitinen and Morimoto [23, Theorem 2.3]). Let G be a finite
Oliver group. Then the gap function

dV (G) : PH(G) → Z

is positive on PH1(G) and vanishes on PH2(G). Moreover, the real G-module

W = �V (G) = V (G) ⊕ · · · ⊕ V (G), � times,

satisfies the weak gap condition for any even integer � � 2. Also, dim WH = 0 if and
only if H ∈ L(G). In particular, the real G-module W is G-oriented and L(G)-free.

As in [32] and [40], we say that a real G-module V is P(G)-oriented if for any P ∈
P(G), V P is oriented and the map g : V P → V P is orientation preserving for any g ∈
NG(P ).

Theorem 4.4. Let G be a finite Oliver group. Let V be a P(G)-oriented and L(G)-
free real G-module satisfying the weak gap condition. Then there exists a smooth action
of G on some sphere with exactly one fixed point at which the tangent G-module is
isomorphic to V ⊕ �V (G) for any sufficiently large even integer �.

If V is G-oriented, Theorem 4.4 follows from [23, Theorem 4.1]. If V is only P(G)-ori-
ented, Theorem 4.4 follows from [32, Theorem 36], which generalizes [28, Theorem 0.1].
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Lemma 4.5. Let G be a finite Oliver group. Let U and V be two P(G)-matched
and L(G)-free, gap-non-negative, real G-modules. Then, for any even integer � � 2, the
G-modules

X = U ⊕ V ⊕ �V (G) and Y = V ⊕ V ⊕ �V (G)

are both P(G)-oriented and L(G)-free, and both satisfy the weak gap condition.

Proof. As U , V and V (G) are all L(G)-free, X and Y are L(G)-free. As U and V

are P(G)-matched, U ⊕ V is P(G)-oriented by [40, Key Lemma, p. 887]. Clearly, V ⊕ V

is G-oriented and so is �V (G), if � is even. Therefore, the G-modules X and Y are both
P(G)-oriented.

At (P, H) ∈ PH(G), the gap functions dX , dY : PH(G) → Z take the values

dX(P, H) = dU (P, H) + dV (P, H) + �dV (G)(P, H),

dY (P, H) = dV (P, H) + dV (P, H) + �dV (G)(P, H).

As the gap functions dU , dV , and dV (G) are non-negative on PH(G), so are dX and dY .
Clearly, by Theorem 4.3, dX and dY are positive on PH1(G), and in the case where
dX(P, H) = 0 or dY (P, H) = 0 for some (P, H) ∈ PH2(G), dV (G)(P, H) = 0 and thus
[H : P ] = 2.

We claim that conditions (i)–(iii) in Definition 4.2 all hold for W = X or Y . In fact,
if W = X or Y , then for any subgroups H < K � G either dimWH = 0, and thus
dim WK = 0 for H ∈ L(G), or otherwise dimWH � dim WK + �, proving that (i) holds,
if � is even.

Since U and V are P(G)-matched and U⊕V is P(G)-oriented, (ii) holds for W = U⊕V .
Moreover, if � is even, �V (G) and Y are G-oriented and so, (ii) holds for W = X or Y .

Finally, (iii) holds for W = X or Y , because (iii) holds for W = V (G), proving the
claim and completing the proof of the lemma. �

The result of [36, Theorem 0.4] also holds when the corresponding G-modules are L(G)-
free. This statement appears in [40, Theorem 4.1] but now, we wish to show explicitly
how the version with L(G)-free G-modules follows from [31, Theorem 0.3].

Theorem 4.6. Let G be a finite Oliver group. For an integer k � 1, let V1, . . . , Vk

be a list of L(G)-free real G-modules such that Vi and Vj are P(G)-matched for all
1 � i, j � k. Then there exists a smooth action of G on a disc Dn with exactly k fixed
points at which the tangent G-modules are isomorphic to V1 ⊕ �V (G), . . . , Vk ⊕ �V (G)
for sufficiently large �.

Proof. Set M = {x1, . . . , xk}, a manifold consisting of exactly k points x1, . . . , xk.
Let τM be the tangent bundle to M , and let ν be the G-vector bundle over M with
fibres V1, . . . , Vk over x1, . . . , xk, respectively, for the given L(G)-free real G-modules
V1, . . . , Vk.

We claim that the conditions (B1) and (B2) posed in [31, p. 280] both hold. In fact,
(B1) holds because, as a non-equivariant bundle, the Whitney sum τM ⊕ ν is a product
bundle, and thus τM ⊕ ν = 0 in the reduced KO-theory K̃O(M) of M .
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Also, (B2) holds because the assumption that Vi and Vj are P(G)-matched implies
that for any P ∈ P(G) the Whitney sum τM ⊕ ν is a product P -vector bundle, and thus
τM ⊕ ν = 0 in the reduced P -equivariant KO-theory K̃OP (M) of M .

As (B1) and (B2) both hold, the conclusion follows by [31, Theorem 0.3]. �

As claimed in [61, Theorem 3.3], the result of [40, Theorem 4.4] obtained for finite
Oliver gap groups, holds in fact for all finite Oliver groups. Now, we wish to prove the
claim.

Theorem 4.7. Let G be a finite Oliver group. For an integer k � 1, let V1, . . . , Vk be a
list of gap-non-negative L(G)-free real G-modules such that Vi and Vj are P(G)-matched
for all 1 � i, j � k. Then there exists a smooth action of G on a sphere Sn with exactly
k fixed points x1, . . . , xk such that for any 1 � i � k, the tangent G-module Txi

(Sn) is
isomorphic to

Vi ⊕ V0 ⊕ �V (G)

for any G-module V0 chosen from the list V1, . . . , Vk and any sufficiently large even integer
�. In particular, the P -fixed point set (Sn)P is connected for any P ∈ P(G).

Proof. The proof goes mutatis mutandis as in the paper [40, Theorems 4.3 and 4.4],
where the acting Oliver group G is a gap group.

For i = 1, . . . , k, by Lemma 4.5, the G-module Vi ⊕V0 is P(G)-oriented and L(G)-free,
and satisfies the weak gap condition. So, by Theorem 4.4, there exists a smooth action
of G on a copy Sn

i of the sphere Sn, where n = 2 dimV0 + � dim V (G) for any sufficiently
large even integer �, such that (Sn

i )G = {zi} and such that, as real G-modules,

Tzi
(Sn

i ) ∼= Vi ⊕ V0 ⊕ �V (G).

By Theorem 4.6, if � is sufficiently large, there exists a smooth action of G on the
n-disc Dn such that (Dn)G = {x1, . . . , xk} and such that, as real G-modules,

Txi
(Dn) ∼= Vi ⊕ V0 ⊕ �V (G).

By taking the double ∂(Dn ×D1) of Dn, we obtain a smooth action of G on the n-sphere
Sn such that (Sn)G = {x1, . . . , xk, y1, . . . , yk} and such that, as real G-modules,

Txi(S
n) ∼= Tyi(S

n) ∼= Vi ⊕ V0 ⊕ �V (G).

