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Linear gyrokinetic simulations of magnetically confined electron–positron plasmas
are performed for the first time in the geometry and parameter regimes likely to be
relevant for upcoming laboratory experiments. In such plasmas, the density will be
sufficiently small as to render the plasma effectively collisionless. The magnetic field
will be very large, meaning that the Debye length will exceed the gyroradius by a
few orders of magnitude. We show the results of linear simulations in flux tubes
close to the current carrying ring and also in the bulk of the plasma, demonstrating
the existence of entropy modes and interchange modes in pair plasmas. We study
linear stability and show that in the relevant configurations, almost complete linear
stability is attainable in large swathes of parameter space.
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1. Introduction

The dipole magnetic field generated by a current-carrying circular coil is an
attractive confinement device for the study of electron–positron plasmas due to the
unique stability and transport properties it affords the trapped plasma (Helander
2014). In the near future, the first experiment aiming at this goal will be constructed
(Pedersen et al. 2012). Recently, efficient injection and trapping of a cold positron
beam in a dipole magnetic field configuration has been demonstrated by Saitoh et al.
(2015) using a supported permanent magnet. This result is a key step towards further
studies using a levitated magnetic coil with the ultimate aim of creating and studying
of the first laboratory electron–positron plasmas.

In this paper, we present the results of the first gyrokinetic simulations of electron–
positron plasmas in closed field-line systems, aiming to verify a number of theoretical
predictions in the literature (Mishchenko, Plunk & Helander 2018a) and extend these
results to experimentally relevant geometries and parameter regimes.
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2 D. Kennedy and others

It has been shown by Helander (2014) that pair plasmas possess unique gyrokinetic
stability properties due to the mass symmetry between the particle species. For
example, drift instabilities are completely absent in straight geometry, e.g. in a slab,
provided that the density and temperature profiles of the two species are identical
(‘symmetric’ pair plasmas). The symmetry between the two species is broken if
the temperature profiles of the electrons and positrons differ or there is an ion
contamination. In these regimes, drift instabilities can be excited even in unsheared
slab geometry (Mishchenko et al. 2018b). It has also been shown that instabilities
can be excited when symmetry is broken through relaxation of the quasineutrality
condition (Kennedy & Mishchenko 2019). In a sheared slab, pure pair plasmas are
prone to current-driven reconnecting instabilities (Zocco 2017), but there are no drift
waves. Note that asymmetry between the species is needed also in this case since
the ambient electron flow velocity must differ from the positron one for the ambient
current to be finite.

In contrast to slab geometry, a dipole magnetic field has finite curvature. In this case,
the symmetry between the species is broken by curvature drifts and the plasma can be
driven unstable by temperature and density gradients (Helander 2014), even without
ion contamination and for identical temperature profiles of the two species. This result
also persists in the electromagnetic regime (Helander & Connor 2016). The nonlinear
stability of point-dipole pair plasmas has also been addressed (Helander 2017) and
it can be shown that turbulent transport ought to be largely absent. More recently,
Mishchenko et al. (2018a) performed a detailed study of the gyrokinetic stability of
pure pair plasma in both the Z-pinch and point-dipole limits. Again, it was found
that such pair plasmas can be driven unstable by magnetic curvature, density and
temperature gradients. In this paper, we validate these previous results through the
use of a gyrokinetic code and, more importantly, show that many of the important
stability results persist in the geometry and parameter regimes which will be used for
the upcoming experiments.

In this paper, we use the gyrokinetic code GENE (Jenko et al. 2000) to study the
linear stability of electron–positron plasmas confined in a magnetic dipole. In § 2
we introduce the GENE code and the assumptions and modifications required to run
simulations of pair plasmas in the dipole geometry. In § 3 we introduce the dipole
geometry and the flux tubes which will be used in this study. Section 4 details some
of the computational challenges involved in implementing the dipole geometry for use
with GENE. In § 5 we show the results of simulations in an experimentally relevant
dipole geometry introduced previously. There are many excellent theoretical studies
of electron–ion plasmas in magnetic dipoles of both analytical and numerical flavours
e.g. Krasheninnikov, Catto & Hazeltine (1999), Simakov, Hastie & Catto (2000b),
Simakov et al. (2000a), Garnier, Kesner & Mauel (1999) and Kobayashi, Rogers
& Dorland (2010). These existing studies guide our search for the existence of the
entropy mode and interchange mode, both of which have been shown to exist in
electron–ion plasmas confined in dipole geometry. In § 6 we investigate the stability
of such systems for different temperature gradients and density gradients. We show
the results of numerical simulations for both the exact geometry and also the near-ring
limit of the Z-pinch and draw comparisons between these results and the analytical
results obtained in Mishchenko et al. (2018a). Section 7 is devoted to studying the
stability of electron–positron plasmas in experimentally relevant conditions, for the
first time exploring the stability of such plasmas in the regime where the Debye
length is orders of magnitude larger than the gyroradius. We present our conclusions
and outlook in § 7.
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Electron–positron plasma gyrokinetics 3

2. Physical assumptions
We will relegate a thorough discussion of laboratory pair plasmas to § 7 and will

first focus our attention on electron–positron plasmas where the density of each
species ns is sufficiently large compared to the Brillouin density limit

ns� nBs :=
ε0msΩ

2
s

2e2
s

. (2.1)

Here, ε0 is the vacuum permittivity, ms is the species rest mass, Ωs = esB/ms the
gyrofrequency, B the magnitude of the magnetic field and es the charge of each
species. In this limit, Debye shielding effects can be neglected. Such densities,
and indeed, such plasmas, are postulated to exist in astrophysics around compact
high-energy density objects where copious pair creation can occur.

