
INVITED FEATURE PAPER

Approaching the quantum limit for nanoplasmonics

Emily Townsend
Quantum Measurement Division and Joint Quantum Institute, National Institute of Standards and Technology,
Gaithersburg, Maryland 20899-8423, USA; and University of Maryland, College Park, Maryland 20742, USA

Alex Debrecht
Quantum Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland
20899-8423, USA; and Department of Physics and Engineering Physics, Juniata College, Huntingdon,
Pennsylvania 16652, USA

Garnett W. Bryanta)

Quantum Measurement Division and Joint Quantum Institute, National Institute of Standards and Technology,
Gaithersburg, Maryland 20899-8423, USA; and University of Maryland, College Park, Maryland 20742, USA

(Received 30 April 2015; accepted 21 July 2015)

The character of optical excitations in nanoscale and atomic-scale materials is often strongly
mixed, having contributions from both single-particle transitions and collective, plasmon-like
response. This complicates the quantum description of these excitations, because there is no clear
way to define their quantization. To move toward a quantum theory for these optical excitations,
they must first be characterized so that single-particle-like and collective, plasmon-like excitations
can be identified. We show that time-dependent density functional theory can be used to make
that characterization if both the charge densities induced by the excitation and the transitions that
make up the excitation are analyzed. Density functional theory predicts that single-particle-like
and collective excitations can coexist. Exact calculations for small nanosystems predict that
single-particle excitations evolve into collective excitations as the electron–electron interaction is
turned on with no indication that they coexist. These different predictions present a challenge that
must be resolved to develop an understanding for quantum excitations in nanoplasmonic
materials.

I. INTRODUCTION

Plasmons are wavelike excitations of oscillating charge
density that arise in metals, such as gold and silver, where
there is a high density of free conduction electrons.1

Plasmons can occur in the bulk, at a surface or at an
interface between the metal and a dielectric or air. They
also occur in other systems with mobile charges, such as
long chain molecules,2,3 atomic chains on surfaces,4,5

carbon nanotubes,6 doped graphene,7 and other complex
molecules.8 They can be excited by passing charge or,
more importantly, by optical and infrared (IR) fields in
structured materials, such as metal waveguides, gratings,
and nanoparticles, just as radio waves drive current in an
antenna. The collective participation of a large number of
charges in these plasmonic excitations gives them an
intense optical response. However, rapid damping via
scattering among these carriers contributes to femtosec-
ond lifetimes and broad resonances.

The intense optical response of surface plasmons in
metal nanoparticles has been exploited for a thousand
years to provide the beautiful colors of glasses. Over the
last 60 years, plasmonic excitations have been studied
extensively in a wide range of bulk materials.9 In the last
two decades, the interest in plasmonics has exploded.
With the advent of nanotechnology, a variety of fabrica-
tion and chemical growth techniques have been devel-
oped to tailor the makeup, structure, size, and shape of
nanomaterials for plasmonics, tune the resonance fre-
quencies to desired optical and IR wave lengths, and
enhance local fields strongly at desired locations. In
particular, using nanomaterials for plasmonics, also re-
ferred to as nanoplasmonics, to confine light near
surfaces or in nanoparticle gaps to nanoscale volumes
much smaller than the diffraction limit has opened a wide
range of new applications for nanooptics. Nanoplasmonics
has enabled bio and chemical sensing at the few-molecule
level by using metal nanoparticles as optical nanoantennas
to enhance light coupling to individual emitters.10,11

Nanoplasmonics provides metamaterials with novel
response such as negative refraction.12–14 Nanoplasmonics
can be used to enhance light conversion for solar energy
collection,15 nanoheating,16 and nanoscale cancer diag-
nostics and therapies.17 This wide range of applications for
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nanooptics has driven the recent explosive growth in the
interest in nanoplasmonics.

Surface plasmons are hybrid excitations that take on
the character of the optical field induced by the plasmon
and the oscillating charge. Classical optical physics
(Maxwell’s equations and the material’s bulk dielectric
function) usually provides an excellent description of
plasmonic response and has been the workhorse for
describing many of the nanoplasmonic effects now being
exploited. However, quantum effects in optics have been
known for years and have spawned the field of quantum
optics. Whether, when or how quantum effects should be
important for nanoplasmons has not been obvious—in
particular because, unlike photons, plasmons decohere
and decay in femtoseconds due to strong electron–
electron scattering among the many conduction electrons
participating in the plasmon, leaving little time for
quantum effects to play out.

