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Translation Groupoids and
Orbifold Cohomology

Dorette Pronk and Laura Scull

Abstract. We show that the bicategory of (representable) orbifolds and good maps is equivalent to the

bicategory of orbifold translation groupoids and generalized equivariant maps, giving a mechanism

for transferring results from equivariant homotopy theory to the orbifold category. As an application,

we use this result to define orbifold versions of a couple of equivariant cohomology theories: K-theory

and Bredon cohomology for certain coefficient diagrams.

1 Introduction

Spaces with symmetries arise naturally in many contexts, and have been studied from

various points of view. Equivariant homotopy theory uses the tools of algebraic

topology to study the category G-spaces, consisting of spaces with an action of the

group G and equivariant maps between them. Much of ordinary homotopy theory

can be adapted and extended to this setting, although there are some important dif-

ferences; see [10] for an overview of this theory. From another point of view, there

has been much recent interest in the study of orbifolds, which are something like

manifolds but whose local structure is a quotient of an open subset of a Euclidean

space by a finite group action ([20]; also [1, 2, 9]). Although many of the basic geo-

metric structures are the same in both cases, the techniques of these two approaches

have been rather different.

The goal of this paper is to provide a way of moving between these points of view.

One way to obtain an orbifold is to look at the action of a compact Lie group acting

on a manifold with finite stabilizers. In fact, a large class (perhaps all) of orbifolds

can be described in this way [7], although this description is not unique for a given

orbifold. Orbifolds that can be described this way are called representable. We can

try to import equivariant invariants for these representable orbifolds. In order to

make this work, however, there are a couple of issues that need to be overcome. The

first is the fact that the representation is not unique, and so in order to get invariants

of the orbifold structure and not the particular representation, it needs to be checked

that we get the same result for every representation. The second, related, issue is that

equivariant invariants are not defined for non-equivariant descriptions of an orb-

ifold; and some orbifold maps may only be defined by using an alternate (potentially

non-equivariant) description of the orbifold. Thus we are faced with the possibility

that a map between representable orbifolds may need to factor through an orbifold

Received by the editors November 7, 2007; revised November 1, 2008.
Published electronically December 4, 2009.
Both authors are supported by NSERC discovery grants.
AMS subject classification: 57S15, 55N91, 19L47, 18D05, 18D35.
Keywords: orbifolds, equivariant homotopy theory, translation groupoids, bicategories of fractions.

614

https://doi.org/10.4153/CJM-2010-024-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2010-024-1


Translation Groupoids and Orbifold Cohomology 615

which does not come from a global group action, making it impossible to turn an

equivariant invariant into a functor for the orbifold category.

In this paper, we prove that it is possible to represent every map between repre-

sentable orbifolds as an equivariant map, allowing us to define equivariant invariants

which are functorial for orbifold maps. We also develop an explicit description of the

non-uniqueness in the representation, making it practical to check which equivariant

invariants will give orbifold invariants.

This non-uniqueness can be expressed in terms of Morita equivalences, generated

by essential equivalences. These equivariant Morita equivalences are all compositions

of certain specific forms of maps, and they satisfy the properties that allow us to form

a bicategory of fractions

Orbifoldseqvar(W−1)

where the Morita equivalences have become honest (internal) equivalences. This

same type of non-uniqueness is also present in the description of an orbifold in terms

of an atlas of orbifold charts, and the category of orbifolds and good maps (or gener-

alized maps) is the bicategory of fractions

Orbifoldsatlas(W−1),

of the category of orbifolds and atlas maps where the elements of the class W of

essential equivalences have been “inverted” to become equivalences. We show that

there is an equivalence of bicategories for representable orbifolds,

RepOrbifoldseqvar(W
−1) ≃ RepOrbifoldsatlas(W−1).

Thus we have a more precise understanding of the relationship between the equiv-

ariant theory of the categories of G-spaces for various groups G, and the category

of orbifolds; this makes it possible to translate results between these settings, and

develop equivariant homotopy theory for orbifolds.

To demonstrate how this point of view can be applied, we show how the rela-

tionship between representable orbifolds and translation groupoids can be used to

import G-equivariant cohomology theories to orbifolds; we discuss two such theo-

ries. The first is topological K-theory, defined using G-equivariant vector bundles;

we show that this is in fact a well-defined cohomology theory on orbifolds. This has

been looked at in various other ways. Moerdijk [12] has shown that over the ring C

of complex numbers, this can also be obtained as the equivariant sheaf cohomology

of the inertia groupoid Λ(G) with values in the constant sheaf C, and hence to prove

that over C, we get an orbifold cohomology theory. This approach could potentially

be extended to other coefficient systems by choosing the appropriate Λ(G) sheaves,

since there is a Leray spectral sequence relating the K-theory to the sheaf cohomol-

ogy (via Bredon cohomology for certain coefficients). In [2], Adem and Ruan took

an alternate approach and used K-theory techniques to get an orbifold invariant over

the rationals Q . Our approach provides a more direct proof than either of these.

The second type of equivariant cohomology theories we consider are those de-

fined by Bredon [3] with constant coefficients (coefficients which do not depend on
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the space, only on the group G and its orbit category). These Bredon cohomology

theories are defined for coefficients given by diagrams of Abelian groups. We use

our results to identify which of these coefficient diagrams actually give orbifold in-

variants, rather than depending on the equivariant representation used. For these

diagrams, we show that it is possible to define a notion of Bredon cohomology for

representable orbifolds, depending only on the orbifold and not its equivariant pre-

sentation. Specifically, we describe a relation on these orbifold coefficient systems

such that if a G-space X and an H-space Y describe the same orbifold and A is a co-

efficient system on the orbit category of G, then there is a corresponding coefficient

system on the orbit category of H which gives the same cohomology groups.

Honkasalo presented a related result [6]. For a G-space X with a coefficient sys-

tem A, Honkasalo constructed a sheaf S(A) on the orbit space X/G such that the

G-equivariant cohomology on X with coefficients in A is isomorphic to the sheaf

cohomology of the orbit space X/G with coefficients in S(A). When applied to a

representable orbifold, considered as a G-space, it gives a relationship between the

equivariant Bredon cohomology and the sheaf cohomology of the underlying quo-

tient space. This provides a nice alternative definition of these cohomology groups.

However, we should be careful not to read too much into this description. For ex-

ample, it does not imply that the Bredon cohomology is an invariant of the quotient

space. The same topological space could be obtained as a different quotient Y /H

and there would not necessarily be an H-coefficient system that would give rise to

the same sheaf. For similar reasons, Honkasalo’s construction does not automatically

give us an orbifold invariant ([6] does not consider this question). A sheaf that cor-

responds to a coefficient system for one representation does not need to correspond

to a coefficient system in another representation, as shown in Example 5.3.

Our approach gives a clearer idea of the relationship between the equivariant and

orbifold phenomena, and is a blueprint for future applications of creating orbifold

invariants out of equivariant ones. In a forthcoming paper we will construct an orb-

ifold version of the equivariant fundamental groupoid; this is a category which has

proved very useful in a variety of places in equivariant homotopy theory, including

defining Bredon cohomology for twisted coefficients, obstruction theory and study-

ing equivariant orientations. We believe that this can be used to get analogous results

for orbifolds, and perhaps lead to a characterization of the homotopy of the orbifold

category.

The organization of the paper is as follows. Section 2 gives an overview of the the-

ory of orbifolds and how they are represented by groupoids. Section 3 gives the state-

ments of our comparison results. Section 4 gives the results on orbifold K-theory, and

Section 5 contains the definitions of the Bredon cohomology for orbifolds. Sections

7 and 8 contain the deferred proofs of some of the earlier results; Section 6 contains

supporting material for the proof of the main comparison theorem in Section 7.

2 Background: Orbifolds and Lie Groupoids

The classical definition of orbifolds (or V-manifolds) as first given by Satake, and

developed by Thurston and others, is a generalization of the definition of mani-

folds based on charts and atlases. The difference is that the local neighbourhoods
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are homeomorphic to U = Ũ/G where G is a finite group acting on an open set

Ũ ⊆ Rn. An orbifold can then be defined as a paracompact Hausdorff space M to-

gether with an orbifold atlas, which is a locally compatible family of charts (Ũ , G)

such that the sets Ũ/G give a cover of M. The usual notion of equivalence of atlases

through common refinement is used; details can be found in [20, 21]. Note that the

original definition required that all group actions be effective, but it has been shown

in recent papers (see, for example, [4, 9]) that it is often useful to drop this require-

ment; we will not require that G acts effectively on Ũ .

Working with orbifold atlases is cumbersome, particularly when dealing with

maps between orbifolds. Therefore an alternate way of representing orbifolds us-

ing groupoids has been developed. It was shown in [14] that every smooth orbifold

can be represented by a Lie groupoid, which is determined up to essential equiva-

lence. This way of representing orbifolds gives rise to a notion of orbifold map that

works well for homotopy theory [14]. These maps have also been called “good” maps

[4] or generalized maps. This is the way we will approach the study of the orbifold

category; below, we review some of the basic definitions.

2.1 Lie Groupoids

A groupoid is a (small) category in which all arrows are invertible. We think of the

objects of the category as representing points in a geometric object, and the arrows

as representing identifications. In order to reflect this information, we need to have a

geometric structure present on our category. Therefore we work with Lie (or smooth)

groupoids.

Definition 2.1 A (Hausdorff) Lie groupoid or smooth groupoid G consists of smooth

manifolds G0 (the objects) and G1 (the arrows) together with the usual structure

maps: source and target s, t : G1 → G0, identity arrows determined by u : G0 → G1,

and composition m : G1 ×s,G0,t G1 → G1, all given by smooth maps, such that s (and

therefore t) is a surjective submersion, and the usual diagrams commute (see, for

example, [9, Definition 4.1]).

The following are examples of Lie groupoids.

Examples 2.2 (i) Any manifold can be viewed as a Lie groupoid by taking G1 =

G0 = M, with only identity maps.

(ii) Any Lie group G is a Lie groupoid with a single point G0 = ∗, where composi-

tion of arrows is given by group multiplication.