In contrast, for the first laboratory electron–positron plasma, the aim is to produce
a symmetric pair plasma with species density in the range 1012 m−3 < n< 1013 m−3

and with a temperature T between 1 and 10 eV. The Debye length λD= (ε0T/2ne2)1/2

for such plasmas will therefore be of the order of a few mm and will exceed the
gyroradius ρ by two or three orders of magnitude provided the target magnetic field
of approximately B= 1 T is attained. A requirement for such a system to qualify as a
plasma is that it contains many Debye lengths and therefore the gyroradius ought to
be many orders of magnitude smaller than the macroscopic system length L, meaning
that any microinstabilities ought to be well described by conventional gyrokinetic
theory. That is, we are also declaring an interest in experimental plasmas satisfying
the ordering ρ � λD� L. We note that such a plasma will not satisfy the ordering
given in (2.1) as the Brillouin density nBs ≈ 1018 m−3 will exceed the plasma density
by several orders of magnitude.

In both of the scenarios we consider, the collision frequency is much larger than
the inverse of the expected confinement time, yet much smaller than the frequency
of typical microinstabilities. As such, it is reasonable to assume the local distribution
function for each species will be Maxwellian, and that the plasma can be treated as
being collisionless. Furthermore, a plasma with the parameters quoted above will have
a very low value of β = 4µ0nT/B2 and so throughout this paper we have considered
only electrostatic simulations.

The GENE code can handle plasmas of different mass ratios by changing the mass
of the lighter species (electrons). Electron–positron plasma is obtained when the mass
of the electrons is equal to the mass of the singly charged ion species – thus obtaining
charge asymmetry and a mass ratio of unity. Pair plasmas have already attracted some
attention using the GENE code (Kennedy et al. 2018) and are well benchmarked
against similar gyrokinetic codes such as GS2 (Pedersen et al. 2003) and ORB5 (Horn-
Stanja et al. 2019) which have been used to study electron–positron plasmas in a
tokamak geometry. Here, we expand on existing studies by studying the gyrokinetics
of pair plasma in experimentally relevant geometry for the first time.

In this work we will focus on electron–positron plasmas with the same temperature
and density profiles and hence the species index, s, will be supressed throughout the
following exposition where appropriate.

3. Gyrokinetics of electron–positron plasmas
Electron–positron plasmas are well described by gyrokinetic theory. GENE is an

Eulerian δf code which splits the full distribution of the gyrocentres into a static
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4 D. Kennedy and others

background equilibrium function F0 plus a perturbation g. In this work, GENE is used
to solve the normalised, linear, electrostatic gyrokinetic equation which, in field-line
following coordinates (x, y, z), can be written in the form

∂g
∂t
=L[g], (3.1)

with the linear operator

L[g] = −
(
ωn +

(
v2
‖
+µB0 −

3
2

)
ωT

)
F0ikyφ̄ +

vth

JB0
v‖Γz (3.2)

−
T0(2v2

‖
+µB0)

esB0
(KyΓy +KxΓx)+

vth

2JB0
µ
∂

∂z

(
B0
∂g
∂v‖

)
. (3.3)

Details of the non-dimensionalisation can be found in Jenko et al. (2000) and
references therein.

The auxiliary fields required by the code are

Γx,y = ikx,yg+
es

T0
F0ikx,yφ̄, Γz =

∂g
∂z
+

es

T0
F0
∂φ̄

∂z
, (3.4a,b)

with φ̄ the gyroaveraged electrostatic potential, B0 the equilibrium magnetic field
and kx and ky are the components of the perpendicular wave vector. Other standard
notation employed here is

µ=
m(v2

x + v
2
y )

2B0
, vth =

√
2T0

m
. (3.5a,b)

Besides the variation of the magnetic field, the most important equilibrium quantities
entering the gyrokinetic equations are the gradient terms ωn and ωT and the curvature
terms Kx and Ky. The role of these terms is elucidated below.

The gyrokinetic equation (3.1) is supplemented by Poisson’s equation for the
electrostatic potential which reads(

k2
⊥
λ2

D +
∑

s

e2
s

Ts
n0s(1− Γ0(bs))

)
φ =

∑
s

n0sπesB0

∫
J0(λs)gs dv‖ dµ, (3.6)

where J0 is the Bessel function of the first kind, I0 is the modified Bessel function
of the first kind, Γ0(bs) = exp(−bs)I0(bs) and the dimensionless arguments of these
functions are given by

bs =
Tsms

e2
s B2

0
k2
⊥
, λs =

vth

Ωs
k⊥
√

B0µ. (3.7a,b)

3.1. Debye shielding and finite-Larmor-radius effects
Initially we will consider plasmas with very small Debye length kyλD�1. Under these
conditions, the polarisation density response is the dominant term on the left-hand side
of Poisson’s equation.

Later, in § 7, we will specialise to more experimentally relevant conditions and
replace finite-Larmor-radius (FLR) effects with Debye shielding.
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3.2. Density- and temperature-gradient terms in the gyrokinetic equation
In this work, we will focus on modes with length scales that are much smaller than
those of the equilibrium quantities. As such, GENE is operated in a flux-tube mode,
where a computational domain is constructed around a single magnetic field line and
the profiles and gradients involved in the gyrokinetic equation are treated as constants.

Instabilities in pair plasmas are driven by a combination of density gradients,
temperature gradients and magnetic curvature. The terms responsible for these features
can easily be identified in the gyrokinetic equation (3.1). In our flux-tube geometry,
the density and temperature gradients are given by

ωn =
a
Ln
=−

r?
n0

dn0

dx
, ωT =

a
LT
=−

r?
T0

dT0

dx
(3.8a,b)

and are assumed to be constant. Here, r? is a normalising length scale.