Recently, however, it has become apparent that quan-
tum effects can play a significant role in plasmonics,
despite rapid plasmon decay and decoherence.18,19 Quan-
tum plasmonic effects can arise from the quantum
character of the participating electrons. For metal nano-
particle antennas with nanometer gaps—the antennas that
provide the largest field enhancement and smallest mode
volumes and are therefore most desirable for nanoscale
sensing—quantum tunneling of charge across the gap
distorts the surface plasmons, smearing out the fields, and
limiting the useful enhancement.20 In nanoparticles so
small that size quantization becomes important, the
broadband response of a classical plasmon breaks up
into a series of discrete excitations. Some are still surface
plasmons, others are single-particle-like excitations and
others have mixed character.21,22

Quantum effects should also appear because plasmons
are photonic. In the last decade, a variety of quantum
optics experiments have shown that plasmons can behave
like photons in the quantum limit with quantum co-
herence surviving in the plasmonic structures. Entangled
photons can be transported by surface plasmons,23

energy-time entanglement of photon pairs can survive
a photon-plasmon-photon conversion,24 and quadrature
squeezing has been achieved.25 Most recently, individual
plasmons have been coupled by a 50/50 beam splitter in
a Hong Ou Mandel interference experiment.26 Two
interfering plasmons are seen to arrive only at the same
detector, a clear signature of quantum interference at the
beam splitter.27,28 However, in many of these experi-
ments, the plasmons are nearly photonic and it is unclear
that one needs to invoke quantized matter excitations to
understand the quantum response. In any case, these
experiments do raise fundamental questions about how
quantum information and resources, such as entangle-
ment, can be transmitted via lossy plasmonic channels via
quantum/classical interfaces. These are the questions that

arise for all photonic systems but are more challenging
for plasmonic channels which have larger losses.
Furthermore, quantum plasmonics offers the new twist
of intense local fields and small mode volumes that
provide strong light-matter coupling and strong nonlinear
response even for weak input fields which are difficult to
achieve with light alone.

Plasmonic nanoantennas and nanoguides could also
provide nanoscale pathways for directing optical com-
munication between local quantum emitters. Such plas-
monic guiding would extend optical quantum
communication, now done with photonic structures and
optical cavities, to the nanoscale, with orders of magni-
tude better spatial resolution and with addressing that
dramatically beats the diffraction limit for optics, but only
if the quantum character of the information is preserved
while being carried by the plasmons. A prototypical
realization for this nanoscale quantum information trans-
fer uses hybrid systems of metallic nanoparticles (MNP)
linked to quantum emitters such, as atoms, molecules,
and quantum dots with plasmons in MNPs moving qubits
from emitter to emitter. When the nanohybrid is driven
by a weak light field, a classical description of the
nanohybrid is sufficient and the MNP can enhance or
quench the response of the emitter.11,29,30 When the
nanohybrid is strongly driven by a light field, the quantum
coherent coupling between the light and the emitter
becomes important and the dynamics of the nanohybrid
can be dramatically different.31–45 Descriptions of strongly
driven nanohybrids with the emitter treated quantum
mechanically and the MNP response treated classically
predict a nonlinear Fano effect, bistability, and induced
transparency.31–38 A variety of applications have been
proposed that exploit these effects,46–48 suggesting new
building blocks for metamaterials with properties very
different from those of the constituents of the nanohybrid.
Recently, these nanohybrids have been described with
a full quantum mechanical treatment with quantized
nanoparticle plasmons.39–45 Strong coupling and the non-
linear Fano effects also appear. Qubit entanglement,
superabsorption, and cloaking are possible. However,
some of the exciting predictions of the quantum/classical
models, such as the bistability, disappear in the fully
quantum treatment.39,45

Controlled fabrication of these nanohybrids is still
a daunting experimental challenge. To assess the poten-
tial of these nanohybrids as new building blocks for novel
metamaterials, it becomes essential that one know when
and how quantum theories must be used to predict their
properties. To date, quantized plasmons in nanohybrids
have been introduced by directly quantizing the optical
near-fields induced around the nanoparticles by the
classical plasmonic modes, just as the classical optical
modes in a cavity are quantized,39–41 and broadening
each quantized mode by the mode lifetime to reproduce
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the classical response. Quantized plasmons have also
been described by introducing a collection of local
oscillators with different frequencies to reproduce the
broad classical response of the plasmons.42–45

These approaches start from the photonic character of
the plasmonic excitations to implement the quantization.
However, the material, electronic character of the plas-
monic excitations should also be accounted for. For bulk
systems with translational invariance, the plasmons are
typically quantized, as done for lattice vibrations, by
quantizing the charge density oscillations in the system.49

The same approach can be used for spherical nanoparticles.50

However, these approaches face significant challenges for
nanoscale systems with both single-particle-like and plas-
monic excitations.