(iii) Let G be a Lie group with a smooth left action on a manifold M. Then the

translation groupoid G ⋉ M is defined as follows. The objects are given by the

manifold M itself, and the arrows are defined by G × M. The source of an

arrow (g, x) is defined by s(g, x) = x, and the target by using the action of G

on M, t(g, x) = gx. So (g, x) is an arrow x → gx. The other structure maps

are defined by the unit u(x) = (e, x), where e is the identity element in G, and

(g ′, gx) ◦ (g, x) = (g ′g, x).
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Now we define a category of Lie groupoids. We use topologized versions of the

usual category theory notions of functor and natural transformation; note that all

maps are assumed to be smooth.

Definition 2.3 A homomorphism ϕ : G → H between Lie groupoids consists of a

pair of maps ϕ0 : G0 → H0 and ϕ1 : G1 → H1 that commute with all the structure

maps.

A natural transformation or 2-cell between homomorphisms of Lie groupoids

α : ϕ ⇒ ψ : G ⇉ H consists of a map α : G0 → H1 such that s ◦ α = ϕ0, t ◦ α = ψ0,

and α is natural in the sense that the following diagram commutes:

G1

(ψ1,α◦s) //

(α◦t,ϕ1)

²²

H1 ×s,H0,t H1

m

²²
H1 ×s,H0,t H1 m

// H1.

The category LieGpd of Lie groupoids, homomorphisms, and natural transforma-

tions forms a 2-category.

2.2 Essential Equivalences

We are thinking of a groupoid as a representation of its underlying quotient space,

encoding this space and its singularity types. However, this representation is not

unique; the same quotient structure can be represented by different groupoids.

Therefore we need to introduce a notion of equivalence on the category of groupoids.

Definition 2.4 A homomorphism ϕ : G → H between Lie groupoids is an essential

equivalence when it satisfies the following two conditions.

(i) It is essentially surjective, i.e., the map t◦π2 : G0×H0
H1 → H0 from the manifold

G0 ×H0
H1 = {(x, h) |φ0(x) = t(h)} is a surjective submersion.

(ii) It is fully faithful, i.e., the diagram

G1

ϕ1 //

(s,t)
²²

H1

(s,t)
²²

G0 × G0 ϕ0×ϕ0

// H0 × H0

is a pullback of manifolds.

Thus an essential equivalence is a smooth equivalence of categories. Two group-

oids G and H are essentially equivalent when there is a span of essential equivalences

G ← K → H between them. In order to show that this is in fact an equivalence

relation, we use the notion of the (weak) fibre product of Lie groupoids.
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Definition 2.5 If φ : H → G and ψ : K → G are homomorphisms of Lie groupoids,

the (weak) fibre product H×G K (if it exists) is the following Lie groupoid. The space

of objects is the fibered product of manifolds H0 ×G0
G1 ×G0

K0. So an object is a

triple (y, g, z) where y ∈ H0, z ∈ K0, and g : φ(y) → ψ(z) in G. An arrow (y, g, z) →
(y ′, g ′, z ′) consists of a pair (h, k) of arrows h : y → y ′ in H and k : z → z ′ in K such

that g ′φ(h) = ψ(h)g.

The fibre product introduced here has a ‘’weak” universal property of pullbacks

for commuting diagrams of Lie groupoids and homomorphisms: the square is only

required to commute up to an (invertible) 2-cell.

Note that although source and target maps s, t : G1 ⇉ G0 are surjective submer-

sions, this does not imply that H0 ×G0
G1 ×G0

K0 is a manifold in general. The space

H0 ×G0
G1 is a manifold, but the map from this space into G0 does not need to be

transversal to the map from K0 into G0. However, if at least one of the groupoid maps

is an essential equivalence, essential surjectivity gives that one of the maps involved

in the last fibre product is again a submersion, so we obtain another manifold.

It can also be shown that the fibre product of an essential equivalence along any

homomorphism is again an essential equivalence [11]; thus any zig-zag of essential

equivalences may be shortened by taking a fibre product, and so by repeated short-

ening, replaced by a single span as above.

The class W of essential equivalences between Lie groupoids also satisfies the ax-

ioms needed to form a bicategory in which the essential equivalences have been in-

verted [19]. In fact, the argument given for étale groupoids in [19] works for Lie

groupoids as well. So we can form the bicategory of fractions LieGpd(W−1) as fol-

lows. The objects are the Lie groupoids as usual, but a morphism G → H is a span of

homomorphisms G
ω

←−− K
ϕ

−−→ H, where ω is an essential equivalence. Such mor-

phisms are also called generalized maps. Thus we are allowed to replace the source

groupoid G with an essentially equivalent groupoid K in defining our maps.

We define the composition of spans using the fibre product construction. In show-

ing that this fibre product gives a span of the right form, and so another generalized

map, the key point is again that the pullback of an essential equivalence along any

homomorphism is an essential equivalence.

A 2-cell (ϕ, ω) ⇒ (ϕ ′, ω ′) in this bicategory is an equivalence class of diagrams

of the form

K

ω

{{xx
xx

xx
xx

x
ϕ

##GGGGGGGG

G α1⇓ L

ν

OO

ν ′

²²

α2⇓ H

K′

ω ′

bbFFFFFFFF ϕ ′

;;wwwwwwww

where ω ◦ ν and ω ′ ◦ ν ′ are essential equivalences. Note that since the essential

equivalences satisfy a 2-for-3 property (see Section 8, Lemma 8.1 for a proof), this is

equivalent to requiring that ν and ν ′ be essential equivalences.
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Given an orbifold M with an orbifold atlas U, we can define its groupoid repre-

sentation G(U) as follows. The space of objects is the disjoint union of the charts,

G0 = ∐UŨ .

The space of arrows is a quotient of the space

∐

λ1 : Ũ →֒Ṽ1

λ2 : Ũ →֒Ṽ2

Ũ ,

where the disjoint union is over pairs of atlas embeddings of U into any charts. The

equivalence relation on the space of arrows is generated by a notion of local equiva-

lence of pairs of embeddings; the source and target maps on each copy of the charts

are defined by the first and the second embedding respectively. For further details,

including the definition of composition, the reader is referred to [18].

The local structure on these charts equips the resulting Lie groupoid with some

special properties. In particular, a groupoid coming from an orbifold atlas will satisfy

the following conditions.

Definition 2.6 A Lie groupoid is étale if its source map is a local diffeomorphism

and proper if the map (s, t) : G1 → G0 × G0 is a proper map, i.e., it is closed with

compact fibers.

Note that if the source map is a local diffeomorphism, this implies that the target

map is also.

The notion of properness is preserved under the essential equivalence relation, but

the notion of being étale is not. This leads us to the following definition.

Definition 2.7 An orbifold groupoid is a groupoid which is essentially equivalent to

a proper étale Lie groupoid.

The construction outlined above shows that any orbifold can be represented by

an orbifold groupoid. Conversely, given an orbifold groupoid G, its orbit space can

be given the structure of an orbifold [14]. Therefore we consider such groupoids to

be the orbifolds they represent. So Orbifolds is the bicategory of orbifold groupoids

with generalized maps as morphisms, and equivalence classes of diagrams such as

described above as 2-cells.

3 Statement of Results: Representing Orbifolds by Translation
Groupoids

In order to make a bridge between orbifolds and equivariant homotopy theory, we are

interested in representing orbifolds by a particular type of Lie groupoid: the trans-

lation groupoids G ⋉ M coming from the action of a Lie group G on a manifold

M, described in Example 2.2(iii). It turns out that many, possibly all, orbifolds can

be represented this way. Satake showed that every effective orbifold can be obtained
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as a quotient of a manifold by the action of a (not necessarily finite) compact Lie

group acting with finite isotropy [21]. Unfortunately, his proof does not go through

for non-effective orbifolds. However, a partial result was obtained by Henriques and

Metzler [7]; their Corollary 5.6 shows that all orbifolds for which all the ineffective

isotropy groups have trivial centers are representable. It is conjectured that all orb-

ifolds are representable, but this has not been proven.

For the remainder of this paper, we restrict our attention to those orbifolds that

are representable, so that we can work with their translation groupoids. In this sec-

tion, we give the statements of our results showing that we can form a bicategory of

representable orbifolds using only translation groupoids and equivariant maps. The

proofs of these statements are generally constructive and sometimes rather long, and

so we will defer many of them until Sections 7 and 8.

Definition 3.1 An equivariant map G⋉X → H ⋉Y between translation groupoids

consists of a pair (ϕ, f ), where ϕ : G → H is a group homomorphism and f : X → Y

is a ϕ-equivariant smooth map, i.e., f (gx) = ϕ(g) f (x) for g ∈ G and x ∈ X.

We will denote the 2-category of smooth translation groupoids and equivariant

maps by EqTrGpd.

In order to represent orbifolds by objects in this category, we need to identify

essentially equivalent groupoids as before. So we want to invert the essential equiv-

alences in EqTrGpd, and show that we can form a bicategory by defining maps using

spans as in the previous section. Again, the key to making this process work is the fact

that we can form the fibre product of translation groupoids and get another transla-

tion groupoid, in such a way that the pullback of an essential equivalence along an

equivariant map is another essential equivalence.

Lemma 3.2 In a fibre product of Lie groupoids

P
ζ //

ξ

²²
∼=

G ⋉ X

ψ

²²

H ⋉ Y ϕ
// K,

the groupoid P is again a translation groupoid. Moreover, its structure group is G × H,

and ζ and ξ are equivariant maps, where the group homomorphisms are the appropriate

projections.

The proof examines the explicit construction of P to verify the claims about it,

and is given in Section 8.

Corollary 3.3 For every pair of equivariant maps

H ⋉ Y
(ϕ, f ) // K ⋉ Z G ⋉ X,

(ψ,w)oo
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where (ψ, w) is an essential equivalence, there is a commutative square

L ⋉ P
(ζ,z) //

(ξ,v)

²²

G ⋉ X

(ψ,w)

²²

H ⋉ Y
(ϕ, f )

// K ⋉ Z,

where (ξ, v) is an essential equivalence.