3.3. Geometric terms in the gyrokinetic equation
The geometry of the problem enters the gyrokinetic equation (3.1) through the terms
Kx and Ky which are combinations of dimensional factors involving elements of the
metric tensor gij.

Kx =−
r?
B?

(
∂B0

∂y
+
γ1

γ2

∂B0

∂z

)
, Ky =−

r?
B?

(
∂B0

∂x
−
γ3

γ1

∂B0

∂z

)
, (3.9a,b)

where the abbreviations

γ1 = g11g22
− g21g12, γ2 = g11g23

− g21g13, γ3 = g12g23
− g22g13, (3.10a−c)

for the geometric factors have been introduced. In this formulation x, y, γ2 and γ3 are
dimensional.

The geometry also plays a role through the inclusion of J, the Jacobian matrix
for the transformation between the polar coordinate representation (r, θ, z) and the
local flux-tube coordinates (x, y, z) used by GENE. Furthermore, the variation of the
magnetic field and its variation along the field line must also be supplied to GENE.

It is important to note that there are a number of freely scalable parameters inherent
in the system of equations. Namely some appropriate length scale r? and magnetic
field value B? much be chosen in order to provide the metric quantities required by
GENE in the appropriate normalisation. These normalising factors also appear in the
equation for the Jacobian and magnetic field. The formulae for these quantities and
details on the numerical implementation can be found in appendices A–B.

4. Implementation of the dipole geometry

The main focus of this work is on the simplest magnetic geometry for a pair-plasma
experiment, namely that of a magnetic dipole. In practice, such a field will be created
by passing a current through a levitated superconducting coil, the feasibility of which
has previously been demonstrated in the levitated dipole experiment (Boxer et al.
2010).
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4.1. Magnetic flux tubes in dipole geometry
In standard cylindrical coordinates (r, ϕ, z) the magnetic field of a circular conducting
loop with radius r0 carrying a total current I is given by

B(r, z)=∇ψ(r, z)×∇ϕ, ∇ϕ =
eϕ
r
, (4.1)

with the poloidal magnetic flux ψ given by

ψ(r, z)=
µ0I
2π

√
(r0 + r)2 + z2

[
r2

0 + r2
+ z2

(r0 + r)2 + z2
K(κ)− E(κ)

]
, (4.2)

where µ0 is the permeability of free space and we have introduced the quantity

κ =

√
4r0r

(r0 + r)2 + z2
, (4.3)

and also the elliptic integrals of the first and second kind

K(κ)=
∫ 1

0

dx
√
(1− x2)(1− κx2)

, E(κ)=
∫ 1

0

√
1− κx2
√

1− x2
dx. (4.4a,b)

In order to construct the computational domain, an appropriate set of field-line
following coordinates must be chosen. Denoting ψmax the poloidal magnetic flux at
the inner boundary and ψmin the poloidal flux at the outer boundary of the domain
considered, we can choose convenient magnetic coordinates as follows:

s=
ψ −ψmax

ψmin −ψmax
, θ =

2πl
L0
−π, (4.5a,b)

where l is the length along the flux tube and L0 is the length of the field line. For a
dipole magnetic field, θ is the field-line following coordinate.

From these quantities, one can calculate the various metric coefficients required by
the GENE code in this coordinate system. The flux-tube geometry is then computed
using a field-line tracing Runge–Kutta method to construct the required quantities at
all points inside the flux-tube domain.

dr
dl
=

Br(r, z)
B(r, z)

= br,
dz
dl
=

Bz(r, z)
B(r, z)

= bz, r(0)= rc, z(0)= 0, (4.6a−d)

where l is the length measured along the field line and rc labels the chosen flux
surface.

The advantage of this implementation is the freedom to consider a number of
different flux tubes, using the radial distance, rc = c?r0 to the point where the field
line crosses the equatorial plane as a free parameter (i.e. varying c?). The magnetic
field lines relevant to our studies are shown in figure 1. The central field line is
located near the bulk of an expected electron positron plasma and is characterised by a
reasonably strong magnetic field variation along the field line Bmax/Bmin≈ 5. Hereafter,
we will refer to the flux tube surrounding this field line as the ‘dipole flux tube’.

We are also able to make great use of the freedom afforded to us to consider
simulations using different field-line geometries. We are able to increase the value
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(a) (b)

FIGURE 1. Illustrative example of a single magnetic field line (a) and the variation of
the magnetic field strength along the field line (b) for different values of the parameter rc.
As this parameter is varied we can change the flux tube from one resembling a Z-pinch
geometry to one resembling a point-dipole limit.

of rc and push towards the far field limit in which the magnetic field line approaches
that of a point dipole with a much stronger variation of the magnetic field along
the field line Bmax/Bmin ≈ 20 and beyond. This is a useful feature and can give us
an understanding of how the geometry affects the various properties of the system.
Pushing the geometry to these extreme limits comes with its own fair share of
computational challenges described below.

Another limiting case to which we will pay particular attention is that of the
near-ring limit. As we approach the superconducting ring, the parallel variations
and trapped particles become negligible and the field lines become circular. As a
result, the system becomes approximately equivalent to that of a Z-pinch. This is a
particularly important limit for two main reasons. Firstly, an exact Z-pinch geometry
has already been implemented in GENE by Navarro, Teaca & Jenko (2016) and has
been used in studies of electron–ion plasmas. This geometry allows us to benchmark
our dipole geometry against these existing results for an electron–ion plasma and
also provides us with an exact Z-pinch for electron–positron studies, noting that
whilst our geometry can come very close to an exact Z-pinch Bmax/Bmin ≈ 1.016, we
cannot reach this point exactly as the coordinate transforms become singular leading
to difficulties in the code (this can be seen from a near-zero Jacobian in figures 2
and 3). Secondly, a tractable analytic theory of linear stability in the Z-pinch limit
exists (Mishchenko et al. 2018a), once again allowing us to benchmark both our
geometry and the physics aspects of electron–positron simulations.