Single-particle and plasmonic excitations both play
key roles in nanooptics. Single-particle excitations pro-
vide discrete energies ideal for use as emitters, lasers,
and detectors. Plasmons with the broad, intense
response are ideal for enhancing light–matter interac-
tion. However, in small systems the single-particle-like
transitions can be strongly mixed with collective exci-
tations with many participating electrons. It need not be
clear which excitations should be quantized, whether
they are fermions or bosons, or even which excitations
are plasmonic. The effects of size quantization in small
systems further distort the character of the excitations
and mix the states.2,21,22 Resolving these issues for
small systems is also complicated by the number of
electrons involved. The systems are neither many-
electron systems that can be treated with bulk many-
body theory, nor are they simple few-electron systems.
As a first step, a clear characterization of the excitations
must be made and the single-particle and collective
excitations be distinguished. One can then address the
issue of how these excitations should be quantized,
whether they are fermionic or bosonic, and whether
excitations are independent or strongly coupled to each
other. In this study, we address this first step and show
how one can distinguish the different types of optical
excitations in nanoscale systems.

In the following, we discuss two different theoretical
approaches and two different nanoscale systems. The
goal is to show how single-particle and plasmonic
excitations can be identified and distinguished. In Sec. II,
we outline the two theoretical approaches. We use
density functional theory to investigate small spherical
MNPs and we exploit exact calculations to study the
excitations of linear chains of atoms. Such exact calcu-
lations are possible for short chains with only a few
atoms. The exact calculations provide the possibility of
investigating how quantization appears without having to
impose it. In Sec. III and IV, we describe, respectively,
the results for MNPs and for short linear chains. We end
with discussion and conclusions in Sec. V.

II. THEORETICAL DETAILS

We consider two approaches to better understand the
nature of optical excitations in nanoscale systems. We
first use real-space, real-time time-dependent density
functional theory (TDDFT) to obtain a quantum
description of MNPs.51 DFT theory reduces the full
many-body problem to a calculation where the electronic
charge density is the key material quantity that defines
material properties. In DFT, a single-electron Schrodinger-
like equation is solved for the Kohn–Sham states that
define the electronic charge density. Although a single-
electron-like equation is solved, each electron interacts
self-consistently with the other electrons via the Hartree
interaction, which is determined from the total electronic
charge density, and via the exchange and correlation
potentials, also defined in terms of the electronic charge
density.51 Here, we treat the MNPs as Au jellium nano-
spheres with a uniform positive charge background to
model the ions.21,22 The jellium model has been studied
extensively.52,53 Most recently, the jellium background
has been replaced by the lattice of ionic cores to account
for atomistic effects as well.54 In this study, our goal is to
show how to characterize the optical excitations and to
distinguish single-particle and collective excitations. The
simpler jellium model is sufficient for this purpose. We
consider the limit of small MNPs where size quantization
and the finite number of electrons play a key role and
show how these effects evolve as the nanoparticle size
increases.

The TDDFT calculations proceed in three steps. First,
DFT is used to determine the electronic ground state of
the jellium MNP.51 The Schrodinger-like equation is
solved to determine the single-particle-like Kohn–Sham
orbitals (fi, with orbital energy ei) that are occupied for ei
less than the Fermi level eF to determine the ground-state
electron charge density. Then, TDDFT is used to
determine the response of the MNP to an instantaneous
electromagnetic delta-impulse by evolving each occupied
Kohn–Sham orbital in time after the impulse. The time-
dependent dipole moment of the MNP is determined. Its
Fourier transform gives the frequency-dependent response
of the system. A typical spectrum for a 100-electron MNP
is shown in Fig. 1. The width of each peak is determined
by the length of the time evolution. Once the excitation
frequencies are determined from the spectrum, the TDDFT
time evolution is repeated for electromagnetic driving
fields at the excitation frequencies identified from the
spectrum. This allows us to explicitly investigate the
spatial character of each excitation as it evolves, define
which single-electron transitions between Kohn–Sham
orbitals contribute to the excitation, and determine how
these contributions evolve in time. As we will demon-
strate, this information allows us to distinguish single-
particle and plasmonic (i.e., collective) excitations.
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However, TDDFT does not describe how these material
excitations should be quantized, nor does it describe
whether the excitations are fermions or bosons, or whether
multiple plasmonic excitations are independent, like
bosons, or coupled.