Proof We combine the result from [11] that the fibre product of an essential equiv-

alence is again an essential equivalence with Lemma 3.2, to show that the usual pull-

back essential equivalence is again in the 2-category EqTrGpd.

Thus, we can again replace any zig-zag of essential equivalences with a single span,

and also define the composition of spans, which is unitary and associative up to co-

herent isomorphisms. Finally, it is straightforward to adjust the proof that the class

W of general essential equivalences satisfies the conditions to admit a bicategory of

fractions LieGpd(W−1), to show that the class of equivariant essential equivalences,

which we will again call W , gives rise to a well-defined bicategory EqTrGpd(W−1).

Now we want to show that for representable orbifolds, restricting to the equiv-

ariant maps of the category EqTrGpd(W−1) does not lose important information;

that is, EqTrGpd(W−1) is equivalent to the bicategory LieGpdTr(W
−1), the full sub-

bicategory of LieGpd(W−1) on translation groupoids.

Theorem 3.4 The inclusion functor EqTrGpd →֒ LieGpdTr induces an equivalence of

bicategories EqTrGpd(W−1) ≃ LieGpdTr(W
−1), when restricted to orbifold groupoids.

The proof involves replacing generalized maps and 2-cells by equivariant ones be-

tween translation groupoids in such a way that this induces the desired equivalence

of bicategories. For instance, for a generalized map G ⋉ X ← K → H ⋉ Y between

orbifold translation groupoids, we construct an isomorphic span of equivariant maps

G ⋉ X K ⋉ Z
(ψ,w)oo (ϕ, f ) // H ⋉ Y.

To construct K ⋉ Z (and also the corresponding replacements for the 2-cells), we

make use of an alternate way of describing maps between orbifold Lie groupoids,

based on groupoid bundles, developed by Hilsum and Skandalis [8]. Some back-

ground on Hilsum–Skandalis maps is given in Section 6, and Section 7 gives the

proof of Theorem 3.4.

Thus we can work with just the equivariant maps between translation groupoids,

with the equivariant essential equivalences inverted. There are a couple of obvious

forms of equivariant maps which are essential equivalences: if we have a G-space X

such that a normal subgroup K of G acts freely on X, then it is easy to see that the

quotient map

(3.1) G ⋉ X → G/K ⋉ X/K,
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is an essential equivalence. Similarly, for any (not necessarily normal) subgroup K of

a group H and K-space Z, we can induce up to get an H-space H ×K Z = G× Z/ ∼,

where [hk, z] ∼ [h, kz] for any k ∈ K. Then the inclusion Z → H ×K Z defined by

z → [e, z] gives an essential equivalence

(3.2) K ⋉ Z → H ⋉ (H ×K Z).

It turns out that these are the only forms of equivariant weak equivalences we need

to deal with, since they generate all other equivariant essential equivalences.

Proposition 3.5 Any equivariant essential equivalence is a composite of maps of the

forms (3.1) and (3.2) described above.

We defer the proof until Section 8.

Thus we have an explicit description for the weak equivalences in EqTrGpd(W−1).

4 Orbifold K-Theory

One example of an equivariant cohomology theory that has been extensively studied

is equivariant K-theory; see [10,22] for an introduction to this theory. This is defined

geometrically using G-equivariant vector bundles for compact Lie groups G, and has

many applications. Elementary properties of these equivariant vector bundles can be

combined with our results on representation of orbifolds to give an easy proof that

K-theory is actually an orbifold invariant. This result has been proved by Adem and

Ruan [2] over the rationals and Moerdijk [12] over the complex numbers by various

other approaches, as discussed in the introduction.

We briefly recall the definition of equivariant K-theory for a compact Lie group

G. A G-vector bundle over a G-space X is a vector bundle ξ : E → X such that the

total space E also has a G-action making the projection map an equivariant map,

and such that G acts linearly on fibres ξ−1(x) → ξ−1(gx). For a compact space

X, the equivariant K-theory KG(X) is defined as the Grothendieck group of finite

dimensional G-vector bundles over X. Tensor product makes this into a ring.

We can extend this to a cohomology theory on G-spaces as follows. We can de-

fine a reduced version of the K-theory group for spaces with a G-fixed basepoint by

K̃G(X) = ker[(KG(X) → KG(∗)] (for unbased spaces, we adjoin a disjoint fixed

basepoint); then equivariant Bott periodicity holds for K̃G: with complex coeffi-

cients, K̃G(X+) ≃ K̃G(SV ∧ X+) for a complex representation V ; similarly for an

8-dimensional real representation. Thus we can define a cohomology theory by

K̃n
G(X) = K̃G(ΣnX) [10, 22].

Proposition 4.1 Suppose X is an orbifold represented by a translation groupoid G⋉X.

Then the equivariant K-theory group KG(X) is independent of the representation.

Proof By Theorem 3.4 and Proposition 3.5, it is sufficient to check that the definition

is invariant under the two forms of change-of-group essential equivalences (3.1) and

(3.2).

The geometric definition of the group KG(X) makes it easy to see that if X is

a free G-space, then the G-vector bundles correspond to ordinary vector bundles
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over the quotient space X/G. More generally, if H acts freely on X, then KG(X) ≃
KG/H(X/H). Therefore this is invariant under quotient maps X → X/H for free H-

actions (3.1). Similarly, KG(G ×H Y ) ≃ KH(Y ), since any G-bundle over G ×H Y

is determined by its underlying H-bundle over Y . Therefore this definition is also

independent of the inclusion change-of-groups (3.2).

Thus the group K0
G is an orbifold invariant. For the general cohomology theory,

we need only observe that S1∧(G×H X)+ is canonically isomorphic to G×H (S1∧X+),

and hence the higher K-groups are also invariant under this equivariant change-of-

groups.

5 Orbifold Bredon Cohomology

In this section, we use the results on representing orbifolds via equivariant spaces to

develop a definition of Bredon cohomology for orbifolds. Throughout, we will again

assume that all groups are compact Lie groups, and that all subgroups are closed.

Bredon cohomology takes its inspiration from the idea that we should view a

G-space as being described by the diagram of its fixed points {XH | hx = x,∀h ∈ H}
for the various subgroups H of G. The natural inclusions and G-action give mor-

phisms between these sets. These can be organized by the orbit category OG, which

has the canonical G-orbit types G/H as its objects, with all equivariant maps be-

tween them. These equivariant maps can be described concretely as composites of

maps of the form G/H → G/αHα−1 defined by gH → gαH, and projection maps

G/H → G/H ′ for H ⊆ H ′. Since the fixed set XH can also be described as the

equivariant mapping space HomG(G/H, X) from the canonical orbit G/H, we im-

mediately see that the fixed sets form a (contravariant) functor to the category of

spaces ΦX : O
op
G → Spaces defined by ΦX(G/H) = XH .

Many of the usual algebraic invariants of spaces can then be composed with the

functor ΦX to give diagrams of Abelian groups indexed by OG. Moreover, any ho-

motopy invariants will result in diagrams indexed by the homotopy category hOG,

which has homotopy classes of equivariant maps as its morphisms. Thus the home

for many equivariant invariants is the category AbhO
op
G of functors hO

op
G → Ab, which

we call coefficient systems.

The category of coefficient systems can be used to define a cohomology theory as

follows. We have a chain complex of coefficient systems C∗(X) defined by

Cn(X)(G/H) = Cn(XH/W H0),

where W H0 is the identity component of the Weyl group NH/H. Then for any coef-

ficient system A, the maps between diagrams Cn(X) and A are defined by the natural

transformations, and these form an Abelian group

Cn
hOG

(X; A) = HomhOG
(Cn(X), A).

Together these give a graded Abelian group C∗
hOG

(X; A). The boundaries on the

chains in the fixed point spaces C∗(X) induce a differential on this, and so we obtain a
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cochain complex C∗
hOG

(X; A). The Bredon cohomology of X is then the cohomology

of this complex:

H∗
G(X; A) = H∗

hOG
(X; A) = H∗(C∗

hOG
(X; A)),

and this construction satisfies the axioms for an equivariant cohomology theory on

G-Spaces [3].

We observe that for a given G-space X, although the Bredon cohomology is de-

fined on diagrams indexed by all closed subgroups of G, it really only depends on

isotropy subgroups of X.

Proposition 5.1 Let hOG,X be the full subcategory of hOG on objects G/H such that

H is an isotropy group of X. Then H∗
hOG

(X, A) = H∗
hOG,X

(X, rXA), where rXA is the

restriction of the diagram A to hOG,X .

Proof The chain complex C∗(X) is generated by cells of an equivariant G-CW de-

composition of cells of X; such cells are of the form G/H × Dn for some isotropy

subgroup H, and contribute a summand G/H×Z to Cn(X), where the diagram G/H

is defined by G/H(G/L) = π0(G/H)L. But π0(G/H)L
= HomhOG

(G/L, G/H) and

so a Yoneda argument shows that HomhOG
(G/H × Z, A) = HomAb(Z, A(G/H)).

So HomhOG
(C∗(X), A) ≃

∐

H Hom(Z, A(G/H)) where H runs through the isotropy

groups of G. Because only isotropy groups are involved, this is exactly the same as

HomhOG,X
(C∗(X), rXA). (See [23]).

Corollary 5.2 If rXA = rXB, then H∗
hOG

(X, A) = H∗
hOG

(X, B).

Alternatively, this also follows from a result by Honkasalo [6], which describes

the Bredon cohomology of a G-space X with coefficient system A as the sheaf co-

homology of the orbit space X/G with coefficients in the sheaf S(A) with stalks

S(A)x
∼= A(G/Gx). Honkasalo’s result suggests that for representable orbifolds, it

may be possible to define Bredon cohomology as an orbifold invariant. However, it

does not completely identify which coefficient systems will give an orbifold invariant,

as we will see below.