4.2. Computational challenges with the dipole geometry
During the implementation of the dipole geometry in the GENE code, several issues
were encountered pertaining to time-stepping and convergence issues within the code,
as well as a dependence on certain computational libraries.

Firstly, in order to probe different flux tubes, the code must be capable of
calculating the different metric quantities at different points in space: both very
close and very far to the current-carrying ring. In order to avoid the use of external
libraries, the Elliptic integrals were estimated as a sum of rational functions through
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8 D. Kennedy and others

(a) (b)

FIGURE 2. Variation of the magnetic field strength (a) and the Jacobian (b) for the three
different flux tubes. The magnetic field strength is normalised to the inboard midplane.

(a) (b)

FIGURE 3. Variation of the magnetic field strength (a) and the Jacobian (b) for the three
different flux tubes. The magnetic field strength is normalised to the outboard midplane.

use of the Padé approximation (Luke 1968). That is, the approximations

K(κ)≈
π

2
k4(κ), E(κ)≈ g3(κ), (4.7a,b)

where

k4(x) :=
1
5
+

8(8− 5κ2)

25(5(2− κ2)2 − 4)
+

64(32− 5κ2)

25(5(8− κ2)2 − 64)
+

128(16− 5κ2)

25(5(16− κ2)2 − 1024)
(4.8)

and

g3(κ) :=
1
8
+

32− 4κ2

κ4 − 32κ2 + 128
+

8− 2κ2

κ4 − 16κ2 + 32
+

4− 3κ2

4(κ4 − 8κ2 + 8)

−
κ3
− 8κ2

+ 32
2(κ4 − 16κ3 + 64κ2 − 128)

+
κ3
+ 8κ2

− 32
2(κ4 + 16κ3 + 64κ2 − 128)

(4.9)

were employed.
These approximations introduce an error in each of the metric quantities required

by GENE. Typically, this error is too small to calculate accurately, further details can
be found in Luke (1968).
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Parameter Description

r0 Radius of the current-carrying ring.
c? Determines radius at which the flux tube cuts the equatorial plane. rc= c?r0.
r? Normalising length scale.
B? Normalising magnetic field strength.

TABLE 1. Parameters which must be supplied in order to construct the computational
domain using the routines described in appendices A–B.

Secondly, there were a number of computational issues relating to the appropriate
choice of normalisation for each of the metric quantities required by GENE. The
metric elements required had to first be normalised to some appropriate reference
length scale r? and some appropriate reference magnetic field strength B?. An inherent
feature in the dipole geometry is that the magnetic field strength can vary along the
field line by orders of magnitude and similarly the length scales in the problem
can vary by an order of magnitude when we are interested in pushing the geometry
very close to, or very far from, the current-carrying coil. As such, certain choices of
normalisation lead to either very large or very small values for each of the metric
quantities.

In particular, issues were found when the choice of normalisation led to the
transformation between cylindrical coordinates and the field-line following coordinates
having a normalised Jacobian Ĵ = J/(B?r?) or a magnetic field B̂ = B/B? variation
many orders of magnitude smaller or larger than would be found in say a tokamak
or stellarator. This led to time-stepping issues in the code which uses an adaptive
time-stepping scheme based on the value of the Jacobian. The variations of the
normalised magnetic field strength and the Jacobian along the flux tube for different
normalisations can be seen in figures 2 and 3.

4.3. Numerical set-up
Henceforth, we will consider only two flux-tube geometries: (i) The ‘dipole flux tube’
with rc = 1.2r0. This field line has a moderate variation of the magnetic field along
the flux tube. We take the normalisation as detailed in figure 2, which has a moderate
variation of both B̂ and Ĵ along the field line. (ii) The exact Z-pinch geometry of
(Navarro et al. 2016). For convenience, the relevant parameters which need to be
supplied to GENE in order to construct the flux tube are shown in table 1.

In this work, GENE is operated using the eigenvalue solver (Roman et al. 2009)
to analyse the spectrum of the linear gyrokinetic operator given in (3.3). Spectral
transforms are then used to return the eigenvalue associated with the most unstable
mode. Interestingly, we often found two ‘most unstable’ modes (two instabilities with
the same growth rate, propagating in opposite directions).

The numerical resolution in the field-line following direction is 128 grid points,
while 16 and 8 grid points are employed for the parallel velocity and magnetic
moment directions respectively. GENE employs numerical dissipation (hyperdiffusion)
in order to retain physicality of the simulation results. The need for these terms arises
from numerical effects, such as zigzag-like mode growth, due to the finite difference
schemes employed by the code. In this work, we employ a hyperdiffusion in the
parallel direction in both physical space D‖4 and in velocity space Dv‖

4 . Hyperdiffusion
is included by adding terms involving higher-order derivatives to the differential
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operator in the gyrokinetic equation

D‖4 =−ε‖

(
1z
2

)4

∇
4
‖
, Dv‖

4 =−εv‖

(
1v‖

2

)4
∂4

∂v4
‖

. (4.10a,b)

We have set the strength of the hyperdiffusion to εv‖ = 0.2 for the parallel velocity
and to ε‖ = 0.25 in the parallel direction, guided by the studies performed by
Pueschel, Dannert & Jenko (2010). We also performed simulations employing different
hyperdiffusivity values and found no considerable change in the results.

5. Instabilities in the dipole system
We have performed the first linear simulations of electron–positron plasmas in

dipole geometry with an intermediate variation of the magnetic field along the
flux tube. It is perhaps pertinent to start this section with a caution, electron–positron
plasmas do indeed posses remarkable stability properties and there are many examples
one could show of stable pair plasmas for a range of different parameters. In this
section we will focus entirely on unstable cases in order to demonstrate the different
modes which exist in such plasmas.

