SUB-MANIFOLDS OF A LOCALLY PRODUCT
RIEMANNIAN MANIFOLD
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Summary. In this paper, we have obtained the conditions that
a sub-manifold of a locally product Riemannian manifold may also be
locally product. Generalizations of the equations of Gauss,
Mainardi- Codazzi and Ricci have been obtained for the locally product
sub-manifold of the locally product Riemannian manifold.

1. Sub-manifold. Let us consider an m-dimensional Riemannian

manifold Vm’ endowed with the Riemannian metric tensor a. Let D
be the Reimannian connection in Vm. Let there be defined in Vm a

vector valued linear function F, satisfying

(1.1) F(F(K)) = K,
(1.2) (BKF)(L) = 0,
(1.3) 'F(K, L) def a(F(K), L) = 'F(L,K),

for arbitrary vector fields K, L, ... in Vm. Then F is said to give

an almost product structure to Vm and Vm is said to be an almost

product Riemannian manifold.

Let Vn be an orientable sub-manifold of Vm with the immersion
V. -V whose differential B : T (V )—» T A\ is injective
£V =~V _ V) = T (V) s inj
(V ) denote the
£(p) m
tangent spaces of Vn and Vm at p respectively. Then the induced

at each point p of V , where T (V) and T
n P n

metric tensor g of Vn is given by

(1.4) g(X,Y) = a(BX,BY),

where X,Y are arbitrary C” vector fields of V .
n
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Let N, x=n+1,...,m be a set of mutually orthogonal c”
X
unit vector fields to the sub-manifold Vn in such a way that B(X) and
)1;1, for arbitrary X, form a positive sense of Vrn and B(X) a

positive sense of Vn. Then we have

n

(1.5)a a(BX, N) 0,
x

(1.5)b a(}l;l , S1;1) 5

xy’
The transform F(BX) of BX and F(}I;I) of )121 by F can be

expressed as a tangential and a normal part. Thus if repeated x,y,z
also imply summation, we have

(1.6) F(BX) = Bf(X) + H(X)N ,
p.4 p.4

(1.7) F(N) = BK+L N
x X Xyy

We will now study the c” vector valued linear function f, the

COo linear function )Izl, the C® vector field § and the C” function

L , defined in the sub-manifold V .
Xy n

THEOREM 1.41. Let

(1.8) Gx) (v) =2 ¢x,v).
Then
(1.9) )I;I(X) = (G(I}g))(X) = g(g , X)
(1.10)a i(x, v) == 5%, v)
is symmetrical in X, Y :
(1.10)b (X,Y) = 'f(Y,X).
Also )I;Y is symmetrical in xy:
(1.10)(: L = L

xy yX

Proof. Using (1.5)b and (1.3) in (1.6), we obtain

H(X) = a(F(BX), N) = 'F(BX, N).
X x x

424

https://doi.org/10.4153/CMB-1968-049-1 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1968-049-1

Also from (1.8), (1.4), (1.3) and (1.7), we obtain

g, X) = (GEK)(X) = a(FN, BX) = 'F(N, BX) = 'F(BX, N) .

Comparing the last two equations, we obtain (1.9).

From (1.3), (1.4) and (1.10)a, we have
(1.11) 'F(BX,BY) = a(F(BX),BY) = g(f(X),Y) = 'f(X,Y).
Symmetry of 'F establishes the symmetry of ‘f.

From (1.5)b, (1.7), (1.3), and the symmetry of 'F we have

L < aFQ0 - TR < QLY < RN M - L

This proves (1.10)c.

Let D be the induced Riemannian connexion with respect to V .
n

Then it is well known that

D__BX = X+
(1.12) Doy B DX + X(X,Y))lzl ,

where X is the symmetric bilinear mapping of Vn. Also we have

(1.13)a DBX }1)1 = -B X(X) +xey (X) }I;J ,
where

(1.13)b g(Y(X), ¥) = V(X Y),
and xs is skew-symmetric in xy:

(1.13)c 0+6 = 0.