By forming the equivariant connected sum of Sn and the spheres Sn
1 , . . . , Sn

k around
yi ∈ Sn and zi ∈ Sn

i for i = 1, . . . , k, we obtain a new smooth action of G on Sn such
that

(Sn)G = {x1, . . . , xn} and Txi(S
n) ∼= Vi ⊕ V0 ⊕ �V (G)

for i = 1, . . . , k. As dim(�V (G))P > 0 for any P ∈ P(G), the set (Sn)P is connected. �

For a finite group G and H � G, let PLO(G, H)gap�0 be the subgroup of RO(G) con-
sisting of the differences U − V of two gap-non-negative P(G)-matched, G/H-matched
and L(G)-free real G-modules U and V . Set PLO(G)gap�0 = PLO(G, G)gap�0 .
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Lemma 4.8. Let G be a finite gap group and let H be a normal subgroup of G. Then

PLO(G, H)gap�0 = PLO(G, H) and PLO(G)gap�0 = PLO(G).

Proof. An element of PLO(G, H) is the difference U −V of two P(G)-matched, G/H-
matched and L(G)-free real G-modules U and V . By the notion of gap group, there exists
a gap-positive L(G)-free real G-module W . Therefore, U ⊕ �W and V ⊕ �W are both
gap-positive for any sufficiently large integer �. As U − V = (U ⊕ �W ) − (V ⊕ �W ) ∈
PLO(G, H)gap�0 , it follows that PLO(G, H)gap�0 = PLO(G, H), completing the proof. �

Let G be a finite group not of prime power order. Two real G-modules U and V are
called c-primary Smith equivalent if there exists a smooth action of G on a homotopy
sphere Σ with ΣG = {x, y}, such that Tx(Σ) ∼= U and Ty(Σ) ∼= V (i.e. U and V are
Smith equivalent) and for any P ∈ P(G), ΣP is connected which (by the Slice Theorem
and Smith Theory) amounts to saying that ΣP ⊃ ΣG as a proper subset or, equivalently,
dim UP = dimV P > 0.

The c-primary Smith set PSmc(G) of G is the subset of RO(G) consisting of the
differences U −V of two c-primary Smith equivalent real G-modules U and V . In general,

PSmc(G) ⊆ LSm(G) ⊆ PSm(G) = PO(G, G) ∩ Sm(G).

Theorem 4.9 (the Smith Equivalence Theorem). Let G be a finite Oliver group.
Then

PLO(G)gap�0 ⊆ PSmc(G),

i.e. the difference of any two gap-non-negative P(G)-matched and L(G)-free real
G-modules is also the difference of two c-primary Smith equivalent real G-modules.

Theorem 4.9 follows from Theorem 4.7 in the special case where k = 2. The conclusion
of Theorem 4.9 generalizes that one of [40, Realization Theorem, p. 850] asserting that if
a finite Oliver group G is a gap group, then PLO(G) ⊆ LSm(G) and, in fact, PLO(G) ⊆
PSmc(G). Recall that by Lemma 4.8, PLO(G)gap�0 = PLO(G) for a finite gap group G.

Theorem 4.9 was claimed earlier in [41, Theorem 2.1], [42, Theorem 2.1], [59, Lemma
3.1], [60, Theorem 2.2], [61, Theorem 3.2], and also in [33, Theorem 11], wherein Mori-
moto and Qi describe the corresponding result without the P(G)-orientation condition.

In Lemma 4.5, we have shown how to ensure for real G-modules that the P(G)-ori-
entation condition and the weak gap condition both hold. Then, in the proof of The-
orem 4.7, for a list of gap-non-negative L(G)-free real G-modules V1, . . . , Vk, where
Vi and Vj are P(G)-matched, we were able to conclude that for some real G-module
W , the G-modules V1 ⊕ W, . . . , Vk ⊕ W satisfy the P(G)-orientation condition and the
weak gap condition. Here, the bottom line is that we did not change the difference,
Vi − Vj = (Vi ⊕ W ) − (Vj ⊕ W ), in RO(G).

5. The Gnil-Coset Theorem and its applications

For a finite group G, we impose a condition (stronger than rG � 2) which, in the case
where G is an Oliver group, is sufficient for the existence of a smooth action of G on a
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sphere with isolated fixed point at which the tangent G-modules are not isomorphic to
each other.

An element g ∈ G is called an NPP element if the order of g is not a prime power.

Definition 5.1. Let G be a finite group and let H be a normal subgroup of G. We say
that G satisfies the H-coset condition if there exists an H-coset of G containing two NPP
elements x and y that are not real conjugate in G (and thus rG � 2) and, in addition,

(i) the elements x and y are both in a gap subgroup of G, or

(ii) the orders of x and y are even and the involutions of 〈x〉 and 〈y〉 are conjugate in
G, where 〈x〉 and 〈y〉 are the cyclic groups generated by x and y, respectively.

We recall that PO(G, H) �= 0 if and only if rG > r(G,H). Moreover, if rG > r(G/H),
then rG � 2, and if rG � 1, then rG = r(G/H) (see Definition 3.3 and Lemma 3.4).

Lemma 5.2. If G is a finite group and H � G, then PO(G, H) �= 0 if and only if
there exists an H-coset of G containing two NPP elements which are not real conjugate
in G.

Proof. By Definition 3.3, rG > r(G,H) if and only if there exists an H-coset of G

containing two NPP elements x, z ∈ G such that (x)± �= (z)± and (xH)± = (zH)±.
Now, the equality (xH)± = (zH)± holds if and only if there exists an NPP element
y ∈ G such that xH = yH and (y)± = (z)±. So, for the two NPP elements x and y,
xH = yH and (x)± �= (y)±. �

Definition 5.1 and Lemma 5.2 immediately yield the following two lemmas.

Lemma 5.3. Let G be a finite group and let H � G. If G satisfies the H-coset
condition, then PO(G, H) �= 0.

Lemma 5.4. Let G be a finite gap group and let H � G. If PO(G, H) �= 0, then G

satisfies the H-coset condition.

Corollary 5.5. Let G be a finite gap group and let H � G. Then PO(G, H) �= 0 if
and only if G satisfies the H-coset condition.

Now, we state our first key algebraic result, which we shall prove in the next section.

Theorem 5.6 (the Gnil-Coset Theorem). If G is a finite Oliver group satisfying
the Gnil-coset condition, then there exist two gap-non-negative P(G)-matched G/Gnil-
matched real G-modules that are not isomorphic to each other.

Theorem 5.6 allows us to obtain mutually non-isomorphic real G-modules V1, . . . , Vk

that are gap-non-negative, L(G)-free and such that Vi and Vj are P(G)-matched.

Corollary 5.7. Let G be a finite Oliver group. If G satisfies the Gnil-coset condi-
tion, then for any integer k � 2, there exist gap-non-negative L(G)-free real G-modules
V1, . . . , Vk such that Vi and Vj are P(G)-matched for 1 � i, j � k, and non-isomorphic
when i �= j.
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Proof. By Theorem 5.6, there exist two gap-non-negative P(G)-matched and G/Gnil-
matched real G-modules U and V that are not isomorphic to each other. As

PO(G, Gnil) � PLO(G)

by Lemma 3.8, we may assume that U and V are L(G)-free. For an integer k � 2, set

Vi = (k − i)U ⊕ iV

for i = 1, . . . , k. Then Vi and Vj are P(G)-matched, and non-isomorphic when i �= j.
Clearly, each Vi is gap-non-negative and L(G)-free. �

Theorem 4.7 and Corollary 5.7 allow us to obtain the following theorem.