5.1. Linear instabilities, entropy and interchange modes
Based on work done previously by Simakov et al. (2000b) and Kobayashi et al.
(2010) we anticipate finding two main instabilities in a ring dipole system, namely
interchange mode at large scales and entropy modes at smaller scales. Both of these
instabilities are driven by a combination of temperature gradients, density gradients
and magnetic curvature.

One can see the transition between the two modes by performing a scan over kyρ
in an unstable parameter region. In figure 4 we show the results of such a scan.
Immediately clear is the transition between the two types of modes occurring around
kyρ≈0.3 in the Z-pinch case and around kyρ≈3 in the dipole case. It is not surprising
that there is a large discrepancy in the numerical values kyρ where this transition
occurs between the two geometries, this was also observed by Kobayashi et al. (2010)
and is due to the choice of normalisation. Given an appropriate normalisation of the
dipole geometry, the two plots can be made both qualitatively and quantitatively
similar.

We also remark that our simulations also obey the results found in Kennedy et al.
(2018) that the most unstable mode is purely growing i.e. has zero frequency.

We observe qualitatively similar results when comparing between the dipole and
Z-pinch cases. This is similar to what was observed for conventional plasmas by
Kobayashi et al. (2010) using the gyrokinetic code GS2 and the numerical differences
can be traced back to differences in normalisation. A similar result can also be found
by solving the dispersion relation in the Z-pinch case (Mishchenko et al. 2018a).

5.2. Implications for nonlinear pair-plasma studies
Of much interest for the experimental campaign will be studies of the turbulence and
transport in pair plasmas confined in closed field-line geometries. The GENE code
has been used extensively to study nonlinear physics in fusion plasmas in standard
geometries, but we believe that the mode spectra obtained here suggest that the local
flux-tube model we have employed will not be sufficient for nonlinear studies in the
dipole.
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(a) (b)

FIGURE 4. Growth rate γ and real frequency ω plotted as a function of kyρi for different
flux tubes. Note the different ordinate scales due to the different length scales introduced
by the choice of normalisation.

The problematic peaking of the mode spectra for very small kyρ (as seen in figure 4)
has also been observed in fusion plasmas for kinetic ballooning mode (KBM) studies.
In the KBM case this spectral feature leads to issues of saturation and resolution in
turbulence studies. Recently, it was shown (Ishizawa et al. 2019) that the use of a
global code can overcome these issues and it is our hope that this is also the case for
studies of electron–positron plasmas.

It seems that despite the mass-ratio simplification, the nonlinear theory of electron–
positron plasma confinement in a magnetic dipole is a complex non-local multi-scale
problem. In the future, this should be addressed through the implementation of a
global dipole geometry in a gyrokinetic code such as GENE.

6. Linear stability in parameter space
Of primary interest from an experimental perspective, is the validation of several

analytical studies which predict superb linear stability properties in large regions of
temperature-gradient, density-gradient space. Often, these analytical predictions are
obtained by taking suitable asymptotic limits of the dipole geometry in order to
obtain a tractable gyrokinetic theory.

6.1. Comparison with dispersion relation
In order to benchmark our stability studies we first turn our attention to the Z-pinch
geometry in order to make comparisons to the theory obtained by Mishchenko et al.
(2018a). This is also an experimentally relevant geometry. In the region close to the
current loop, the dipole magnetic field is approximately that of a Z-pinch.

r− r0

r0
∼

z
r0
∼
ρ

r0
� 1. (6.1)

In this regime, one can take field-line average of the linear gyrokinetic equation and
perform the velocity space integrals analytically in order to obtain the dispersion
relation

1+ k2
⊥
λ2

D=
1
2
(D++D−), D±=

1
√

π

∫
Ω ∓ΩT

?

Ω ∓ x2
⊥/2∓ x2

‖

exp(−x2)x⊥ dx⊥ dx‖, (6.2a,b)
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where we have adopted the notation of Mishchenko et al. (2018a) and introduced ωd=

ω̂d(x2
‖
+ x2

⊥
/2), Ω = ω/ω̂d, x =

√
x2
‖ + x2

⊥, Ω
T
? = ω

T
? /ω̂d = Ω?[1 + η(x2

− 3/2)], η =
d ln T/d ln n and Ω? = ω?/ω̂d. This dispersion relation can be solved numerically in
order to probe the linear instability features.

In this paper we will be primarily interested in limits of this equation where we
are able to deduce regions of linear stability in (ω?, ωT

? ) space. At k⊥λD . 1, the fluid
limit Ω� 1 can be applied to (6.2) and from this equation we can deduce the ‘fluid
instability condition’ which states that we require

ω?

ω̂d
(1+ η) >

7
4

(6.3)

for an instability.
One can also use equation (6.2) to derive the ‘resonant stability boundary’

(Mishchenko et al. 2018a) by taking Ω→ 0 to obtain

ω?

ω̂d
(1− η)=

1+ k2
⊥
λ2

D

π
. (6.4)

Having obtained a complete linear stability map for electron–positron plasmas in a
Z-pinch analytically, we are now provided with an opportunity to benchmark electron–
positron plasma simulations using the existing Z-pinch geometry implemented in
GENE.

In figure 5 we reproduce the results of solving the dispersion relation (6.2) from
Mishchenko et al. (2018a). Also in figure 5 we show the same stability diagram
obtained from linear gyrokinetic simulations with GENE. The agreement shown is
remarkable. GENE is able to fully capture the linear stability features for the exact
Z-pinch.