Xy yx

THEOREM 1.2. We have

(1.14)a f(£(X)) +H(X) K = X,
p.4 X
(1.14)b H(F(X)) + L H(X) = 0,
x Xy Yy
(1.14)c }1;Y %Z +HE) = 6,
(1.14)d £(K) +x1;1}§ = 0.
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Proof. Using (1.1) in (1.6), we obtain

B(X) = Bi(f(X)) + H(f{(X))N + H(X) B(K) + H(X) LN,
X X X Xy yX X

Tangential and normal parts of this equation yield (1.14)a, b.

Again from (1.1) and (1.7), we obtain

N = Bi(K) +H(K)N+ LB(K)+ L LN
x Xy XZ zy Y

Tangential and normal parts of this equation yield (1.14)c, d.
THEOREM 1.3. We also have

def

(1.15)a 'F(F(N),N) =———— a(F(N), F(N)) = KK+ L L,
p.4 Y x Y X y’ XZ ZY
(1.15)b 'F(F(BX), BY) —=L— A(F(BX), F(BY)) =
g(f(X), £(Y))+ I}-I{(X) I}'I((Y) ,
(1.15)c 'F(F(BX),N) = 'F(B(X),F(N)) =

a(F(BX),F(N)) = {(X,K) +L H(X).
x X xy'y

Proof. These equations follow immediately from (1.6) and (1.7).

THEOREM 1.4. D_f', D.H and X-L are given by
X Xx — Xy

(1.16)a (D )(Y,2) = H(Y)'V(X,Z) +H(Z)V(X,Y),
X x x b3 x

n

(1.16)b (D_H)(Y) L'W(X,Y) + 6(X)H(Y) - '"V(X,£{(Y)) .
Xx z z XZ Z x

(1.16)c X-L = 'V(X K) - 'V(X, K) +6 L +6 L
Xy xz zy Yz 2zX

Proof. From (1.2) and (1.12), we have

x(E(BY)) = F(D, BY) = F(BDLY) +V (X, Y)F(N) .

Substituting from (1.6) and (1.7) in this equation, we have

(1.17) B(D_£)(Y) + V(X,£(Y))N + (D_H)(Y) N + H(D_Y)N - H(Y)BV(X)
X y y Xy y v X'y x x

+ H(Y) 6(X)N = HDOD_Y)N +'V(X,Y)BK +'V(X,Y) L N
x Xy y y X'y x x x Xy y
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The tangential part of the above equation is

B(D_f)(Y) = H(Y)B V(X) +'V(X,Y) BK .
X x x x X

Using (1.4), (1.13)b and (1.9) in this equation, we obtain (1.16)a. The
normal part of (1.417) yields (1.16)b.

The equation (1.16)c can be obtained similarly.

2. Locally product sub-manifold.

THEOREM 2.1. If in a sub-manifold of a locally product
Riemannian manifold the matrix (( DI;Y )) is equal to

dag (g Gw2 0 T &)

where c's are constants, the submanifold is also a locally product
manifold.

[ if x=y
Proof. Let L = . Then from (1.14)c, we have
—_— xy .
o if x#y
H(K) = , s
() = o, y#x
which is equivalent to
g(K , K) = o, yv#x,
y X

in consequence of (1.9). These are at the most 'é— (m-n)(m-n+1)

independent equations in m-n unknowns I}{{ . But
1 1
(m-n) - 5 (m-n) (m-n+1) = - > (m-n) (m-n-p) ,

which is negative. Hence the equations do not have non-trivial solutions.
Consequently,

%N

= o, H=o.
X

In consequence of these equations, the equations (1.14)a,c and (1.16)a,b
assume the forms

(2.1) (X)) = X,

(2.2) (c)z = (I_,)2 = 41 , x not summed,
x Xx
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2.3) (D 6 (Y) = o,

v (X, £(Y)) .

it

(2.4) 'Y{(X, Y)

The equations (2.1), (2.3) and the fact that 'f is symmetric, prove
the statement.