Theorem 5.8. Let G be a finite Oliver group. If G satisfies the Gnil-coset condition,
then for any integer k � 2 there exists a smooth action of G on a sphere Sn with exactly
k fixed points at which the tangent G-modules are mutually non-isomorphic. Moreover,
for any P ∈ P(G), the P -fixed point set (Sn)P is connected.

Proof. By Corollary 5.7, for any k � 2, there exist gap-non-negative L(G)-free real
G-modules V1, . . . , Vk such that for 1 � i �= j � k, Vi and Vj are P(G)-matched and
non-isomorphic. Therefore, the required action of G exists by Theorem 4.7. �

Once we prove Theorem B, we obtain also the following theorem.

Theorem 5.9. Let G be a finite non-solvable group not isomorphic to Aut(A6) or
PΣL(2, 27). If rG � 2, then for any integer k � 2 there exists a smooth action of G on
a sphere Sn with exactly k fixed points at which the tangent G-modules are mutually
non-isomorphic. Moreover, for any P ∈ P(G), the P -fixed point set (Sn)P is connected.

Proof. By Theorem B, the group G satisfies the Gnil-coset condition if and only if
rG � 2. So, if rG � 2, the conclusion follows from Theorem 5.8. �

6. Proof of the Gnil-Coset Theorem

For a finite group G and H � G, let PO(G, H)gap�0 be the subgroup of RO(G) consisting
of the differences of two gap-non-negative P(G)-matched and G/H-matched real G-
modules. Now, using the group PO(G, H)gap�0 , we restate Theorem 5.6.

Theorem 6.1 (the Gnil-Coset Theorem). If G is a finite Oliver group satisfying
the Gnil-coset condition, then PO(G, Gnil)gap�0 �= 0.

The rest of this section is devoted to proving Theorem 6.1. For any finite Oliver
group G that satisfies the Gnil-coset condition, we shall construct two gap-non-negative
P(G)-matched and G/Gnil-matched real G-modules that are not isomorphic to each
other.

For a finite Oliver group G and K � G, consider the induction homomorphism

IndG
K : RO(K) → RO(G).
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If a real K-module V is L(K)-free, then the induced real G-module IndG
K(V ) is

L(G)-free. Moreover, if two real K-modules U and V are P(K)-matched, then IndG
K(U)

and IndG
K(V ) are P(G)-matched (see [20, Lemma 4.1]). Therefore, IndG

K(PLO(K)) �
PLO(G).

We need the following two lemmas about the induction homomorphism IndG
K .

Lemma 6.2. Let G be a finite Oliver group and let K be a gap subgroup of G. Then

IndG
K(PLO(K)) � PLO(G)gap�0 .

Proof. As K is a gap group, any element of PLO(K) can be regarded as the difference
U − V of two P(K)-matched L(K)-free real K-modules U and V that are gap-positive
(cf. Lemma 4.8), and thus, by [35, Lemma 1.7], IndG

K(U) and IndG
K(V ) are both gap-

non-negative. Therefore, the homomorphism IndG
K : RO(K) → RO(G) maps PLO(K)

into PLO(G)gap�0 . �

Lemma 6.3. Let G be a finite Oliver group, let H = Gnil and let K be a subgroup of
G not of prime power order. Suppose that there exists an L(K)-free real K-module W

which is gap-positive at all pairs (P, L) ∈ PH(K) with [L : P ] = 2. Then

IndG
K(PO(K, H ∩ K)) � PO(G, H)gap�0 .

Proof. Any element of PO(K, H ∩ K) is the difference U − V for two P(K)-
matched and K/(H ∩ K)-matched real K-modules U and V . Set U ′ = U − UH∩K and
V ′ = V − V H∩K .

Then U − V = U ′ − V ′ and, by the assumption on the K-module W , for a sufficiently
large integer m � 0, U ′ ⊕ mW and V ′ ⊕ mW are both gap-positive at all pairs (P, L) ∈
PH(K) with [L : P ] = 2. So, for sufficiently large integers m, n � 0, the two real
G-modules

IndG
K(U ′ ⊕ mW ) ⊕ nV (G) and IndG

K(V ′ ⊕ mW ) ⊕ nV (G)

are both gap-non-negative, and clearly both are L(G)-free, completing the proof. �

We denote by NPP(G) the set of not of prime power order (NPP) elements of G. Set

RConj(G) = {(g)± | g ∈ G} and RConj(NPP(G)) = {(g)± | g ∈ NPP(G)}.

Lemma 6.4. Let G be a finite group. Then the character map

χ : RO(G) → map(RConj(G), R)

induces an isomorphism R ⊗Z RO(G) → map(RConj(G), R) such that the the following
diagram commutes:

R ⊗Z PO(G)
∼= ��

��

map(RConj(NPP(G)), R)

��
R ⊗Z RO(G)

∼= �� map(RConj(G), R)
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where the second vertical map is determined by sending the maps defined on the set
RConj(NPP(G)) to their extensions on RConj(G) that vanish outside of RConj(NPP(G)).

Proof. Through the map R⊗ZRO(G) → map(RConj(G), R) induced by the character
map X �→ χX for X ∈ RO(G), R ⊗Z RO(G) is the space of real valued functions f

on G constant on the real conjugacy classes (g)±, and R ⊗Z PO(G) is the space of
those f that vanish on (g)± when g ∈ G is of prime power order (cf. [53, Theorem 25,
p. 95 and Corollary 1, p. 96]). Here, rk RO(G) = |RConj(G)| and rk PO(G) = rG =
|RConj(NPP(G))| (cf. [24, Lemma 2.1]). So, the horizontal maps are isomorphisms. As
χX((g)±) = f((g)±) = 0 for any X ∈ PO(G) and any g ∈ G of prime power order, the
diagram commutes. �

Lemma 6.5. Let G be a finite group. Let U and V be two P(G)-matched real
G-modules. Then dU (P, H) = dV (P, H) for any pair (P, H) ∈ PH(G) such that H is
a 2-group.

Proof. As U and V are P(G)-matched, U and V are isomorphic (in particular) as
H-modules, because H is a 2-group. For any pair (P, H) ∈ PH(G), P < H and clearly
dim UH = dimV H and dimUP = dimV P . Therefore, dU (P, H) = dV (P, H). �

The notion of gap function of a real G-module is introduced in Definition 4.1. This
notion can also be defined naturally for a virtual real G-module of a finite group G.

Letting X = U − V for two real G-modules U and V , set dX(P, H) = dU (P, H) −
dV (P, H). Then, for a subgroup K of G,

dIndG
K(X)(P, H) =

∑
PgK∈(P\G/K)P \H

dX(g−1Pg ∩ K, g−1Hg ∩ K)

for any pair (P, H) ∈ PH(G) with [H : P ] = 2. Here, P \H acts canonically on P \G/K,
and the fixed point set (P \ G/K)P\H is the set of double cosets PgK with PgK = HgK.