6.2. Comparison with the ring dipole
Of more interest to us, is the comparison of the linear stability diagram obtained from
the Z-pinch to the more experimentally realistic geometries of our dipole flux tube.
We can also investigate how the features of the stability diagram change depending
on whether we are in the low or high ky branch of the instability.

We show the stability diagrams for the low and high ky branches for (i) the
ring dipole and (ii) the Z-pinch in figure 6. As before, the qualitative features of
each of the stability diagrams is the same in each ky regime, with the difference in
growth rates, gradients and kyρ values being once again due to the differences in
normalisation. In these instances, the values kyρ are chosen from the scans detailed
for example in figure 4. In each geometry we see that we are able to capture the
stability triangle in the lower left-hand corner.

It is also important to point out that the stability diagram scales with the value
of kyρ. From Mishchenko et al. (2018a) (their equation (5.25)) we see that, the
dispersion relation for the point dipole, in the limit ω/2ω̃d→∞, becomes

ω2
=−

2ω̃2
d

〈k2
⊥λ

2
d〉

[
ωT +ωn

ω̃d
− 5
]
, (6.5)

where ω̃d is the bounce-averaged drift frequency and the angular brackets denote a
field-line average. From this equation, one can see the threshold for the transition
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(a) (b) (c)

(d) (e) (f)

FIGURE 5. Stability diagram for several values of k⊥λD, (a–c), computed by solving the
dispersion relation (these figures are reproduced from Mishchenko et al. (2018a) with
permission). Also shown are the stability diagrams for several values of k⊥ρs, (d–f ), this
time calculated using GENE. Theoretical stability boundaries are also shown in each figure.
The colour of the density plot corresponds to numerically obtained growth rate. The region
of stability bordered by a solid black contour in each case. We note the outstanding
agreement between the use of GENE and the previous results using the linear dispersion
relation. In the second set of stability diagrams, k⊥ρs is playing the role of k⊥λD, which
is set to zero in GENE. The theoretical stability lines (dashed red, and dashed green)
correspond respectively to (6.3) and (6.4). Once again we note that that the deviation
from the red theoretical stability boundary (which does not include finite-k⊥ρs corrections)
decreases as k2

⊥
ρ2

s → 0, although surprisingly slowly. In the GENE simulations, the region
of stability is white and is bordered by a solid black contour.

from entropy to interchange mode. One can also see clearly the role played by the
wavenumber, larger values of kyρ, one would need larger temperature and density
gradients to push the system unstable.

It is interesting to see that the solver seems to have issues picking out the entropy
mode for low kyρ values, as can be seen by the non-smoothness of the stability region.

7. Finite-Larmor-radius effects and Debye shielding
We remarked earlier that in the planned series of electron–positron experiments, we

are expecting to be operating in the rather unique regime where

ρs� λD� L, (7.1)

where L is the macroscopic system length. As such, it is fitting to examine the
influence of neglecting FLR effects, effectively taking the Larmor radius to zero and
investigating the effects of finite Debye shielding on the plasma stability.
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(a) (b)

(c) (d)

FIGURE 6. Stability diagram for several values of k⊥ρs, for the Z-pinch (a,b) and for the
dipole (c,d). The colour of the density plot corresponds to numerically obtained growth
rate this time calculated using GENE simulations. The region of stability is white and
bordered by a solid black contour.

7.1. Gyrokinetic equations in the large Debye length limit
In the limit of zero Larmor radius we have, bs→ 0, λs→ 0 and hence we can use
the leading-order asymptotic behaviour of the Bessel functions to replace J0 = 1 and
Γ0 = 1 in the gyrokinetic equation (3.1) and in Poisson’s equation (3.6) to obtain the
drift-kinetic equation

∂g
∂t
=L[g], (7.2)

with the linear operator and auxiliary fields as given in (3.1) and (3.4), whilst also
making use of the identity φ̄ = φ in the vanishing-Larmor-radius limit. This equation
is also supplemented by the appropriate version of Poisson’s equation

k2
⊥
λ2

Dφ =
∑

s

n0sπesB0

∫
gs dv‖ dµ. (7.3)

GENE is also able to solve this system of equations.

7.2. Stability in the λD� ρ regime
In figure 7 we show the results of scanning over the perpendicular wavenumber with
FLR effects neglected. The instability is suppressed for large values of k⊥λD even in
the absence of FLR effects.

This result is further emphasised in figure 8 where we see that including a large
Debye length has hugely increased the region of absolute linear stability for the
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FIGURE 7. Growth rate and frequency of the entropy mode as a function of kyλD for
a large Debye length plasma in the Z-pinch. Note that, in agreement with theoretical
prediction, the instability is quashed for large values of the Debye length.

(a) (b)

FIGURE 8. Stability diagram for several values of kyλD for a large Debye length plasma in
the Z-pinch. The colour of the density plot corresponds to numerically obtained growth
rate this time calculated using GENE simulations. The region of stability is white and
bordered by a solid black contour.

short-wavelength modes. This is a regime which is inaccessible to fusion experiments.
The very low density expected in electron–positron plasmas should cause the Debye
length to be large enough to stabilise short-wavelength modes (Helander 2014). It
should be pointed out that increasing the Debye length shifts the stability lines
present in the previous figures in the positive gradient directions as can be seen from
(6.3) and (6.4). That is, the stability map shown in figure 8(b) could be made to
look identical to that in panel (a) by scanning over larger values of the density and
temperature gradients.

There is a simple analytical reason for these observations, pertaining to the threshold
for both the entropy mode and the interchange mode. Namely, these results follow
immediately from (6.5) which predicts the threshold for which the interchange mode
becomes Landau damped. In this regime, larger density and temperature gradients
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would be required to drive instability in the system. Indeed, it seems that the electron–
positron plasmas of experimental interest certainly will enjoy the remarkable stability
properties predicted in simpler geometries.