Note (2.1). If the conditions of the above theorem are satisfied,
the equations (1.6) and (1.7) assume the forms

F(BX) = Bf(X),

F(N)
x

"

N
X

We will now relax the conditions of Theorem (2.1).

THEOREM 2.2, The necessary and sufficient condition that the
sub-manifold V  of a locally product manifold Vm be locally product
n

is

(2.5)a I}{( = o ,

or

(2.5) 2()() = o , for arbitrary X.

Proof. Let the condition (2.5) be satisfied. Then the equations
(1.14)a and (1.16)a reduce to

(2.6) f(£{(X)) = X , (DXf)(Y) = o.

These two equations together with the symmetry of 'f prove that the
sub-manifold is a locally product manifold.

Conversely, let (2.6) be satisfied. Then (1.14)a reduces to

HX)K = o ,
X X

which yields the condition (2.6). Hence, we have the statement,

COROLLARY 2.1. If the sub-manifold V  of the locally product
n

manifold Vm be locally product,

(2.7)a F(BX) = Bf(X) ,
(2.7)b F(N) = L N ,
X Xy y
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(2.8)a f(f(X)) = X ,

(2.8)b L L =258 )
Xy yz Xz
(2.9)a (DXf)Y = o0,
(2.9)b L 'V(X,Y) = '"V(X,{(Y)) ,
Xz z X
(2.9)c X- L =6 +L +6 L .
Xy Xz 2y yZ zX

Proof., Putting E(X) = o and I§c =0 in (1.6) and (1.7) we obtain

(2.7). Putting these values in (1.14)a, ¢, and (1.16) we obtain (2.8)
and (2.9) respectively.

COROLLARY 2.2. When the sub-manifold Vn of the locally

product manifold Vrn is locally product, F(BX) is tangentialto V
n

and F(I}\Ii) isa ¢ setof mutually orthogonal unit normal vectors to Vn .

Proof. Putting H(X) = o and I}§(= o in (1.15) and using (2.8)b
mm— x

and (2.7)a, we obtain

(2.10)a a(F(N) , F(N) = 6__,
x y xy
(2.10)b a(F(BX), F(BY)) = g(f(X),{(Y)) = g(X,Y),
(2.10)c a(F(BX), F(N))= 0.
X

These equations prove the statement.

Note (2.2). The equation (2.410)b proves that the magnitude of
F(BX) is the same as the magnitude of BX in Vm .

3. Curvature tensor. In this section, we confine ourselves to
V_ only. But the results hold also for Vn when Vn is also a
m

locally product Riemannianmanifold.

THEOREM 3.41. Let S be the curvature tensor of the locally
product Riemannian manifold Vm’ that is, it is a vector valued

trilinear function of Vm’ and let

def

=1

(3.1) F(L), LeV .
m
Then
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(3.2) S (L,M,N) = S(L,M,N) .

Proof. We have

= DD -D. D.N- .
S(L,M,N) = D, B N-D B N D[L’M]N

Using (3.1) and (4.2) in this equation, we obtain

S(L, M, N) = DLBM(F(N)) - BMBL(F(N)) - 5[14 M](F(N))
= F(D B/ N-D B N- D[L, M]N)
= S(L,M, N),

which proves the statement.
COROLLARY 3.1. We have

(3.3) S(L,M,N) = S(L,M,N) .
Proof. Using (1.1) in (3.2), we obtain (3.3).

COROLLARY 3.2. Put

(3.4) T(L,M,N,P) = a(S(L,M, N}),P) .
Then
(3.5) T(L,M,N.P) = T(L,M, N P) .

Proof. From (3.3), (1.3) and (3.4), we have
T(L,M,N.P) = a(S(L,M, N),P) = a(S(L, M, N), P)
= a(S(L,M,N),P) = T(L,M,N,P)
which is the equation (3.5).