Definition 6.6. A virtual G-module X = U − V is called gap-positive (respectively,
gap-non-negative) at (P, H) ∈ PH(G) if dX(P, H) > 0 (respectively, dX(P, H) � 0).
Moreover, X is called gap-positive (respectively, gap-non-negative) if dX(P, H) > 0
(respectively, dX(P, H) � 0) for all (P, H) ∈ PH(G).

The results of [23, Theorem 2.3] and [35, Lemma 0.6] yield the following lemma.

Lemma 6.7. Let G be a finite group with P(G) ∩ L(G) = ∅. For K � G, suppose U

and V are two real K-modules such that the following two conditions hold:

(i) U and V are gap-non-negative at any (P, H) with P < H � K and [H : P ] = 2;

(ii) IndG
K(U) and IndG

K(V ) are L(G)-free.

Then there exist two real gap-non-negative L(G)-free G-modules U ′ and V ′ such that

U ′ − V ′ = IndG
K(U) − IndG

K(V ).

https://doi.org/10.1017/S0013091512000223 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091512000223


322 K. Pawa�lowski and T. Sumi

Proof. Set U ′ = IndG
K(U)⊕�V (G) and V ′ = IndG

K(V )⊕�V (G) for some integer � � 1.
Let (P, H) ∈ PH(G). If V (G) is gap-positive at (P, H), i.e. dV (G)(P, H) > 0, then U ′

and V ′ are L(G)-free G-modules that are gap-positive at (P, H) for sufficiently large �.
Recall that V (G) is gap-non-negative. Suppose that dV (G)(P, H) = 0. It holds that

dIndG
K(U)(P, H) =

∑
PgK∈(P\G/K)P \H

dU (g−1Pg ∩ K, g−1Hg ∩ K).

Since [g−1Hg ∩ K : g−1Pg ∩ K] = 2 by the assumption, IndG
K(U) is gap-non-negative at

(P, H), and thus U ′ is gap-non-negative at (P, H). Similarly, V ′ is gap-non-negative at
(P, H). �

Proposition 6.8. Let G be a finite group and let H = Gnil. If G contains two NPP
elements x and y lying in a gap subgroup of G, such that xH = yH and (x)± �= (y)±,
then

PLO(G, H)gap�0 �= 0.

Proof. Let K be a gap subgroup of G containing the elements x and y. By the
assumptions on x and y, it follows that rK

G > rK
(G,H) (cf. Definition 3.5). According to

Lemma 3.6 (ii),
rk IndG

K(PO(K, H ∩ K)) = rK
G − rK

(G,H) > 0.

Now, the conclusion that PLO(G, H)gap�0 �= 0 follows easily from Lemma 6.3. �

According to the example of U and V in [40, p. 865], the following lemma holds.

Lemma 6.9. Let G be a finite Oliver group. If the order of the nilpotent group G/Gnil

has two (or more) odd prime divisors, then PO(G, Gnil)gap�0 = PO(G, Gnil) �= 0.

Proof of Theorem 6.1. Let G be a finite Oliver group satisfying the Gnil-coset con-
dition. So, according to Definition 5.1, G has a Gnil-coset containing two NPP elements
x and y that are not real conjugate in G, and one of the following holds:

(i) the elements x and y are both contained in a gap subgroup of G, or

(ii) the orders of x and y are even and the involutions of 〈x〉 and 〈y〉 are conjugate in
G, where 〈x〉 and 〈y〉 are the cyclic groups generated by x and y, respectively.

We shall prove that PO(G, Gnil)gap�0 �= 0. If (i) holds, Proposition 6.8 completes the
proof. So, in the proof, we may assume that (ii) holds, while (i) does not. We may also
assume that the involutions of 〈x〉 and 〈y〉 coincide by exchanging, if necessary, y and its
conjugate.

According to Lemma 6.9, it is sufficient to consider the case where the order of G/Gnil

has at most one odd prime divisor. Let N = O2(G). Then N〈x〉 = N〈y〉 and O2(N) = N .
First, we suppose that x ∈ N . By the assumption, N is not a gap group. Since x is an

NPP element, N is not of prime power order, and since N is not perfect and O2(N) = N ,
Op(N) �= N for some odd prime p. If Op(N) is not of prime power order, N is a gap
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group, which never happens. Thus, |Op(N)| is a power of a prime q with q �= p. So, the
G-module V (N) is gap-positive at all pairs (P, H) ∈ PH2(N). It follows from Lemma 6.3
that

PO(G, Gnil)gap�0 �= 0.

Now, we suppose that x /∈ N . Recall that x and y are NPP elements of even orders
and O2(N) = N . Consider the two cases according to whether P(N) ∩ L(N) is empty or
not. When P(N) ∩ L(N) �= ∅, we argue as follows. Since Op(N) has a 2-power order for
some odd prime p, V (N) is gap-positive at any (P, H) ∈ PH2(N). Hence, by Lemma 6.3,

PO(G, Gnil)gap�0 �= 0.

So, it remains to consider the case where P(N) ∩ L(N) = ∅, with x /∈ N . By [58,
Theorem B], N ∩ 〈x〉 is of order a power of an odd prime (remember N is not a gap
group). Therefore, |π(〈x〉)| = 2. Hence, π(〈x〉) = {2, p} for some odd prime p. Similarly,
it holds that |π(〈y〉)| = 2. Furthermore, π(〈y〉) = {2, p} because CG(z) is not a gap group
for the involution z of 〈x〉. Therefore, |N ∩〈x〉| = pa and |N ∩〈y〉| = pb for some integers
a, b � 0. Set

N ′ = Gnil〈x〉 = Gnil〈y〉.

Now, we construct a non-zero element of PO(G, Gnil) (see Lemma 6.11, below). We
define a virtual real 〈x〉-module VR(x) as follows. Let x = x2xp, where x2 is of 2-power
order and xp is of p-power order. Let C = 〈x〉, Cr = 〈xr〉, and let ξr be the irreducible
complex Cr-module whose character sends xa

r to exp(2aπ
√

−1/|Cr|) for r ∈ π(C). Let
i : C → C2 × Cp be the isomorphism sending x to (x2, xp). For a complex Cr-module σr

with r = 2 or p, we denote by i∗(σ2 ⊗σp) the complex C-module satisfying the condition
that

χi∗(σ2⊗σp)(x) = χσ2(x2)χσp
(xp).

We denote by UC(x) the virtual complex C-module i∗((C−ξ2)⊗(C−ξp)) and by UR(x)
its realification. Set U(N ′, x) = IndN ′

C UR(x). The epimorphism τp : Cp → Cp/(Cp ∩ Gnil)
induces a homomorphism τ∗

p : R(Cp/(Cp ∩ Gnil)) → R(Cp). Let ηp be the irreducible
complex Cp/(Cp ∩Gnil)-module whose character sends τp(xp)a to exp(2aπ

√
−1/|Cp/Cp ∩

Gnil|). Set

VC(x) = i∗((C − ξ2) ⊗ τ∗
p (C − ηp)) and V (N ′, x) = IndN ′

C VR(x),

where VR(x) is the realification of VC(x).