8. Outlook and conclusions
In this work, we have implemented a dipole geometry, for use with the gyrokinetic

code GENE, to study linear electrostatic gyrokinetic modes in a pair plasma confined
in a magnetic dipole. We have studied both an experimentally relevant flux tube
representative of a true experimental dipole system such as is planned in upcoming
pair-plasma experiments, and also the near-ring limit of a Z-pinch for benchmarking
purposes. Similar to existing studies in electron–ion plasmas, we find that the general
features of electrostatic drift modes in dipole configuration pair plasmas are similar
to those found in Z-pinch pair plasmas, with numerical differences originating in the
choice of normalisation, i.e. we find that both interchange and entropy modes are
present in the system.

We were able to use Z-pinch geometry in order to reproduce and validate existing
analytic theory on the stability of electron–positron plasmas for different temperature
and density gradients. This feature is in essence what will guide the next steps
in this research. Namely, the analytic theory also predicts inward particle transport
Helander & Connor (2016) in such systems and we aim to validate this with nonlinear
simulations of electron–positron plasmas, using a global gyrokinetic code, in the
immediate future.

Of critical importance to the upcoming experiments, we have shown that the
remarkable stability properties thus far predicted and investigated for approximate
geometries do indeed hold true in the more complicated geometry of the magnetic
field due to a current-carrying circular coil. We have also been able to confirm that the
large Debye length expected in such plasmas due to the very low densities available,
should indeed be sufficient to stabilise short-wavelength modes and that, crucially,
the first terrestrial electron–positron plasmas ought to enjoy splendid confinement.
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Appendix A. Magnetic field derivatives in polar coordinates
In the following appendices, we describe how the various different metric quantities

required by GENE are calculated using the input values given in table 1.
In cylindrical coordinates, one can write

ψ(r, z)=
µ0I
2π

√
(r0 + r)2 + z2

[
r2

0 + r2
+ z2

(r0 + r)2 + z2
K(κ)− E(κ)

]
, (A 1)

κ =

√
4r0r

(r0 + r)2 + z2
, B(r, z)=∇ψ(r, z)×∇ϕ, ∇ϕ =

eϕ
r
, (A 2a−c)

where we have defined

α2
= (r0 − r)2 + z2, β2

= (r0 + r)2 + z2, κ2
= 1− α2/β2, C=

µ0I
π
. (A 3a−d)
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Following Simpson et al. (2001), one can then write down the magnetic field
components

Br =
Cz

2α2βr
[(r2

0 + r2
+ z2)E(κ2)− α2K(κ2)], (A 4)

Bz =
C

2α2β
[(r2

0 − r2
− z2)E(κ2)+ α2K(κ2)], (A 5)

and the derivatives of the magnetic field

∂Br

∂r
= −

Cz
2r2α4β3

{[r6
0 + (r

2
+ z2)2(2r2

+ z2)+ r4
0(3z2

− 8r2)

+ r2
0(5r4

− 4r2z2
+ 3z4)] E(κ2)

−α2
[r4

0 − 3r2
0r2
+ 2r4

+ (2r2
0 + 3r2)z2

+ z4
]K(κ2)}, (A 6)

∂Br

∂z
=

C
2rα4β3

{[(r2
0 + r2)(z4

+ (r2
0 − r2)2)+ 2z2(r4

0 − 6r2
0r2
+ r4)]E(κ2)

−α2
[(r2

0 − r2)2 + (r2
0 + r2)z2

]K(κ2)}, (A 7)

∂Bz

∂z
=

Cz
2α4β3

{[6r2
0(r

2
− z2)− 7r4

0 + (r
2
+ z2)2]E(κ2)+ α2

[r2
0 − r2

− z2
]K(κ2)}, (A 8)

∂Bz

∂r
=
∂Br

∂z
, Bϕ = 0,

∂Br

∂ϕ
=
∂Bz

∂ϕ
= 0. (A 9a−c)

The derivatives of the magnetic flux can then be written as follows.

∂ψ

∂r
= rBz,

∂ψ

∂z
=−rBr,

∂2ψ

∂r2
= Bz + r

∂Bz

∂r
,

∂2ψ

∂z2
=−r

∂Br

∂z
(A 10a−d)

∂2ψ

∂r∂z
= r

∂Bz

∂z
=−Br − r

∂Br

∂r
, ∇ ·B=

∂Br

∂r
+

Br

r
+
∂Bz

∂z
. (A 11a,b)

Note that, taking into account ∂Br/∂z = ∂Bz/∂r and using the definitions of the
magnetic flux derivatives, one arrives at the Grad–Shafranov equation for the low-beta
(p≈ 0) dipole geometry (F= rBϕ = 0).

∆∗ψ =
∂2ψ

∂r2
−

1
r
∂ψ

∂r
+
∂2ψ

∂z2
=−µ0r2 dp

dψ
−

1
2

dF2

dψ
= 0 ⇔

∂2ψ

∂r2
+
∂2ψ

∂z2
= Bz. (A 12)

Note also the condition of no ambient current outside the current ring:

∇×B= 0, (∇×B)r = 0, (∇×B)ϕ =
∂Br

∂z
−
∂Bz

∂r
, (∇×B)z = 0. (A 13a−d)

These derivatives are used in the calculation of the various metric quantities required
by GENE, which are detailed in appendix B.