COROLLARY 3.3. Letthe Ricci tensor Ric which is the
bilinear scalar function, be defined by

(3.6) Ric(L, M) —SL (CiS)(L, M) ,

where Ci is the contraction (Mishra, 1965). Then

(3.7)a Ric(L, M)

(¢, SN, W,

(3.7)b Ric(L, M)

l

(Ci S)HL, M),
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(3.7)c Ric(L, M) (C S)NL,M),

n

N TN

(3.7)d Ric(L, M) (C. S)L,M).

Proof. (3.7)a follows at once from (3.3) and (3.6). Remaining
equations follow from (3.7)a by barring L and M in (3.7)a.

COROLLARY 3.4, We have
(3.8)a Ric(L, M) = Ric(L, M),
(3.8)b Ric(L, M) = Ric(L, M) .

Proof. Using Bianchi's first identities in (3.7)b, we get

(3.9)a

Ric(L,M) = Ric(M, L) = (cfi SmM L) = - (c; S)M.L) - (cg S)M, L).
But
1 =
(3.9)b C,S = o
3
1z 1=
(3.9)c (C, S)m, L) = -(C; §)(L, M)

Substituting from (3.9)b, ¢ in (3.9)a, and using (3.7)b we obtain

Ric(L, M) = (C: S)(L, M) = Ric(L,M) .

Barring L in (3.8)a and using (1.1) we obtain (3.8)b.

COROLLARY 3.5. Ric(L, M) is proportional to 'F(L, M) if and
only if the product space is an Einstein space.

Proof. We have, using (1.1)
'F(L, M) = 'F(M,L) = 'F(F(M),L) = a(M,L).
Let
Ric(L, M) = k F(L, M) .
Barring M and using (1.1), we get
Ric(L, M) = k'F(L,M) = k a(L, M) .

This proves the statement.
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4. Gauss, Codazzi and Ricci equations. In this section, we shall
assume that the sub-manifold Vn of a locally product manifold Vm is

also locally product. In this case I’E(X) = o, I}{! = 0, in consequence of

Theorem (2.2), and the equations (1.6) and (1.7) reduce to

(4.1) F(BX) = Bf(X),
(4.2) F(N) = LN

THEOREM 4.1. The following are the generalizations of the
equations of Gauss and Mainardi- Codazzi for the locally product
sub-manifold Vn of a locally product enveloping manifold Vm

(4.3)a
K(F(BX), F(BY),F(BZ), F(BW)) = K(f(X), £(Y), f(Z),{(W)) -
'Yc(f(Y), f(Z))'Y‘(f(X), £(Z))+ 'V({(X), f(Z))'Yc(f(Y), £(2)),
(4.3)b

K(F(BX), F(BY), F(BZ), F(Y) = {(D ) VNE(Y), £(2)) -

(D vy VIEX), £(2)) + 'VI(E(Y), £(2)) 8 (£(X)) - 'V (£(X), £(Z))

f(Y) t
0, (€Y} L
where
(4.4)a
R(F(BX), F(BY), F(BZ), F(BW)) ——={— a(R(F(BX), F(BY), F(BZ), F(BW))
(4.4)b
def

R(F(BX).F(BY),F(BZ),F(I;I{)) _— a(I_{(F(BX),F(BY),F(BZ),F(§)).

Proof. In consequence of (4.1) and (4.2) we have

R(F(BX), F(BY), F(BZ))

1]

R(Bf(X), Bf(Y), Bf(Z))

(4.5) = DBf(X)DBf(Y)Bf(Z) B BBf(Y)I—)Bf(X)Bf(Z)

" Dex), Be(v)PIA)

Now in consequence of (1.12) and (1.13)a,
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Bf(Z)

(B £(2) +'V(E(Y), £(2))N)

Drtx)PBE(Y) Dgsx)®Ps(v)

£f(Z) + V(£(X), D f(Z))N
X x

(4.6) BD %) Ps(v) £(Y)

+E(X)- ('VAECY), (ZDY - 'VIEY), SZIBY(E(X)
+IY(E(Y), €2)) 8 (EXDN
z zx X

and

(4.7)D Bf(Z) = BD £(2) + 'V ([£(X), £(Y)], {(Z))N .