Lemma 6.10. For any element xc ∈ C = 〈x〉,

χU(N ′,x)Gnil (xc) =

{
2 Re(1 − χξ2(x

c
2)), C ∩ Gnil �= {e},

2 Re((1 − χξ2(x
c
2))(1 − χξp(xc

p))), C ∩ Gnil = {e},

and
χ

V (N ′,x)Gnil (xc) = 2 Re((1 − χξ2(x
c
2))(1 − χηp(τp(xc

p)))).
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Proof. For k, h ∈ N ′, we denote by β(k, h) the number of elements (a, b) of Gnil ×N ′

with a = b−1k−1bh. Since N ′/Gnil is cyclic, we see that if k = xc, then b−1k−1bz ∈ Gnil

for any z ∈ xc(C ∩ Gnil) and any b ∈ N ′. Thus, β(xc, z) = |N ′| for z ∈ xc(C ∩ Gnil) and
β(xc, z) = 0 for z ∈ C � xc(C ∩ Gnil). Then the character of U(N ′, x)Gnil

sends xc to

χ
U(N ′,x)Gnil (xc) =

1
|Gnil|

∑
xc∈Gnil

χU(N ′,x)(xca)

=
1

|Gnil| |C|
∑

a∈Gnil

∑
b∈N ′,

b−1xcba∈C

χUR(x)(b−1xcba)

=
∑
z∈C

β(xc, z)
|Gnil| |C|χUR(x)(z)

=
|N ′|

|Gnil| |C|
∑

a∈xc(C∩Gnil)

χUR(x)(a)

=
1

|Gnil ∩ C|
∑

a∈xc(C∩Gnil)

χUR(x)(a)

=
2

|Gnil ∩ C| Re
(

(1 − χξ2(x
c
2))

∑
b∈C∩Gnil

(1 − χξp
(xc

p)χξp
(b))

)
= 2 Re((1 − χξ2(x

c
2))(1 − χξp

(xc
p) dim(ξC∩Gnil

p )))

=

{
2 Re(1 − χξ2(x

c
2)), C ∩ Gnil �= {e},

2 Re((1 − χξ2(x
c
2))(1 − χξp

(xc
p))), C ∩ Gnil = {e}.

Similarly, we obtain that

χ
V (N ′,x)Gnil (xc) = 2 Re((1 − χξ2(x

c
2))(1 − χηp(τp(xc

p))))

completing the proof. �

Lemma 6.11. The following two conclusions hold:

(i) if 〈x〉 ∩ Gnil = 〈y〉 ∩ Gnil = {e} or |〈x〉 ∩ Gnil| and |〈y〉 ∩ Gnil| are both divisible by
p, then U(G, x) − U(G, y) �= 0 and the difference lies in PO(G, Gnil);

(ii) if 〈x〉∩Gnil = {e} and |〈y〉∩Gnil| is divisible by p, then U(G, x)−V (G, y) �= 0 and
the difference lies in PO(G, Gnil).

Proof. Suppose that 〈x〉 ∩ Gnil = 〈y〉 ∩ Gnil = {e} or |〈x〉 ∩ Gnil| and |〈y〉 ∩ Gnil| are
both divisible by p. Then the characters of U(N ′, x)Gnil

and U(N ′, y)Gnil
coincide, and

so

0 �= U(N ′, x) − U(N ′, y) ∈ PO(N ′, Gnil).
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Hence, U(G, x) − U(G, y) ∈ PO(G, Gnil). If 〈x〉 ∩ Gnil = {e} and |〈y〉 ∩ Gnil| is divisible
by p, then |x| < |y| and the characters of U(N ′, x)Gnil

and V (N ′, y)Gnil
coincide, and so

U(N ′, x) − V (N ′, y) ∈ PO(N ′, Gnil).

Therefore, 0 �= U(G, x) − V (G, y) ∈ PO(G, Gnil), completing the proof. �

Now, we show that U(G, x) − U(G, y) and U(G, x) − V (G, y) are gap-non-negative.

Lemma 6.12. Let z be the involution of 〈x〉. Let r and s be the orders of Sylow
2-subgroups of CG(z) and C, respectively. Then (P \ G/C)P\H = P \ PCG(z)/C and
|(P \ G/C)P\H | = r/s.

Proof. To prove the result, let PaC ∈ (P \G/C)H . Then z ∈ PaCa−1, say z = paca−1

for p ∈ P and c ∈ C. Take a positive odd integer k such that |p−1z|/k = 2. As (p−1z)k is
conjugate to z in P , acka−1 is an involution equal to aza−1. Thus, p′−1zp′ = aza−1 for
some p′ ∈ P , and so a ∈ PCG(z).

Therefore, (P \ G/C)H = P \ PCG(z)/C. The bijection from O2(CG(z)) \ CG(z) to
P \ PCG(z) sending O2(CG(z))a to Pa induces a bijection from CG(z)/O2(CG(z))C to
P \ PCG(z)/C and thus |(P \ G/C)H | = |CG(z)/O2(CG(z))C| = r/s.

Hence, we obtain the following commutative diagram:

P \ PCG(z) �� P \ PCG(z)/C

O2(CG(z)) \ CG(z) ��

∼=

��

O2(CG(z)) \ CG(z)/C

∼=

��

∼=
��

CG(z)/O2(CG(z))C

which completes the proof. �

Set U(G, x, y) := U(G, x) − U(G, y) and consider the integer

m = − min({dU(G,x,y)(P, H) + 1 | (P, H) ∈ PH(G)} ∪ {0}).

Choose an integer � so that U(G, x, y) + �V (G) is a real (non-virtual) G-module.
According to [58, Lemma 4.3], there exists a real L(G)-free G-module W (z) satisfying

the following three properties:

(i) dW (z)(P, H) � 0 for any (P, H) ∈ PH(G);

(ii) dW (z)(P, H) > 0 for any (P, H) ∈ PH(G) � PH2(G);

(iii) for (P, H) ∈ PH2(G) with z ∈ H, dW (z)(P, H) = 0 if and only if P � O2(CG(z)).

Lemma 6.13. U := (U(G, x, y) + �V (G)) ⊕ m(W (z) ⊕ V (G)) is gap-non-negative.
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Proof. Let (P, H) ∈ PH(G). If dW (z)⊕V (G)(P, H) > 0, then

dU (P, H) � dU(G,x,y)(P, H) + m > 0.

Suppose that dW (z)⊕V (G)(P, H) = 0. Then dU (P, H) = dU(G,x,y)(P, H) and (P, H) ∈
PH2(G). By Lemma 6.5, we may further suppose that H is not a 2-group. We shall
analyse the number dU(G,x)(P, H). Recall that

dU(G,x)(P, H) =
∑

PgC∈(P\G/C)P \H

dUR(x)(g−1Pg ∩ C, g−1Hg ∩ C).

If the real conjugacy class (z)± does not intersect with H, (P \ G/C)H is empty and
therefore dU(G,x)(P, H) = 0. Similarly, dU(G,y)(P, H) = 0.

Suppose that (z)± intersects with H. Take an element a ∈ G such that z ∈ a−1Ha.
Set P ′ = a−1Pa and H ′ = a−1Ha. Then

dU(G,x)(P, H) = dU(G,x)(P ′, H ′)

= 2
∑

P ′gC∈(P ′\G/C)P ′\H′

dC−ξ2({e}, {e, z})

= −4|(P ′ \ G/C)P ′\H′ |.