Since representable orbifolds can be represented as translation groupoids, we can

apply the above definitions to a particular translation groupoid representation of an

orbifold, and obtain cohomology groups. In order to be a true orbifold invariant,

however, we need to ensure that these groups do not depend on the representation,

i.e., that the definition of orbifold Bredon cohomology sees only structure associated

with the orbifold, and not the particular translation groupoid representing it. The

results of the previous section tell us exactly what is required to be an invariant of the

orbifold: we need a definition that is invariant under the change-of-group essential

equivalences described in Proposition 3.5. In particular, if G ⋉ X and H ⋉ Y are

two essentially equivalent orbifold translation groupoids, we need a correspondence

between coefficient systems on hOG and hOH , which will give the same cohomology

groups for X and Y respectively.

We will see that this is not possible for all coefficient systems, because some co-

efficient systems give invariants that are not orbifold invariants. One way that the
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equivariant theory may distinguish finer information than that carried by the orb-

ifold structure is to differentiate between (disjoint) fixed point sets which have iso-

morphic isotropy and in fact are part of the fixed point set of the same subgroup in

some representations, as in the following example.

Example 5.3 Let Q be the orbifold represented as the quotient of the circle S1 by the

action of D2 = Z/2⊕Z/2 = 〈σ1〉⊕〈σ2〉, where σ1 and σ2 act by horizontal and verti-

cal reflection, respectively. The points with non-trivial isotropy groups are the north

and south poles and the east and west poles, each with isotropy group Z/2. Then

the subgroup generated by σ1σ2 acts freely, so we can take the quotient to obtain a

new representation for Q as S1/〈σ1σ2〉 ∼= S1 with an action of D2/〈σ1σ2〉 ∼= Z/2. In

this case Z/2 acts by reflection with two fixed points. In this second presentation, the

subgroup fixing these points is the same, where their pre-images in the first presen-

tation had distinct isotropy subgroups (which were isomorphic, but not the same, or

even conjugate, as subgroups of D2). So an orbifold coefficient system cannot attach

distinct Abelian groups to these subgroups.

Given an orbifold X represented by a G-space X and a coefficient system

A : hOG → Ab,

we want to construct coefficient systems Ψ∗A : hOH → Ab and Φ
∗A : hOK → Ab for

all essential equivalences Ψ : G ⋉ X → H ⋉ Y and Φ : K ⋉ Z → G ⋉ X, in such

a way that the essential equivalences induce isomorphisms between the cohomology

groups with coefficients in the corresponding coefficient systems.

The example above shows that this is not always possible. However, we will show

that the issue of taking a quotient by a freely acting subgroup, which was the cause

of the problems in this example, is the only one we need to address. Moreover, it

is always possible to determine from the given representation whether this issue will

arise. So we can give a characterization of orbifold coefficient systems which only

depends on the given representation.

In general, the previous section shows that if K is a normal subgroup of G act-

ing freely on X, then the G-space X is orbifold equivalent to the (G/K)-space X/K.

Therefore we have to be careful when X has fixed sets XL and XL ′

associated with sub-

groups L and L ′ whose projections in G/K are the same. In this case, in the quotient

space X/K these become part of the same fixed set (X/K)LK/K , and so an orbifold co-

homology theory must treat these the same. Looked at another way, we must be able

to deduce all the information contained in the orbifold Bredon cohomology groups

with coefficient in a system A on hOG from the Bredon cohomology of the quotient

X/K defined with diagrams on hOG/K .

Some of this happens automatically, as we observe from the following.

Lemma 5.4 Let X be a G-space, and K a normal subgroup of G which acts freely on

X. If some point x ∈ X is fixed by two subgroups L and L ′ of G with the same projection

in G/K, then L = L ′.

Proof Since L and L ′ have the same projection in G/K, then for any ℓ′ ∈ L ′ we must

have ℓ′ = ℓk for some k ∈ K. Suppose that ℓx = x and ℓ′x = x, so ℓkx = x. Then

https://doi.org/10.4153/CJM-2010-024-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2010-024-1


Translation Groupoids and Orbifold Cohomology 627

x = ℓ−1x and thus kx = ℓ−1x = x; so k must also fix x. Since K acts freely, we

conclude that k = e and so L = L ′.

Thus, if x ∈ X is a lift of x ∈ X/K which is fixed by L ⊆ G/K, there is a unique

subgroup L ⊆ Gx lifting L; the equivariant Bredon cohomology does not have a

chance to distinguish between different lifts of L at the point x, since there is a unique

lift L such that x ∈ XL.

In order to behave as an orbifold invariant, we also need the Bredon cohomol-

ogy to treat all lifts x of x equally; again this follows from elementary group theory.

Of course, if L is an isotropy subgroup of a point x, then the conjugates gLg−1 are

isotropy subgroups of the points gx in the orbit; since conjugation is an isomor-

phism in hOG, the values of any coefficient system A are isomorphic at all conjugates:

A(G/L) ∼= A(G/gLg−1). Moreover, we have the following result.

Lemma 5.5 Suppose that K, H are subgroups of G such that K is normal and K∩H =

{e}. If the conjugation action by K fixes H, then in fact K acts trivially on H.

Proof Suppose k ∈ K ∩ NH; so khk−1
= ĥ. Then kh = ĥk so khĥ−1

= ĥkĥ−1. But

K is normal so ĥkĥ−1
= k̂. Then khĥ−1

= k̂ and so hĥ−1
= k−1k̂ is in K ∩ H = {e}.

So h = ĥ.

Thus, if K acts freely on a G-space X, and x ∈ (X/K)L, then for any lifts x and x ′

of x with (uniquely specified) subgroups L ≤ Gx and L ′ ≤ Gx ′ , respectively, lifting

L, the points x and x ′ will differ by some k ∈ K, with x ′
= kx; so L ′

= kLk−1.

This conjugation by k induces an isomorphism between A(G/L) and A(G/kLk−1) =

A(G/L ′) which does not depend on the choice of k by Lemma 5.5. So we can consider

this to be a canonical identification. Thus we have A(G/L) = A(G/L ′) in this case,

and any Bredon cohomology will treat these the same.

We conclude that many of the necessary identifications for an orbifold invariant

are already present in any coefficient system. It is possible, however, to have two non-

conjugate isotropy subgroups L and L ′ which project to the same subgroup of G/K;

thus we do need to place a restriction on our diagrams.

We will say that a subgroup L ≤ G is in the isotropy lineage of X if it is a subgroup

of an isotropy group Gx for some point x ∈ X, or equivalently, if XL 6= ∅.

Definition 5.6 We say that a diagram A is an orbifold coefficient system if it satisfies

the following: If K is a normal subgroup of G acting freely on X, then for any sub-

groups L and L ′ in the isotropy lineage of X with LK/K = L ′K/K in G/K, we have

A(G/L) = A(G/L ′); similarly, any two structure maps of hOG between isotropy lin-

eage subgroups which project to the same structure map in hOG/K must be identical

in the coefficient system.

This identifies which diagrams have a chance to define an orbifold Bredon coho-

mology. The condition only becomes a real restriction when there are non-conjugate

subgroups in the isotropy lineage with the same projection.

We will now show that our definition of orbifold Bredon cohomology is indepen-

dent of the translation groupoid representation used. Thus, for any two translation
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groupoids with a change-of-groups essential equivalence between them, we will iden-

tify which coefficient system on the one orbit category corresponds to a given orbifold

coefficient system on the other.

In fact, Moerdijk and Svensson [15] have considered the issue of change-of-groups

maps for Bredon cohomology as a special case of a more general study of changing

the underlying diagram shape in diagram cohomology. If φ : G → K is any group

homomorphism, then φ induces a map hOG → hOK defined on objects by G/H 7→

K/φ(H). This in turn induces a map of coefficient systems φ∗ : AbhO
op
K → AbhO

op
G de-

fined by pre-composition with φ. (The authors of [15] state their results for discrete

groups and use the orbit categories OG, but their arguments extend to compact Lie

groups when one uses the homotopy orbit categories hOG.) We will use the following.

Proposition 5.7 ([15, Proposition 1.2]) If φ : G → K is any group homomorphism

and X is a G-CW complex, then

H∗
K (K ×φ,G X, A) ≃ H∗

G(X, φ∗A)

where K ×φ,G X = K × G/(k, gx) ∼ (kφ(g), x).

The two particular group homomorphisms in which we are interested are those

coming from the essential equivalence change-of-group maps of Proposition 3.5.

The first form is a projection π : G → G/K for a normal subgroup K ⊆ G which

acts freely on the space X. In this case, G/K ×φ,G X ∼= X/K and π∗A(G/L) =

A((G/K)/(L/K ∩ L)) = A((G/K)/(LK/K)).

The second form is the inclusion i : H →֒ G for any subgroup H ⊆ G, where

G×i,H X = G×H X is the usual space induced by the extension of groups. In this case,

i∗A(H/L) = A(G/L); thus, i∗ just restricts the diagram to the subgroups contained

in H.

Motivated by these observations and Corollary 5.2, we make the following defini-

tion.

Definition 5.8 Suppose we have an orbifold X represented by a translation group-

oid G = G ⋉ X. We define an equivalence relation on orbifold coefficient systems,

denoted orbifold equivalence, generated by the following.

• If K is a normal subgroup of G which acts freely on X, an orbifold system A on

hOG/K is equivalent to π∗A on hOG, where π∗A(G/H) = A((G/K)/(HK/K)).
• If H ⊆ G is any subgroup, then an orbifold system A on hOG is equivalent to i∗A

on hOH , where i∗A(H/L) = A(G/L).
• Two orbifold coefficient systems A and B on hOG are equivalent if rXA = rXB.

If [A] is an equivalence class of orbifold coefficient systems represented by A on hOG,

then the Bredon cohomology H∗
Br(X, [A]) is defined by H∗

OG
(X, A).

Note that for any orbifold coefficient system A, the induced systems π∗A and i∗A

are again orbifold coefficient systems.

It is clear from the definition of the equivalence relation that for any essential

equivalence G ⋉ X → L ⋉ Y , and any orbifold coefficient system on hOL, there is an
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equivalent system on hOG. The following lemmas give us the other direction, namely

that for any orbifold coefficient system on hOG there is an equivalent system on hOL.

Lemma 5.9 Suppose we have an orbifold X represented by a translation groupoid

H = H ⋉ X, and let A be an orbifold coefficient system on hOH . For any larger group

G containing H as subgroup, there is an orbifold coefficient system B for the G-space

G ×H X on hOG such that i∗B is equivalent to A.