[B£(X), Bf(Y)] [£(X), £(Y)]

Breaking (4.5) into tangential and normal parts and using (4.6) and (4.7),
we get

(4.8) Tan R(F(BX), F(BY),F(BZ)) = B R(f(X), f(Y), £(Z))

- VEY), S(Z)BYEX)) + V(EX), £(Z)B Y(E(Y) .

(4.9)a nor R(F(BX),F(BY),F(B2Z)) = {V{EX), D fZ)-

"'V(E(Y), Dy yE(2)) + £(X)- ("VIE(Y), £(Z)))-£(Y) ('VEX), £(2))

£(X)

+IVE(Y), £(2))Q(E(X)) - 'Y (E(X), £(2)) BEYN} N

But

£(X)- ("V(£(Y), £(2))) - "VAE(Y), Dy o 18(2)) = ( VIE(Y), £(2))

£(X) Diix)

+ YD, o D), £(2)).

Therefore the equation (4.9})a assumes the form

nor R(F(BX), F(BY), F(BZ)) = {(Dg ) WEY), £(2)) +

(4.9)b (Df(Y)'Yg)(f(X).f(Z)) +
'V(E(Y), £(2)) 8(£(X)) - 'V (£(X), £(2))

LOECON N

Substituting from (4.8) in (4.9)b and using (4.1) and (4.2) in (4.4) we
obtain (4.3).
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THEOREM 4.,2. The following are the generalizations of the
equations of Ricci for the locallyproduct sub-manifold Vrl of a locally

product enveloping manifold Vm

R(F(BX), F(BY), FO), FON) = L {((ECG0) LIEY) - ((£(¥))" L))
o 10) L OVIF(Y), V(X)) - L VIEX), V (E(Y))
+ LDy 000 )EYN- LD )0 )(EX))

L OLEONNE ()L ()0 (H(¥)) -

Proof. In consequence of (4.2), we have

R(F(BX),F(BY), F(N)) = R(Bf(X),Bf(Y),L N) =
X XY Y

Prex)PBr0)% Y~ Prev)Poeca'S N - Praea, mecy)sy V-
But
Pht) Be(y) Ly I = D) (E¥D LN - L VYD) + L0 (£(Y)N)

= (£(X)- (£(Y)- LN + (£(Y)- L )(-B V(£(X)) +
Xy v Xy y
6 (F(X))N) - (L(X)-L)B V(£(Y) -
yz Z Xy Y

L (B D, _ (V(£(Y)) + '"V(£(X), VE(Y))N +
xy y z ¥ z

£(X)
(f(X)- ()%y gz(f(‘f))))l;I +

L0 (£(Y)(- V(X)) + 0 (£(X))N) ,
xy yt t tz Z

and
Diaex), By ) = GO IO Ln +
L (-BV([£(X), {(Y)]) + (8_([{(X), ((HIN .
xyw Ty yz z
Therefore

434

https://doi.org/10.4153/CMB-1968-049-1 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1968-049-1

R(F(BX), F(BY), F() = L (8 (£(X)BV(E(Y)) - 6,(€(Y)BV (£(X))
y yt t yt t

+ B(D V)(f(X))-B(Df(X

. VIE))

)

+ {L("V(£(Y), V(£(X)) - "V(£(X), VE(Y)))
xt’ z t z t
+ L (0 (£(Y))9 (£(X)) - 6 (£(X)) 6 (£(Y))
xp pt tz pt tz
+ (£(X) L )(£(Y)) - (£(Y) L )(£(X))
XZ XZ
+L((D JE(Y)) - (D
xt

JE(X))} N
z

f(x)tez f(Y)t?z

Substituting from this equation in

ef

K(F(BX), F(BY), F(N), F(N)) d: a(R(F(BX), F(BY),F(N)),F N)
x y X y

and using (4.2) we obtain (4.10).
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