Therefore, dU(G,x)(P, H) = −4r/s, where r and s are the integers considered in
Lemma 6.12. Since |C ∩Gnil| and |〈y〉∩Gnil| are odd and xGnil = yGnil, s is the order of
a Sylow 2-subgroup of 〈y〉. Hence, dU(G,y)(P, H) = −4r/s by the argument above, and
thus dU(G,x,y)(P, H) = 0. Putting all together, U is gap-non-negative. �

It follows that U(G, x, y)+mW (z)+�V (G) and mW (z)⊕�V (G) are gap-non-negative
L(G)-free real G-modules, when � is sufficiently large, which yields (by Lemma 6.11) that

U(G, x) − U(G, y) ∈ PO(G, Gnil)gap�0 .

By similar arguments, we can show that, for a sufficiently large integer �,

U := U(G, x) − V (G, y) + mW (z) + �V (G)

is also a gap-non-negative L(G)-free real G-module, where

m = − min({dU(G,x)(P, H) − dV (G,y)(P, H) + 1 | (P, H) ∈ PH(G)} ∪ {0}).

Set V := mW (z)⊕�V (G). Clearly, V is a gap-non-negative L(G)-free real G-module and

U − V = U(G, x) − V (G, y) �= 0

lies in PO(G, Gnil)gap�0 , completing the proof of Theorem 6.1. �
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7. The Non-solvable Group Theorem

In this section, we prove our second key algebraic result, which reads as follows.

Theorem 7.1 (the Non-solvable Group Theorem). Except for G = Aut(A6) or
PΣL(2, 27), any finite non-solvable group G with rG � 2 satisfies the Gsol-coset condition.

In order to prove Theorem 7.1, we argue by contradiction using an approach similar
to that in [40, Proposition 3.1]. Instead of assuming that rG = r(G,Gsol) as is done in the
proof of [40, Proposition 3.1], we suppose that G does not satisfy the Gsol-coset condition
and check the corresponding statements in [40, §§ 2 and 3] to obtain a contradiction.

Proposition 7.2. Let G be a finite group with H � G such that |π(H)| � 3. If
Z(G) �= 1, then G satisfies the H-coset condition.

Proof. Take an element x ∈ Z(G) of order r for a prime r. By the assumption, there
exist two distinct primes p and q and two elements y and z of H such that p �= r, q �= r,
|y| = p and |z| = q. Therefore, xy and xz are NPP elements of the gap group H〈x〉.
Hence, G satisfies the H-coset condition. �

By Burnside’s theorem, it holds that |π(L)| � 3 for a non-solvable group L. Therefore,
we see that the following corollary is true.

Corollary 7.3. If a finite non-solvable group G does not satisfy the Gsol-coset condi-
tion, then the centre of G is trivial.

Lemma 7.4. Let G be a finite group and let H � G. Suppose either that G is a gap
group or that O2(G) is a gap group and each element of G � O2(G) has prime power
order. Then G satisfies the H-coset condition if and only if rG > r(G,H).

Proof. By Lemmas 3.4 and 5.2, rG > r(G,H) if and only if there exists an H-coset of
G containing two NPP elements x and y which are not real conjugate in G. If G is a gap
group, Definition 5.1 (i) completes the proof. As x and y are NPP elements, they both lie
in O2(G) if each element of G � O2(G) has prime power order. So, if in addition O2(G)
is a gap group, again Definition 5.1 (i) completes the proof. �

The next lemma immediately follows from Definition 5.1 and is very useful to see
whether G satisfies the H-coset condition.

Lemma 7.5. Let G be a finite gap group and let H � G. Let x and y be two NPP
elements of G such that xH = yH and for some N � G, the cosets xN and yN have
distinct orders in G/N . Then G satisfies the H-coset condition.

By [40, Lemma 2.7], if a finite non-abelian simple group L is without NPP elements
or all NPP elements have the same order, then L is isomorphic to one of the following
groups:

(i) PSL(2, q) with q ≡ ±3 (mod 8); or

(ii) PSL(2, q) with q = 9 or q a Fermat or Mersenne prime; or
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(iii) PSL(2, 2n) or Sz(2n), n � 3; or

(iv) PSL(3, 3), PSL(3, 4), A7, M11 or M22.

By using [9], we can check that if L = PSL(3, 3), A7, M11 or M22, then K is a gap
group for L � K � Aut(L). Moreover, if L = PSL(3, 4), then rK = 1 or K satisfies the
L-coset condition for any subgroup K with L � K � Aut(L). Also, PGL(2, q) is a gap
group for any prime power q �= 2, 3, 5, 7, 9, 17 (see [58, Corollary 3.5]).

For the reader’s convenience, we recall some notions from group theory. Let G be a
finite group. The Fitting subgroup F (G) of G is the largest normal nilpotent subgroup
of G. In the proof, the Fitting subgroup of G plays an important role. The group G

is called quasisimple if G is perfect and G/Z(G) is simple. Moreover, G is said to be
semisimple if G is the product of quasisimple groups Gi, 1 � i � m, such that [Gi, Gj ] = 1
for all i �= j. Also, E(G) denotes the largest normal semisimple subgroup of G, and
F ∗(G) = E(G)F (G) is the generalized Fitting subgroup of G. Bender’s Theorem says
that if N is a normal subgroup of G such that CG(N) � N , then E(G) � N . If E(G) �= 1,
then the uniquely determined quasisimple factors of G are called the components of G.
Let PSL(3, 4)∗ = PSL(3, 4) � 〈u〉 be the extension of PSL(3, 4) by an involutory graph-
field automorphism u of order 2.

The following lemma shows that F ∗(G) is not a finite non-abelian simple group.

Lemma 7.6 (Pawa�lowski and Solomon [40, Lemma 2.8]). Let G be a finite non-
solvable group. Assume that, for H = Gsol, G does not satisfy the H-coset condition and
F ∗(G) is a finite non-abelian simple group. Then G is isomorphic to one of the groups
listed below:

(i) PSL(2, q), q ∈ {5, 7, 8, 9, 11, 13, 17};

(ii) Sz(8), Sz(32), A7, PSL(3, 3), PSL(3, 4), M11, M22;

(iii) PGL(2, 5), PGL(2, 7), PΣL(2, 8), M10, PSL(3, 4)∗;

(iv) Aut(A6) or PΣL(2, 27).

Moreover, rG = 1 for the groups listed in (i)–(iii), and rG = 2 for the groups listed in (iv).

Proof. Set L = F ∗(G). Then L is one of the groups listed in (i)–(iv). If L = G, then
rG = r(G,Gsol), because G is a gap group. Thus, by arguing as in the proof of [40, Lemma
2.8], we complete the proof. �

A subgroup K of a finite group L is called a subnormal subgroup of L if there is a
chain of subgroups of L, each one normal in the next, beginning at K and ending at L.
For a prime p, the p-rank mp(L) of a finite group L is the largest non-negative integer
n such that L contains an elementary abelian subgroup of order pn. The largest normal
solvable subgroup of L is called the solvable radical of L.
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Proof of Theorem 7.1. Until the end of the proof, we assume that G is a finite
non-solvable group such that rG � 2 and G is not isomorphic to Aut(A6) or PΣL(2, 27).