Proof Let i : H →֒ G be the inclusion of groups. Define the coefficient system B :=

i∗(A) on hOG in the following way. Let L be a subgroup of G. If L is not in the

isotropy lineage of G, we define B(G/L) = 0. If on the other hand, (G ×H X)L 6= ∅,

let [g, x] be a point in this fixed point set. In that case g−1Lg is a subgroup of H, since

it keeps the point [e, x] fixed. So we define B(H/L) := A(G/(g−1Lg)). It is not hard

to see that B defined this way is an orbifold coefficient system when A is and that

rX i∗B = rXA.

Lemma 5.10 Suppose we have an orbifold X represented by a translation groupoid

G = G ⋉ X, and that K is a normal subgroup of G which acts freely on X. For every

orbifold coefficient system A on hOG there is an orbifold coefficient system B on hOG/K

such that π∗B is equivalent to A.

Proof Given the system A on hOG, define the system B := π∗(A) on hOG/K as fol-

lows. Given a subgroup L of G/K, if L is not in the isotropy lineage of X/K, then

define B((G/K)/L) = 0. Otherwise, choose a point xL ∈ (X/K)L and a point xL ∈ X

such that π(xL) = xL. Let L ′ ⊆ G be the unique subgroup of the isotropy group

of xL such that L ′K/K = L. Define B((G/K)/L) = A(G/L ′). Note that the choice

of L ′ may depend on the choice of x, and up to conjugacy with an element in K

on the choice of xL, but the value of B((G/K)/L) does not, because A is an orbifold

coefficient system.

Now we need to define structure maps for the coefficient system B for the non-

trivial portion of the diagram. If we have two subgroups L1 ⊆ L2 in the isotropy

lineage of X/K, we know that L ′
2 has some subgroup L ′ ′

1 which projects to L1. Then

B((G/K)/L1) = A(G/L ′ ′
1 ), since this value does not depend on which lift is cho-

sen. Then we can define the structure map associated with the projection map

(G/K)/(L1) → (G/K)/(L2) to be the structure map A(G/L2) → A(G/L ′ ′
1 ).

For any left multiplication map (G/K)/L → (G/K)/(g(L)g−1) in hOG/K , we need

to define a morphism B((G/K)/(g(L)g−1)) → B((G/K)/L). Note that L is in the

isotropy lineage of X/K if and only if g(L)g−1 is. When both are in the isotropy

lineage, let L ′ be the chosen lift of L, and L ′ ′ the chosen lift of gLg−1. We need a

morphism

(5.1) A(G/L ′ ′) = B((G/K)/(g(L)g−1)) → B((G/K)/(L)) = A(G/L ′).

Now if we pick any pre-image g of g, then gL ′g−1 also projects to gLg−1 in G/K;

so A(G/(gL ′g−1) ′) = A(G/L ′ ′), since A is an orbifold coefficient system. So the

structure map in (5.1) is defined as the structure map induced by left multiplication

with g in the orbit category,

A(G/L ′ ′) = A(gL ′g−1) → A(G/L ′).
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Note that this map does not depend on the choice of g such that gK = g, since struc-

ture maps related to multiplication with elements of k correspond to the canonical

identifications of the groups in the diagram.

Thus, we have defined a coefficient system B on hOG/K . We complete this

proof by showing that rXπ∗B = rXA. For an isotropy group H ≤ G, we have

π∗B(G/H) = B((G/K)/(HK/K)) = A(G/(HK) ′), where (HK) ′K/K = HK/K

and (HK) ′ is an isotropy group. Since A is an orbifold coefficient system, this implies

that A(G/(HK) ′) = A(G/H), so π∗B(G/H) = A(G/H).

Note that if G ≃ H ⊕ K, there are two canonical ways to obtain an equivalent

system of coefficients on hOG from one on hOH : using i∗ for i : H →֒ G or using π∗

for π : G → G/K ≃ H. The result is the same either way, since LK/K ≃ L/L∩K, and

L = (L∩H)(L∩K) so L/(L∩K) = (L∩H)(L∩K)/(L∩K) ≃ L∩H/(L∩K∩H) = L∩H.

Proposition 5.11 For any orbifold system of coefficients A, H∗
Br(X, [A]) is well defined,

that is, it does not depend on which translation groupoid is used to represent X.

Proof By Theorem 3.4 and Proposition 3.5, it is sufficient to check that the definition

is invariant under the two forms of change-of-group essential equivalences (3.1) and

(3.2). Let ϕ : G ⋉ X → H ⋉ Y be such an essential equivalence. By the definition of

our equivalence relation and Lemmas 5.9 and 5.10, for any coefficient system A on

hOG there is a coefficient system B on hOH which is equivalent to A, and conversely,

for any coefficient system B on hOH there is an equivalent system A on hOG. So it

is sufficient to check that any of the pairs of systems that generate the equivalence

relation give isomorphic cohomology groups.

Both of the first two cases of the equivalence relation follow directly from Propo-

sition 5.7. The third case follows from Corollary 5.2.

Thus we have a way of defining orbifold Bredon cohomology under mild restric-

tions on the coefficient systems. These restrictions are needed because in some sense

we have taken the limit of the Bredon cohomologies for all the different equivarant

representations of a given orbifold. If one would like to take all coefficient systems for

all representations of the orbifold into account, one would need to consider a kind of

colimit construction. We plan to address these issues in more detail in a future paper.

Example 5.12 An example of a coefficient system which satisfies the conditions

necessary to give rise to an orbifold cohomology theory is RG defined by the repre-

sentation rings: such a coefficient diagram is defined by RG(G/H) = R(H) on hOG.

The structure maps of this diagram are induced by the conjugate G-action on itself:

for a map α : G/H → G/(αHα−1) and a representation V of αHα−1, we simply

pre-compose with the conjugation to get a representation of H. Similarly, for a pro-

jection G/H → G/H ′ for H ⊆ H ′ and a representation W of H ′, we can restrict to

an action of H via the inclusion. Then RG is clearly an orbifold system of coefficients,

since the value at G/H only depends on H.

Moreover, up to isomorphism of cohomology groups, it does not matter which

translation groupoid we start with to represent our orbifold, as shown by the follow-

ing proposition.
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Proposition 5.13 Suppose X is an orbifold. Then if X is represented by two different

translation groupoids G ⋉ X and H ⋉ Y , the orbifold coefficient systems RG and RH are

orbifold equivalent and give rise to isomorphic Bredon cohomology groups.

Proof By Theorem 3.4, Proposition 3.5, and Proposition 5.11, it is sufficient to check

for any change-of-group essential equivalences of the forms (3.1) and (3.2), that the

representation coefficient system on the domain is orbifold equivalent to the repre-

sentation coefficient system on the codomain.

Let i : H →֒ G induce the essential equivalence H ⋉ X → G ⋉ (G ×H X). Then

i∗RG gives a diagram on hOH by restricting to the subgroups K contained in H, and

similarly restricting to those structure maps induced by the action of H, that is, the

restriction is exactly i∗RG = RH .

Let K ⊆ G act freely on X, inducing the essential equivalence G ⋉ X → G/K ⋉

X/K. In this case, π∗(RG/K ) is not isomorphic to RG. However, we will now show

that rXπ∗RG/K = rXRG.

Because K acts freely on X, we know that if H is an isotropy subgroup of X, then

H ∩ K = {e}. Therefore

π∗RG/K (G/H) = RG/K ((G/K)/(HK/K)) = R(HK/K) = R(H/K ∩ H) = R(H);

so the entries of rXπ∗RG/H and rXRG agree. We also need to show that the structure

maps of these two diagrams agree.

If H ⊆ H ′ are two isotropy subgroups of X in G, then the structure map of the

projection G/H → G/H ′ is defined by restricting the H ′ actions of the representa-

tions in R(H ′) to H. In π∗RG/K , the structure map of the projection G/H → G/H ′

is induced by considering the projection (G/K)/(HK/K) → (G/K)/(H ′K/K), and

so comes from restricting the H ′K/K action to the subgroup HK/K. But again, this

is just isomorphic to the inclusion H ⊆ H ′. So these structure maps are the same on

the representation rings.

The diagram π∗RG/K also has structure maps induced on the representations by

the conjugation action of G/K on its subgroups. In particular, any conjugation ac-

tion of an element of K is trivial in RG/K and therefore also in the induced diagram

π∗RG/K . On the other hand, the diagram RG has potentially more of these conjuga-

tion actions, coming from the action of the larger group G on its subgroups. How-

ever, these extra morphisms are actually trivial: any k ∈ K which sends a subgroup

H to itself, acts trivially on H by Lemma 5.5, and so any such structure map on R(H)

is already trivial. Similarly, if k takes R(H) to the isomorphic ring R(kHk−1), all such

elements k ∈ K must give the same isomorphism. Thus all morphisms in the conju-

gation action of G on the isotropy subgroups of X factor through G → G/K, and so

the structure maps and thus the diagrams rXπ∗RG/K and rXRG are equal as desired.

Note that a similar argument can be applied to show that for any inclusion of

groups i : H →֒ G and orbifold groupoid H ⋉ Y , rG×HY i∗RH = rG×HY RG. And

similarly, that for any essential equivalence of the form π : G ⋉ X → G/K ⋉ X/K,

rX/Kπ∗RG = rX/K RG/K .

So if both G ⋉ X and H ⋉ Y represent the same orbifold, let R̃H be the coefficient

system on hOG obtained by moving RH along some zig-zag of essential equivalences
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connecting G⋉X and H ⋉Y . From the argument above we derive that rXRG = rXR̃H .

So H∗
hOG

(X, RG) = H∗
hOG

(X, R̃H) = H∗
hOH

(Y, RH).

This particular Bredon cohomology theory is of interest because these are the

ground coefficients for equivariant K-theory. K-theory is not itself a Bredon coho-

mology theory, since its value evaluated at a point is not concentrated in degree zero.

However, K-theory is related to this particular Bredon cohomology via an equivari-

ant Atiyah–Hirzebruch spectral sequence.