Appendix B. Metric coefficients in flux-tube coordinates
For use in GENE, various metric quantities need to be supplied through the

geometry interface, GIST (Xanthopoulos et al. 2009). For the dipole system
considered, we will find it useful to employ the magnetic coordinate system (s, α, θ),
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defined below. These quantities are then given to GENE and transformed into the
appropriate local coordinate system directly, to construct the computational domain.
The elements required by GENE are

ĝ11 = ∇̂s · ∇̂s=
(

r∗
ψmin −ψmax

)2

∇ψ · ∇ψ =
1

(B∗r∗)2
∇ψ · ∇ψ, (B 1)

ĝ12 = ∇̂s · ∇̂α = 0, (B 2)

ĝ22 = ∇̂α · ∇̂α = r2
∗
|∇ϕ|2 =

r2
∗

r2
, (B 3)

Ĵ = [(∇̂s× ∇̂α) · ∇̂θ ]−1
=−

B∗
r∗
[(∇ψ ×∇θ) · ∇ϕ]−1, (B 4)

B̂=
B
|B∗|

,
∂B̂
∂θ
=

1
B∗

∂B
∂θ
, (B 5a,b)

L̂1 =

(
b×
∇̂B̂

B̂

)
· ∇̂s= 0, (B 6)

L̂2 =

(
b×
∇̂B̂

B̂

)
· ∇̂α =−r2

∗

(
b×
∇B
B

)
· ∇ϕ. (B 7)

Again, in order to calculate these quantities one must calculate various derivatives.
Once again introducing r0 as the radius of the circular current loop creating the

magnetic field, I the current flowing in the loop, ψmax the poloidal magnetic flux at
the inner boundary and ψmin the poloidal flux at the outer boundary of the domain
considered. We choose the magnetic coordinates as follows:

s=
ψ −ψmax

ψmin −ψmax
, θ =

2πl
L0
−π. (B 8a,b)

For a dipole, θ is the field-line following coordinate and l parameterises the length
along the field line. We have normalised the length to the properly chosen r∗
(e.g. r∗ = r0), and the magnetic field to B∗ given by

B=∇ψ ×∇ϕ =−B∗∇̂s× ∇̂ϕ = B∗∇̂s× ∇̂α (B 9)

∇̂= r∗∇, B∗ =
ψmax −ψmin

r2
∗

, α =−ϕ. (B 10a−c)

The derivative of the magnetic field strength along the field line, ∂B/∂θ , is given by

∂B
∂θ

∣∣∣∣
ψ

=
1
B

(
Br
∂Br

∂θ

∣∣∣∣
ψ

+ Bz
∂Bz

∂θ

∣∣∣∣
ψ

)
. (B 11)

Hence,
∂Br

∂θ

∣∣∣∣
ψ

=
∂Br

∂r

∣∣∣∣
z

∂r
∂θ

∣∣∣∣
ψ

+
∂Br

∂z

∣∣∣∣
r

∂z
∂θ

∣∣∣∣
ψ

. (B 12)

Similarly,
∂Bz

∂θ

∣∣∣∣
ψ

=
∂Bz

∂r

∣∣∣∣
z

∂r
∂θ

∣∣∣∣
ψ

+
∂Bz

∂z

∣∣∣∣
r

∂z
∂θ

∣∣∣∣
ψ

. (B 13)

https://doi.org/10.1017/S0022377820000276 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377820000276


Electron–positron plasma gyrokinetics 19

These quantities are calculated using a field-line tracing routine outlined below. The
details of how this coordinate system is mapped to the GENE coordinate system can
be found in Xanthopoulos et al. (2009).

The field-line tracing is defined by the equations

dr
dl
=

Br(r, z)
B(r, z)

= br,
dz
dl
=

Bz(r, z)
B(r, z)

= bz, r(0)= rc, z(0)= 0. (B 14a−d)

Here, l is the length measured along the field line and rc defines the flux surface. Note
that by definition

∂θ

∂l
=

2π

L0
, (B 15)

∂l
∂θ
=

L0

2π
. (B 16)

Here, L0 is the length of the closed field line. Using the properties

r,l · ∇l= 1, |∇l| = 1, (B 17a,b)

we arrive at the equations

dr
dl
∂l
∂r
+

dz
dl
∂l
∂z
= 1,

(
∂l
∂r

)2

+

(
∂l
∂z

)2

= 1. (B 18a,b)

These can be rewritten as

br
∂l
∂r
+ bz

∂l
∂z
= 1,

(
∂l
∂r

)2

+

(
∂l
∂z

)2

= 1, (B 19a,b)

and solved, taking into account that b2
r + b2

z = 1, with the result

∂l
∂r
= br,

∂l
∂z
= bz. (B 20a,b)

Finally, in our coordinates we obtain

dr
dθ
=

L0

2π
br,

dz
dθ
=

L0

2π
bz, (B 21a,b)

∂θ

∂r
=

2π

L0
br,

∂θ

∂z
=

2π

L0
bz. (B 22a,b)

Note further geometric properties

r,l · ∇ψ = 0, ∇l · r,ψ = 0, r,ψ · ∇ψ = 1, (B 23a−c)

which can be proven taking into account that for the dipole magnetic field

∂ψ

∂r
= rBz,

∂ψ

∂z
=−rBr, ∇ψ = Br(bzer − brez), (B 24a−c)
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and the geometric relations

r,ψ =
√

g∇ζ ×∇θ,
1
√

g
= (∇ψ ×∇ζ ) · ∇θ. (B 25a,b)

Note the coordinate system orientation (ψ, ζ , θ) which is consistent with GENE.
Using cylindrical coordinates (r, ζ , z) with the orientation corresponding to the basis
vectors eζ = ez × er in dipole magnetic field, we can write

1
√

g
=

2πB
L0

, ∇ζ ×∇θ =
2π

L0r
(bzer − brez), r,ψ =

bzer − brez

Br
. (B 26a−c)

Here again, is obvious that r,ψ · ∇ψ = 1. For the normalisation, one can use

r? =
L0

2π
, B? = B(l= L0/2). (B 27a,b)
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