We set H = Gsol and denote by S the solvable radical of G. Contrary to the conclusion
of Theorem 7.1, suppose that G does not satisfy the H-coset condition.

Lemma 7.7 (Pawa�lowski and Solomon [40, Lemma 3.2]). The solvable radical
of H is equal to S, and G/S is isomorphic to PGL(2, 5), PGL(2, 7), PΣL(2, 8), M10,
PSL(3, 4)∗, Aut(A6) or PΣL(2, 27).

Proof. Let S0 be the solvable radical of H. Set Ḡ = G/S0 and H̄ = H/S0 and note
that G has a subnormal non-abelian simple subgroup L̄ � H̄.

Supposing that CḠ(L̄) �= 1, we obtain a contradiction. Take an element c of CḠ(L̄)
of prime order. Then the group 〈c〉L̄ is a gap group, as c commutes with elements of L̄

and |π(L̄)| � 3 by [58, Theorem B]. There exist two elements x and y of L̄ of distinct
prime orders, coprime to the order of c. Then cx and cy are two NPP elements of distinct
orders. So, in particular, cx and cy are not real conjugate.

Set K = f−1(〈c〉L̄), where f : G → Ḡ is the natural homomorphism. By [57, Theo-
rem 1.2], K is also a gap group and K contains two elements that are not real conjugate
in G, which means that G satisfies the H-coset condition: a contradiction.

Therefore, CḠ(L̄) = 1, and thus L̄ = F ∗(Ḡ) �= Ḡ. Now, Lemma 7.6 describes the
possible cases for Ḡ. As the solvable radical S̄ of Ḡ is trivial, we see that S0 = S. �

Lemma 7.8. S �= 1 and G/S is not isomorphic to PΣL(2, 8), PΣL(2, 27), or M10.

Proof. By Lemma 7.7, S �= 1 and according to Lemma 7.4 and [40, Proposition 3.1],
G/S is not isomorphic to PΣL(2, 8), PΣL(2, 27) or M10. �

In the remaining part of the proof of Theorem 7.1, we shall frequently use the following
theorem, which goes back to [17, Proposition 8.3] or [40, Theorem 2.3].

Theorem 7.9 (Gorenstein et al . [17]; Pawa�lowski and Solomon [40]). If A ∼=
Zp ×Zp acts on an abelian q-group B for two distinct primes p and q, then B = 〈CB(a) |
a ∈ A � {0}〉, where CB(a) = {b ∈ B | ab = ba}.

Lemma 7.10. F (H) = F (G) and F (G) is a p-group for some prime p.

Proof. Since F (G) � S � H by Lemma 7.7, it holds that F (H) = F (G). Further-
more, since G does not satisfy the H-coset condition, H is an EP group, which means that
all elements of NPP(H) have the same order, and if K � H and K ∩NPP(H) �= ∅, then
NPP(H) ⊂ K. Therefore, by [40, Lemma 2.9], F (H) is a p-group for some prime p. �

Lemma 7.11 (Pawa�lowski and Solomon [40, Lemma 3.3]). S is a p-group for
some prime p.

Proof. Note that the perfect group H is an EP group and, by Lemma 7.7, H/S

is isomorphic to PSL(2, 5), PSL(2, 7), PSL(2, 9) or PSL(3, 4). Now, the proof of [40,
Lemma 3.3] can be applied for H, instead of G. Then we see that the solvable radical of
H, which is just S by Lemma 7.7, is a p-group. �
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Lemma 7.12 (Pawa�lowski and Solomon [40, Lemma 3.4]). S is either a 2-group
or an elementary abelian p-group for some odd prime p, and in the latter case, every NPP
element of H has order 2p.

Proof. Suppose that S is a p-group for an odd prime p. First, we show that S is
an elementary abelian p-group. Let K be a commutator subgroup of S. Since K is a
characteristic group, S acts on K and on S/K. Note that H contains Z2×Z2. If K �= {1},
then there exist two NPP elements x and y of H such that O2(〈x〉) � K and O2(〈y〉) �� K

by Theorem 7.9. Therefore, G satisfies the H-coset condition: a contradiction.
Thus, S is an abelian group. Let L be a subgroup of S generated by all elements of

S of order greater than p. Since L is also a characteristic group, an argument similar
to that above yields L = {1}. Therefore, S is an elementary abelian p-group. Again, by
Theorem 7.9, there exists an NPP element of H of order 2p. If there exists an NPP element
of order different from 2p, then G satisfies the H-coset condition: a contradiction. �

Following [40, p. 879], set Ḡ = G/S and H̄ = H/S. By Lemmas 7.7 and 7.8, S �= 1
and

• Ḡ ∼= PGL(2, 5), PGL(2, 7), Aut(A6) or PSL(3, 4)∗, and

• H̄ ∼= PSL(2, 5), PSL(2, 7), A6 or PSL(3, 4).

To complete the proof of Theorem 7.1, recall that, contrary to the conclusion in The-
orem 7.1, we have assumed that G does not satisfy the H-coset condition for H = Gsol.
In particular, H does not contain two NPP elements that are not real conjugate in G.

The arguments of [40, Lemmas 3.6–3.11] lead to a contradiction by showing that
there are two NPP elements in a coset xH of G that are not real conjugate in G. In [40],
Pawa�lowski and Solomon do not claim that 〈x〉H is a gap group (since it is not necessary),
but we can check this is true always when xH contains such NPP elements. As the
existence of such xH implies that G satisfies the H-coset condition (a contradiction), we
shall assume that each xH contains at most one real conjugacy class of NPP elements
of G. Now, Theorem 7.9 and Lemmas 7.10–7.12 allow us to argue under the hypotheses
of Lemma 7.4 to obtain rG = r(G,H). Consequently, the same arguments as in [40,
Lemmas 3.6–3.11] show that Ḡ cannot be as in (i): a contradiction. �

8. Proofs of Theorems A, B, and C

First, for a finite Oliver group G, we focus on the c-primary Smith set PSmc(G). By
setting k = 2 in Theorem 5.8, we see that if G satisfies the Gnil-coset condition, then
PSmc(G) �= 0. As PSmc(G) ⊆ LSm(G), Theorem A is true. Now, by pointing out two
groups in PSmc(G), we give a more complete description of the c-primary Smith set
PSmc(G).

Corollary 8.1. If a finite Oliver group G satisfies the Gnil-coset condition, then

0 �= PO(G, Gnil)gap�0 � PLO(G)gap�0 ⊆ PSmc(G).
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Proof. By Lemma 3.8 and Theorem 4.9 (the Smith Equivalence Theorem), the inclu-
sions both hold, and PO(G, Gnil)gap�0 �= 0 by Theorem 5.6 (Theorem 6.1, the Gnil-Coset
Theorem). �

Corollary 8.2. Let G be a finite non-solvable group not isomorphic to Aut(A6) or
PΣL(2, 27). Then the following five claims are equivalent:

(i) G satisfies the Gsol-condition;

(i′) G satisfies the Gnil-condition;

(ii) there are two or more real conjugacy classes of NPP elements of G, i.e. rG � 2;

(iii) PO(G, Gsol) �= 0, i.e. rG > r(G,Gsol);

(iii′) PO(G, Gnil) �= 0, i.e. rG > r(G,Gnil).