Note that the techniques of this paper do not necessarily guarantee that there is a

canonical isomorphism between the cohomology groups in Proposition 5.13. The

issue is that it is not clear whether two parallel essential equivalences of orbifold

groupoids give rise to the same isomorphism, even if they give rise to the same maps

between the corresponding quotient spaces. (If there is an invertible 2-cell between

them, this is the case, but for noneffective orbifolds it is not clear whether such a

2-cell needs to exist.)

A possible approach to this question would involve Honkasalo’s description of

these cohomology groups in terms of the sheaf cohomology of the quotient space. A

complete proof would require a construction of Honkasalo’s sheaf S(R) based on the

isotropy groups alone, without any reference to a representation G⋉X of the orbifold,

together with a canonical isomorphism S(RG) ∼= S(R) for any such representation.

This would require some careful arguments about chosen embeddings of atlas charts,

and falls outside the scope of the present paper.

6 Proofs I: Background on Hilsum–Skandalis Maps

The remainder of this paper consists of the deferred proofs of the results already

discussed. We begin with supporting material for the proof of Theorem 3.4.

In using Lie groupoids to represent geometric objects like orbifolds, often one

ignores the bicategory structure and instead considers the category [LieGpd] of Lie

groupoids with isomorphism classes of homomorphisms, and its corresponding cat-

egory of fractions [LieGpd][W−1] with respect to isomorphism classes of essential

equivalences. The advantage of considering this category rather than its 2-categorical

refinement is that there is a nice description of the morphisms in terms of groupoid

bundles. The resulting morphisms are called Hilsum–Skandalis maps [5, 17]. Mo-

erdijk and Mrčun [13] gave a description of the correspondence between isomor-

phism classes of generalized maps and Hilsum–Skandalis maps, which we will use in

the proof of Theorem 3.4. In this section, we summarize these constructions in order

to fix our notation.

Definition 6.1 A left G-bundle over a manifold M is a manifold R with smooth

maps

R
ρ //

r
²²

M

G0
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and a left G-action µ on R, with anchor map r : R → G0, such that ρ(gx) = ρ(x) for

any x ∈ R and any g ∈ G1 with r(x) = s(g).

Such a bundle R is principal if

• ρ is a surjective submersion,
• the map (π1, µ) : R ×G0

G1 → R ×M R, sending (x, g) to (x, gx), is a diffeomor-

phism.

A Hilsum–Skandalis map G → H is represented by a principal right H-bundle R

over G0

R
ρ //

r
²²

G0

H0

which also has a left G-action (along ρ), which commutes with the H-action. So we

have that

r(gx) = r(x), ρ(xh) = ρ(x), g(xh) = (gx)h,

for any x ∈ R, g ∈ G1, and h ∈ H1 with s(g) = ρ(x) and t(h) = r(x). Moreover, since

the H-bundle is principal, ρ is a surjective submersion, and the map R ×H0
H1 →

R×G0
R is a diffeomorphism. We denote this map by (R, ρ, r) : G → H. Two principal

right H-bundles with left G-action represent the same Hilsum–Skandalis map if and

only if they are diffeomorphic as H- and G-bundles.

Composition of Hilsum–Skandalis maps is defined by a tensor product construc-

tion over the middle groupoid. Let (R, ρ, r) : G → K and (Q, θ, q) : K → H be two

Hilsum–Skandalis maps. Then the space θ ◦ π2 = ρ ◦ π1 : R ×K0
Q → K0 has a right

K-action, defined by (x, y)k = (xk, k−1 y), for k ∈ K1, x ∈ R, and y ∈ Q, with

θ(y) = t(k) = ρ(x). Denote the orbit space of this action by R⊗K Q. Then we define

the composition (Q, θ, q) ◦ (R, ρ, r) = (R ⊗K Q, ρ ◦ π1, q ◦ π2).

Example 6.2 The left G-bundle

G1
s //

t
²²

G0

G0

defined by composition of morphisms is principal, and has also a right G-action with

anchor map s (again, by composition). We denote this bundle by U (G). The bun-

dles of the form U (G) represent identity morphisms in the sense that if (R, ρ, r) is a

Hilsum–Skandalis map H → G, then U (H) ◦ (R, ρ, r) ∼= (R, ρ, r) ∼= (R, ρ, r) ◦U (G).

Definition 6.3 A Hilsum–Skandalis map (R, ρ, r) is a Morita equivalence when it is

both a principal G-bundle and a principal H-bundle.

We can translate between Hilsum–Skandalis maps and our homomorphisms of

Lie groupoids as follows. Let ϕ : G → H be a homomorphism. Then let Rϕ =
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ϕ∗U (H) = G0 ×ϕ,H0,t H1. This space has the following smooth functions to G0 and

H0:

(6.1) G0 Rϕ
π1oo s◦π2 // H0,

where π1 and π2 are the projection maps. Moreover, it is a principal right H- and left

G-bundle with the following actions:

g(x, h)h ′
= (t(g), ϕ1(g)hh ′)

for x ∈ G0, g ∈ G1 and h ′, h ∈ H1, with s(g) = x and t(h ′) = s(h). So (6.1) denotes

a Hilsum–Skandalis map (Rϕ, π1, s ◦ π2) : G → H.

Conversely, a Hilsum–Skandalis map (R, ρ, r) : G → H gives rise to a generalized

map:

G (G × H) ⋉ R
ρ̃oo r̃ // H,

where

((G × H) ⋉ R)0 = R and ((G × H) ⋉ R)1 = G1 ×s,G0,ρ R ×r,H0,s H1,

with

s(g, x, h) = x, t(g, x, h) = gxh−1 and m((g ′, gxh−1, h ′), (g, x, h)) = (g ′g, x, h ′h).

The homomorphisms ρ̃ and r̃ are defined by ρ̃0(x) = ρ(x), ρ̃1(g, x, h) = g, and

r̃0(x) = r(x), r̃1(g, x, h) = h, respectively. These constructions satisfy the following

properties.

Theorem 6.4 [16] The homomorphism r̃ is an essential equivalence if and only if

(R, ρ, r) is a Morita equivalence.

Theorem 6.5 [16] The category of Lie groupoids with Hilsum–Skandalis maps forms

a category of fractions for the category of Lie groupoids with equivalence classes of homo-

morphisms relative to the essential equivalences.

7 Proofs II: Proof of Theorem 3.4

We want to show that the bicategory of orbifold translation groupoids and equivari-

ant maps in EqTrGpd(W−1) is equivalent to the full sub-bicategory of LieGpd(W−1)

on representable orbifold groupoids; so we need to show that we can restrict to equiv-

ariant maps.

Let

(7.1) G ⋉ X K
υoo ϕ // H ⋉ Y
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be a generalized map between translation groupoids. The fact that υ is an essential

equivalence does not imply that K is a translation groupoid. However, we will show

that it is isomorphic in LieGpd(W−1) to a generalized map of the form

(7.2) G ⋉ X L ⋉ Z
ωoo ψ // H ⋉ Y,

where ω is a smooth equivariant essential equivalence and ψ is a smooth equivari-

ant map. We will use the Hilsum–Skandalis representation of generalized maps as

described in the previous section to construct the generalized map in (7.2).

Proposition 7.1 Let G = G ⋉ X and H = H ⋉ Y be orbifold translation groupoids.

Any generalized map

G K
υoo ϕ // H

is isomorphic in the bicategory LieGpd[W−1] to a generalized map of the form

G L
ωoo ψ // H

where L is a translation groupoid and both ω and ψ are equivariant maps. Moreover,

L may be chosen such that its structure group is G × H and the group homomorphisms

of ω and ψ are the appropriate projections onto G and H.

Proof Let Rυ and Rϕ be the principal bundles corresponding to the homomor-

phisms υ and ϕ, respectively, as in (6.1) in Section 6. So

Rυ = υ∗(UG) = K0 ×X (G × X)

and its elements can be represented as triples (z, g, x) with z ∈ K0, g ∈ G, and

x ∈ X, such that υ0(z) = gx. Note that given z and g, we have that x = g−1υ0(z), so

Rυ
∼= K0 × G. The projection map π1 : Rυ → K0 is a surjective submersion, since it

is the pullback of the target map t : G × X → X, t(g, x) = gx, which is a surjective

submersion. The anchor maps for the bundle structures on Rυ
∼= K0 × G are now

K0 Rυ
π1oo rυ // X,

where rυ(z, g) = g−1υ0(z). The right G-action and left K-action are defined by

k · (z, g) · (g ′, g ′−1g−1υ0(z)) = (t(k), π1υ1(k)gg ′).

Since υ is an essential equivalence, Rυ is also a principal G-bundle, representing

a Hilsum–Skandalis map G → K. As such we will denote it by R−1
υ ; the space is

the same, but the actions are reversed. (Recall that a left (resp. right) action can be

turned into a right (resp. left) action by acting by the inverses of the elements.)
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The principal K-bundle Rϕ is defined analogously. We consider the composition

of the two Hilsum–Skandalis maps represented by R−1
υ and Rϕ. The principal bundle

for the composition is obtained as a quotient of the pullback

Q = R−1
υ ×K0

Rϕ
∼= G × K0 × H.

The right K-action on the projection map Q → K0 is defined by

(g, z, h) · k = (π1υ1(k−1)g, s(k), π1ϕ1(k−1)h),

for k ∈ K1 with t(k) = z. The quotient of Q by this action is R−1
υ ⊗K Rϕ. This space

has the following bundle maps into X and Y :

X Rυ ⊗K Rϕ
qυoo qϕ // Y,

where qυ(g, z, h) = g−1υ0(z) and qϕ(g, z, h) = h−1ϕ0(z). These maps are well de-

fined on equivalence classes, since

qυ(π1υ1(k−1)g, s(k), π1ϕ
−1
1 (k−1)h) = [π1υ1(k−1)g]−1υ0(s(k))

= g−1π1υ1(k−1)−1υ0(s(k))

= g−1π1(υ1(k))υ0(s(k))

= g−1υ0(t(k))

= g−1(υ0(z))

= qυ(g, z, h).

The left G-action and right H-action on this space are defined by

(g ′, g−1υ0(z))(g, z, h)(h ′, h ′−1h−1ϕ0(z)) = (gg ′−1, z, hh ′).

We now translate this back to homomorphisms of Lie groupoids, and construct

the span of homomorphisms corresponding to this bundle, as in [13]:

G G ⋉ (Rυ ⊗K Rϕ) ⋊ Hoo // H.

The space of objects in this middle groupoid is (G ⋉ (Rυ ⊗K Rϕ) ⋊ H)0 = Rυ ⊗K Rϕ

and the space of arrows is

(G⋉(Rυ⊗K Rϕ)⋊H)1 = (G×X)×X (Rυ⊗K Rϕ)×Y (H×Y ) ∼= G×(Rυ⊗K Rϕ)×H.

So G ⋉ (Rυ ⊗K Rϕ) ⋊ H ∼= G ⋉ (Rυ ⊗K Rϕ) ⋊ H ∼= (G × H) ⋉ (Rυ ⊗K Rϕ). The

source map is defined by projection, and the target map is defined by the (left) action

of G × H, t(g ′, h ′, [g, z, h]) = [gg ′−1, z, hh ′−1].
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The homomorphisms

(7.3) G (G × H) ⋉ (Rυ ⊗K Rϕ)
ωoo ψ // H

are defined by

ω0[g, z, h] = qυ(g, z, h) = g−1υ0(z), ω1(g ′, h ′, [g, z, h]) = (g ′, g−1υ0(z))

and

ψ0[g, z, h] = qϕ(g, z, h) = h−1ϕ0(z), ψ1(g ′, h ′, [g, z, h]) = (h ′, h−1ϕ0(z)).

Finally, we construct a 2-cell in the bicategory of fractions from the generalized map

in (7.1) to the one in (7.3). To this end, define a homomorphism

θ : K → (G × H) ⋉ (Rυ ⊗K Rϕ)

by θ0(z) = [eG, z, eH] and θ1(k) = (π1υ1(k), π1ϕ1(k), [eG, s(k), eH]). We claim that

the following diagram of groupoids and homomorphisms commutes:

(7.4) K

υ

vvmmmmmmmmmmmmmmm

ϕ

((QQQQQQQQQQQQQQQ

θ

²²

G ⋉ X H ⋉ Y

(G × H) ⋉ (Rυ ⊗K Rϕ)

ω

hhPPPPPPPPPPPP ψ

66nnnnnnnnnnnn

Indeed,

ω0 ◦ θ0(z) = w0[eG, z, eH] = υ0(z),

ω1 ◦ θ1(k) = w1(π1υ1(k), π1ϕ1(k), [eG, s(k), eH]) =
(

π1υ1(k), υ0(s(k))
)

= υ1(k),

and

ψ0 ◦ θ0(z) = ψ0[eG, z, eH] = ϕ0(z),

ψ1 ◦ θ1(k) = ψ1(π1υ1(k), π1ϕ1(k), [eG, s(k), eH]) =
(

π1ϕ1(k), ϕ0(s(k))
)

= ϕ1(k).

We conclude the proof by remarking that the diagram (7.4) represents an (invertible)

2-cell in LieGpd(W−1)(G ⋉ X, H ⋉ Y ).
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The previous proposition implies that for any two orbifold translation groupoids

G ⋉ X and H ⋉ Y , the inclusion of categories

EqTrGpd(W−1)(G ⋉ X, H ⋉ Y ) →֒ LieGpd(W−1)(G ⋉ X, H ⋉ Y )

is essentially surjective on objects, i.e., on morphisms G ⋉ X → H ⋉Y . It remains to

be shown in the proof of Theorem 3.4 that the inclusion functor

EqTrGpd(W−1)(G ⋉ X, H ⋉ Y ) →֒ LieGpd(W−1)(G ⋉ X, H ⋉ Y )

is fully faithful on arrows, i.e., on 2-cells between morphisms G ⋉ X → H ⋉ Y .

Proposition 7.2 Any 2-cell

[M, θ, θ ′, α1, α2] : ((υ, w), K ⋉ Z, (ϕ, f )) =⇒ ((υ ′, w ′), K ′
⋉ Z ′, (ϕ ′, f ′))

for orbifold groupoids is equivalent to a 2-cell of the form [(K ×K ′) ⋉ Q, κ, κ ′, α ′
1, α

′
2],

where κ and κ ′ are equivariant essential equivalences.

Proof Since θ is an essential equivalence, the span K ⋉ Z
θ

←− M
θ ′

−−→ K ′
⋉ Z ′ repre-

sents a generalized map from K ⋉Z to K ′
⋉Z ′. We will again use the correspondence

with the Hilsum–Skandalis maps to find a span of equivariant essential equivalences

which are part of an equivalent 2-cell. As in the proof of Proposition 7.1, we find that

R−1
θ ⊗M Rθ ′

∼= (K × M0 × K ′)/ ∼M, where the action of M is defined by

(k, x, k ′) · m = (π1θ1(m−1)k, s(m), π1θ
′
1(m−1)k ′),

for m ∈ M1 with t(m) = x ∈ M0. The bundle maps into Z and Z ′,

Z R−1
θ ⊗K Rθ ′

qθoo qθ ′ // Z ′,

are defined by qθ(k, x, k ′) = k−1θ0(x) and qθ ′(k, x, k ′) = k ′−1θ ′
0(x). The correspond-

ing span of equivariant homomorphisms from an intermediate translation groupoid

into K ⋉ Z and K ′
⋉ Z ′ is given by

K ⋉ Z (K × K ′) ⋉ (R−1
θ ⊗M Rθ ′)

κoo κ ′

// K ′
⋉ Z ′

defined by

κ0[k, x, k ′] = qθ(k, x, k ′) = k−1θ0(x), κ1(ℓ, ℓ′, [k, x, k ′]) = (ℓ, k−1θ0(x))

and

κ ′
0[k, x, k ′] = qθ ′(k, x, k ′) = k ′−1θ ′

0(x), κ ′
1(ℓ, ℓ′, [k, x, k ′]) = (ℓ′, k ′−1θ ′

0(x)).

So let Q = R−1
θ ⊗M Rθ ′ .
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Note that the natural transformations α1 and α2 are given by smooth functions

α1 : M0 → G × X and α2 : M0 → H × Y . We will denote the components of these

functions by α1(x) = (αG
1 (x), αX

1 (x)) and α2(x) = (αH
2 (x), αY

2 (x)). We define the

new transformations

α ′
1 : (R−1

θ ⊗M Rθ ′) → G × X, α ′
2 : (R−1

θ ⊗M Rθ ′) → H × Y

by

α ′
1[k, x, k ′] = (υ ′(k ′)−1αG

1 (x)υ(k), υ(k)−1w(θ0(x))),

and

α ′
2[k, x, k ′] = (ϕ ′(k ′)−1αH

2 (x)ϕ(k), ϕ(k)−1 f (θ0(x))).

The fact that α ′
1 and α ′

2 are well defined on equivalence classes follows from the fact

that α1 and α2 satisfy the naturality condition, as the following calculation shows:

α ′
1

(

π1θ(m−1)k, s(m), π1θ
′(m−1)k ′

)

=
(

υ ′(π1θ
′(m−1)k ′)−1αG

1 (s(m))υ(π1θ(m−1)k), υ(π1θ(m−1)k)−1w(θ0(s(m)))
)

=
(

υ ′(k ′)−1υ ′(π1θ
′
1(m))αG

1 (s(m))υ(π1θ(m−1))

× υ(k), υ(k)−1υ(π1θ1(m))w(θ0(s(m)))
)

=
(

υ ′(k ′)−1αG
1 (t(m))υ(k), υ(k)−1w(θ0(t(m)))

)

=
(

υ ′(k ′)−1αG
1 (x)υ(k), υ(k)−1w(θ0(x))

)

= α ′
1(k, x, k ′).

The fact that α ′
1 and α ′

2 satisfy the naturality condition can be checked by a straight-

forward calculation. Also,

s ◦ α ′
1[k, x, k ′] = υ(k)−1 · w(θ0(x)) = w(κ0(x)),

t ◦ α ′
1[k, x, k ′] = υ ′(k ′)−1αG

1 (x)υ(k)(υ(k)−1w(θ0(x)))

= υ ′(k ′)−1αG
1 (x)w(θ0(x))

= υ ′(k ′)−1w ′(θ ′
0(x))

= w ′(k ′−1θ ′
0(x))

= w ′κ ′
0(x),

so α ′
1 represents a natural transformation from (υ, w) ◦κ to (υ ′, w ′) ◦κ ′. The calcu-

lation for α ′
2 goes similarly.
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Remark 7.3 We have only shown that the inclusion functor EqTrGpd(W−1) →֒
LieGpdTr(W−1) is a (weak) equivalence of bicategories, and this is sufficient for our

purposes. However, the method of the proof can also be used to construct a ho-

momorphism of bicategories Φ : LieGpdTr(W
−1) → EqTrGpd(W−1) in the opposite

direction. On objects, Φ is the identity, and it sends a generalized morphism

G ⋉ X K
υoo ϕ // H ⋉ Y

to

G ⋉ X (G × H) ⋉ (R−1
υ ⊗K Rϕ)

(π1,qυ)oo (π2,qϕ) // H ⋉ Y ,

as constructed above. For a 2-cell

(7.5) K

ω

yyttttttttt
ϕ

%%KKKKKKKKK

G ⋉ X α1⇓ L

ν

OO

ν ′

²²

α2⇓ H ⋉ Y

K′

ω ′

eeJJJJJJJJJ ϕ ′

99ttttttttt
,

consider the induced 2-cell

(7.6) (G × H) ⋉ (R−1
ω ⊗K Rϕ)

(π1,qω)

{{wwwwwwwwwwwwwwwwwwwww

(π2,qϕ)

##HHHHHHHHHHHHHHHHHHHH

K

θ

OO

ω

uukkkkkkkkkkkkkkkkkk

ϕ

))TTTTTTTTTTTTTTTTT

= =

G ⋉ X α1⇓ L

ν

OO

ν ′

²²

α2⇓ H ⋉ Y

K′

ω ′

iiSSSSSSSSSSSSSSSSS
ϕ ′

55kkkkkkkkkkkkkkkkk

θ ′

²²

= =

(G × H) ⋉ (R−1
ω ′ ⊗K ′ Rϕ ′)

(π1,qω ′ )

ccGGGGGGGGGGGGGGGGGGGG

(π2,qϕ ′ )

;;wwwwwwwwwwwwwwwwwwwww

,

where θ and θ ′ are the morphisms as described in (7.4). Then Φ sends (7.5) to the
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2-cell

(G × H) ⋉ (R−1
υ ⊗K Rϕ)

(π1,qω)

uukkkkkkkkkkkkk (π2,qϕ ′ )

))SSSSSSSSSSSSS

G ⋉ X α ′

1⇓ K ⋉ Z

κ

OO

κ ′

²²

α ′

2⇓ H ⋉ Y

(G × H) ⋉ (R−1
ω ′ ⊗K ′ Rϕ ′)

(π1,qω ′ )

iiSSSSSSSSSSSSS (π2,qϕ ′ )

55kkkkkkkkkkkkk

,

obtained by applying the methods of the proof of Proposition 7.2 to (7.6).