Proof. As Gsol � Gnil, (i) implies (i′) by Definition 5.1. Clearly, (i) and (i′) both
imply (ii). By Theorem 7.1 (the Non-solvable Group Theorem), (ii) implies (i), proving
that (i), (ii′) and (ii) are equivalent. In turn, by Lemma 3.4, (iii) and (iii′) both imply
(ii), and, by Lemma 5.3, (i) implies (iii), and (i′) implies (iii′), proving that (i), (i′), (ii),
(iii) and (iii′) are equivalent. �

As in Corollary 8.2, the claims (i′) and (ii) are equivalent, Theorem B is true.

Corollary 8.3. Let G be a finite non-solvable group. Then the following four claims
are equivalent:

(i) the c-primary Smith set PSmc(G) �= 0;

(ii) the Laitinen–Smith set LSm(G) �= 0;

(iii) the primary Smith set PSm(G) �= 0;

(iv) the number rG � 2 and G �∼= Aut(A6).

Proof. As PSmc(G) ⊆ LSm(G) ⊆ PSm(G), (i) implies (ii), and (ii) implies (iii). If
(iii) holds, then rG � 2 and G �∼= Aut(A6) by Lemma 2.3 and [29], respectively, proving
(iv). Moreover, (iv) implies (i) by Theorem 5.9, except for G = PΣL(2, 27), the case
covered by [30]. �

As in Corollary 8.3 the claims (ii) and (iv) are equivalent, Theorem C is true.
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Appendix A. Oliver and Solomon groups

The notion of the Oliver group was introduced by Laitinen and Morimoto [23]. A finite
group G is called an Oliver group if G is not of prime power order and the Oliver number
nG = 1.

According to Oliver [37], for a finite group G not of prime power order, nG = 1 if
and only if G does not contain a series of normal subgroups P � H � G such that P is
a p-group and G/H is a q-group for some primes p and q, possibly p = q, and H/P is
cyclic.

Example A 1. Examples of finite Oliver groups include

(i) nilpotent (e.g. abelian) groups with three or more non-cyclic Sylow subgroups,

(ii) the three solvable groups Z3 × S4, S3 × A4, (Z3 × A4) � Z2 of order 72,

(iii) all non-solvable (e.g. perfect, in particular, non-abelian simple) groups.

Theorem A 2 (Oliver [37]). A finite group G has a smooth fixed point free action
on a disc if and only if G is not of prime power order and nG = 1 (i.e. G is an Oliver
group).

Theorem A 3 (Laitinen et al . [25]; Laitinen and Morimoto [23]). Any finite
non-solvable group has a smooth action on a sphere with exactly one fixed point. A finite
group G has a smooth action on a sphere with exactly one fixed point if and only if G is
an Oliver group.

In [40, Classification Theorem, p. 847], by using the classification of finite simple
groups, Ronald Solomon has classified finite Oliver groups G with rG = 0 or 1.

Here, a finite group G is called a Solomon group if G is not of prime power order and
rG = 0 or 1.

According to [40, Theorem C1, p. 851], there are just fourteen finite simple Solomon
groups, including nine projective special linear groups PSL(n, q), the alternating group
A7, the Suzuki groups Sz(8) and Sz(32), and the Mathieu groups M11 and M22. More
precisely, a part of the result in [40, Theorem C1, p. 851] can be restated as follows.

Theorem A 4 (Pawa�lowski and Solomon [40]). Let G be a finite simple Solomon
group. Then the Smith set Sm(G) = 0 and G satisfies the 8-condition. Moreover, the
following two conclusions hold:

(i) if rG = 0, then G ∼= PSL(3, 4), Sz(8), Sz(32), or PSL(2, q) for q = 5, 7, 8, 9 or 17;

(ii) if rG = 1, then G ∼= PSL(3, 3), PSL(2, 11), PSL(2, 13), A7, M11 or M22.

Also, among the groups listed in the conclusions (i) and (ii), only the following four
groups contain elements of order 8: PSL(2, 17), PSL(3, 3), M11 and M22.

By Lemma 2.3, the primary Smith set PSm(G) = 0 for any finite group G with rG � 1,
but the Smith set Sm(G) may not be trivial even if rG = 0. For example, rG = 0 for
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G = Z2a with a � 1, and due to Cappell and Shaneson [4–6], Sm(Z4q) �= 0 for any
integer q � 2.

Theorem A 4 opposes Dovermann’s expectation that Sm(G) �= 0 for any finite Oliver
group G (see [52, Comment (2), p. 547]). Moreover, it contradicts the conjecture posed
by Dovermann and Suh [14, p. 44] asserting that once Sm(G) = 0 for a finite group G,
then also Sm(H) = 0 for any subgroup H of G. In fact, Sm(G) = 0 for G = PSL(2, 17),
PSL(3, 3), M11 or M22, and by [4–6], Sm(H) �= 0 for any cyclic subgroup H of G of
order 8.

Example A 5. Similar phenomena occur for the two Solomon groups GL(2, 3) and
PGL(2, 7) and their cyclic subgroups H of order 8: the Smith sets of GL(2, 3) and
PGL(2, 7) are trivial by Propositions 2.7 and 2.8, respectively, and Sm(H) �= 0 by [4–6].
However, as the group H is of prime power order, PSm(H) = 0 by Lemma 2.3.

Example A 6. For H < G, it may be that Sm(G) = 0 and PSm(H) �= 0. In fact,
due to the work of Morimoto [29], Sm(G) = 0 for G = Aut(A6). On the other hand, by
Theorem 2.10, PSm(H) �= 0 for any subgroup H of G isomorphic to S6 or PGL(2, 9).

By [43, Propositions 5.1–5.3], the following proposition holds.

Proposition A 7 (Pawa�lowski and Sumi [43]). The three groups Z3 ×S4, S3 ×A4

and (Z3 × A4) � Z2 of order 72 are solvable Oliver groups without elements of order 8.
Moreover,

(i) rG = 1 and Sm(G) = 0 for G = (Z3 × A4) � Z2,

(ii) rG = 2 and Sm(G) = 0 for G = S3 × A4, and

(iii) rG = 3 and Sm(G) ∼= Z for G = Z3 × S4.

In particular, G = (Z3 ×A4)�Z2 is a solvable Oliver–Solomon group with Sm(G) = 0,
and G = Z3 × S4 is a Laitinen group with PSm(G) = Sm(G) ∼= Z (see Proposition 1.6).

According to Theorem A 4, Sm(G) = 0 for any finite simple Solomon group G. There-
fore, one may pose the following problem.

Problem A 8. Is Sm(G) = 0 for any finite non-solvable Solomon group G?

According to [40, Classification Theorem, p. 847, Conclusion (9)], there exists a finite
solvable Oliver–Solomon group G with quotient Z8, and so, by [4–6], with Sm(G) �= 0.

Acknowledgements. We express our sincere thanks to the referee for careful read-
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