8 Proofs III: Proofs of Additional Results

In this section we include proofs of the additional results mentioned throughout the

paper. We begin with the lemma that the fibre product of two translation groupoids

is another translation groupoid.

Proof of Lemma 3.2 The object space of the fibre product groupoid (if it exists) is

P0 = Y ×K0
K1 ×K0

X, so its elements can be represented by triples

(y, ϕ0(y)
k

−→ ψ0(x), x),

where y ∈ Y , k ∈ K1, and x ∈ X. An element of the space of arrows P1 is given by a

triple

(y
(h,y)
−−→ hy, ϕ0(y)

k
−→ ψ0(x), x

(g,x)
−−→ gx)

with y ∈ Y , h ∈ H, k ∈ K, x ∈ X, and g ∈ G. Such triples are in one-to-one

correspondence with 5-tuples of the form (h, y, ϕ0(y)
k
→ ψ0(x), x, g). Moreover, in

this notation,

s(h, y, ϕ0(y)
k

−→ ψ0(x), x, g) = (y, ϕ0(y)
k

−→ ψ0(x), x),

and

t(h, y, q0(y)
k

−→ ψ0(x), x, g) = (hy, ϕ0(hy)
ψ1(g,x)k[ϕ1(h,y)]−1

−−−−−−−−−−−→ ψ0(gx), gx),

so P is the translation groupoid for the action of G × H on P0 = Y ×K0
K1 ×K0

X,

defined by

(g, h) · (y, ϕ0(y)
k

−→ ψ0(x), x) = (hy, ϕ0(hy)
ψ1(g,x)k[ϕ1(h,y)]−1

−−−−−−−−−−−→ ψ0(gx), gx).

Also, ξ0(y, k, x) = y, ξ1(h, y, k, x, g) = (h, y), ζ0(y, k, x) = x, and ζ1(h, y, k, x, g) =

(g, x), so these maps have the desired format.
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Next we prove that all equivariant essential equivalences between translation

groupoids have the forms specified in Proposition 3.5.

Proof of Proposition 3.5 Let

G × X

²² ²²

ϕ× f // H × Y

²² ²²
X

f
// Y

be an equivariant essential equivalence between translation groupoids. We will de-

note this by ϕ ⋉ f : G ⋉ X → H ⋉ Y . This map can be factored in the following

way:

G × X

²² ²²

ϕ× f // G/ Ker(ϕ) × f (X)

²² ²²

inclusion // H × Y

²² ²²
X

f
// f (X)

inclusion
// Y.

Since the map ϕ ⋉ f is surjective on objects and ϕ ⋉ f is essentially surjective, so

is ϕ ⋉ f . Similarly, the right inclusion map is essentially surjective because ϕ ⋉ f is.

We will show that with the notation above, the first map ϕ ⋉ f is of the form

(3.1) G ⋉ X → G/K ⋉ X/K,

where K is a normal subgroup of G which acts freely on X, and X/K is the quotient

of X by this action. The second map is of the form

(3.2) K ⋉ Z → H ⋉ (H ×K Z),

where K is a (not necessarily normal) subgroup of H.

Consider the diagram

G × X

(s,t)

²²

ϕ× f // G/ Ker(ϕ) × f (X)

(s,t)

²²

// H × Y

(s,t)

²²
X × X

f× f
// f (X) × f (X)

incl×incl
// Y × Y.

We show that the right-hand square is a pullback. Let p : P → H ×Y and q : P →
f (X) × f (X) be such that (s, t) ◦ p = (incl × incl) ◦ q. Then there is a map r : P →
G/ Ker(ϕ) × f (X) defined as follows: let π ∈ P, and let p(π) = (hπ, yπ) and q(π) =

(y ′
π, y ′ ′

π ). Then y ′
π = yπ and y ′ ′

π = hπ yπ . Choose x and x ′ in X such that f (x) = y ′
π

and f (x ′) = y ′ ′
π . Since ϕ ⋉ f is an essential equivalence, there is a unique g ∈ G
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such that gx = x ′ and ϕ(g) = h. We define r(π) = (g, y ′
π). To show that this

does not depend on the choice of the pre-images x and x ′, let z and z ′ be such that

f (z) = y ′
π and f (z ′) = y ′ ′

π , and let g ′ ∈ G be the unique element such that g ′z = z ′

and ϕ(g ′) = hπ . Since f (z) = f (x) and f (z ′) = f (x ′), and ϕ ⋉ f is an essential

equivalence, there are unique elements a, a ′ ∈ G such that ax = z, a ′x ′
= z ′, and

ϕ(a) = eH = ϕ(a ′). Moreover, g ′a = a ′g, since g ′ax = z ′ and a ′gx = z ′, and

ϕ(g ′a) = hπ = ϕ(a ′g). So g = g ′ ∈ G/ Ker(ϕ). It is clear that the map r : P →
G/ Ker(ϕ) × f (X) is the unique map which makes the following diagram commute:

P

q

!!

p

))

r

&&LLLLLLLLLLLL

G/ Ker(ϕ) × f (X)

²²

// H × Y

²²
f (X) × f (X) // Y × Y,

so the square is a pullback. Since ϕ⋉ f is an essential equivalence, the whole rectangle

is also a pullback, so the left-hand square is a pullback.

We conclude that we have factored ϕ⋉ f into two new essential equivalences. It is

easy to check that ϕ⋉ f has the form of a projection G⋉X → G/ Ker(ϕ)⋉X/ Ker(ϕ).

So it remains to show that the space Y is homeomorphic to the group extension of

the G/ Ker(ϕ)-space f (X) over the inclusion G/ Ker(ϕ) → H, that is, that Y ∼=
H ×G/ Ker(ϕ) f (X).

Note that elements of H ×G/ Ker(ϕ) f (X) are represented by pairs (h, f (x)) with

h ∈ H and x ∈ X, and (hϕ(g), f (x)) ∼ (h, ϕ(g) f (x)). There is a morphism

H ×G/ Ker(ϕ) f (X) → Y , defined by (h, f (x)) 7→ h f (x). This map is a surjective sub-

mersion since ϕ ⋉ f is essentially surjective. It is also injective: if h f (x) = h ′ f (x ′),

then h ′−1h f (x) = f (x ′), so there is an element g ∈ G such that gx = x ′ and

ϕ(g) = h ′−1h, so h = h ′ϕ(g). So H ×G/ Ker(ϕ) f (X) ∼= Y , as desired.

We conclude that all essential equivalences can be obtained as composites of es-

sential equivalences of the forms (3.1) and (3.2).

Finally, we include the proof of the 2-for-3 lemma mentioned in Section 2.

Lemma 8.1 The class of essential equivalences between Lie groupoids satisfies the

2-for-3 property, i.e., if we have homomorphisms G
ϕ
−→ K

ψ
−→ H such that two out

of {ϕ,ψ, ϕ ◦ ψ} are essential equivalences, then so is the third.

Proof Consider the following diagram:

G1

(s,t)

²²

ϕ1 //

(A)

K1

(s,t)

²²

ψ1 //

(B)

H1

(s,t)

²²
G0 × G0 ϕ0×ϕ0

// K0 × K0
ψ0×ψ0

// H0 × H0.
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It is a standard property of fibre products that if any two out of (A), (B), and the

whole square are fibre products, so is the third. So if any two out of {ϕ,ψ, ϕ ◦ψ} are

fully faithful, then so is the third.

It is straightforward to show that if ϕ and ψ are essentially surjective, so is the

composite ψ◦ϕ. It is also straightforward to show that if ψ◦ϕ is essentially surjective,

then ψ is essentially surjective.

Lastly, suppose that ψ and ϕ ◦ ψ are essential equivalences. We claim that this

implies that ϕ is essentially surjective (and therefore an essential equivalence). Since

ψ is fully faithful, we have that K1
∼= K0 ×H0,s H1 ×t,H0

K0, and therefore

G0 ×ϕ0,K0,s K1
∼= G0 ×K0

K0 ×H0
H1 ×H0

K0
∼= G0 ×H0

H1 ×H0
K0.

So consider the following commutative diagram.

G0 ×K0
K1

≀

²²

π2 // K1

t

ÃÃ@
@@

@@
@@

@

G0 ×H0
H1 ×H0

K0
π3 //

pb

²²

K0

ψ0

²²
G0 ×H0

H1

π1

²²

π2

//

pb

H1 t
//

s

²²

H0

G0
ψ0◦ϕ0

// H0

The composite t ◦ π2 : G0 ×H0
H1 → H0 is a surjective submersion, because ϕ ◦ ψ

is essentially surjective. So, π3 : G0 ×H0
H1 ×H0

K0 → K0 is a surjective submersion,

since it is a pullback of one, and this makes t ◦ π2 : .G0 ×K0
K1 → K0 a surjective

submersion. We conclude that in this case ϕ is also essentially surjective.
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Kasparov (d’aprés une conjecture d’A. Connes). Ann. Sci. École Norm. Sup. 20(1987), no. 3,
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