To address these quantization issues without imposing
the form of the quantization as constraints the theory
must obey, we need a full quantum mechanical theory of
these excitations that finds the actual many-body eigen-
states of the system rather than just the charge density, as
in DFT. With the full eigenstates, one can determine how
they are quantized. To gain some insight into what such
a theory might reveal, we have studied some simple
models for interacting electrons in small nanoscale
systems. The goal is to study systems small enough that
they can be analyzed exactly. This limits the models to
systems with a small number of electrons. Here, we study
a linear chain of atoms, with electrons hopping from atom
to atom along the chain. Such a model describes atomic
chains on surfaces4,5 and linear molecules.2,3 Most
importantly it should provide insight on how plasmonic
excitations arise in these systems.

Here, we consider a single-band model for the linear
chain of atoms with one electronic state on each atomic
site and short range, next-neighbor hopping t between

atoms. If there are Ns sites in the chain and me electrons in

the system, then there are
N s

me

� �
¼ N s!

me! N s�með Þ! many-

electron states in the system. In a charge neutral system,
each site has a nuclear charge Z 5 me/Ns. An electron at
site i interacts with the nuclear charge Z at site j via the
attractive Coulomb interaction

Vnuc i; jð Þ ¼ �knucZ
i� jj j þ nnucð Þ ; ð1Þ

where knuc is a scale factor that includes any dielectric
screening and the length scale for the site separation and
nnuc is a cutoff that accounts for the orbital spread of the
electron orbital on a site. An electron at site i interacts
with an electron at site j via the repulsive Coulomb
interaction

Vee i; jð Þ ¼ kee
i� jj j þ neeð Þ ; ð2Þ

where kee is the scale factor that includes any dielectric
screening and the length scale for the site separation and
nee is the cutoff that accounts for the spread of the
electron orbital on a site. The effects of electron–electron

FIG. 1. Optical response of spherical Au MNPs. (a) Frequency-dependent response for a 100-electron Au MNP. Frequency on the horizontal
axis is displayed in units of the classical surface plasmon frequency. (b) Time-dependent induced charge density for the classical surface plasmon
[x 5 0.90xsp, as indicated by the circle in (a)] of a 100-electron MNP. The color shows the induced charge along the axis (x) parallel to the driving
field through the center of the MNP. R is the MNP radius. The bottom (blue) line shows the phase of the driving electric field. The solid line with
circles is the ground-state electron density as a function of position x. The ground-state electron density is found in a DFT calculation and then used
as the starting density for the TDDFT time simulations. The scale for the ground-state electron density, normalized by the density of the jellium
background, is shown at the top. T is the period of the driving field. (c) Time-dependent induced charge density for the quantum core plasmon
(x 5 0.74xsp) of a 100-electron MNP. (d) Frequency-dependent response for a 600-electron Au MNP.
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interaction are balanced by the electron–nuclear interac-
tion when kee 5 knuc. Optical response in this model is
proportional to the dipole moment of the electrons along
the chain.

All electronic states for this model can be easily
determined by standard numerical diagonalization tech-
niques when the system has less than ten thousand states.
Here, we consider a half-filled band of spinless electrons
(me 5 Ns/2). In that case, we can consider chains with up
to 16–20 atoms. For longer chains or when electron spin
is included, it becomes impractical to determine all the
many-electron states. Instead, one must use diagonaliza-
tion techniques that find limited parts of the spectrum.
Here, we focus on the smaller chains where all excitations
can be found and analyzed. This allows us to investigate
the characteristics that will distinguish plasmonic-like,
collective excitations from single-particle excitations.
Developing this insight will allows us to study larger
systems where we must start with educated choices about
which selected parts of the spectrum to investigate to find
the plasmon-like excitations.

III. DENSITY FUNCTIONAL THEORY OF METAL
NANOPARTICLES

Collective/plasmonic excitations can be strongly
mixed with single-particle excitations in nanoscale sys-
tems, making it difficult to characterize the excitations.
We consider a 2-nm-diameter Au MNP with 100 elec-
trons to show how the character of its excitations can be
defined.21,22 Figure 1(a) shows the spectral response of
the 100-electron gold MNP found using TDDFT and the
jellium model. The spectrum has well separated, narrow
peaks, several with large oscillator strengths, and the rest
substantially weaker. There are no losses in the calcula-
tion so the width of each peak is determined by the length
of the time simulation. The time evolution is long enough
to ensure that peaks are resolved and that each resonance
frequency can be accurately determined. Typically, the
simulations are run for tens of periods of the driving field.
This is comparable to the plasmon lifetime, although the
sharpest spectra shown here would be broadened by
typical losses and inhomogeneous effects. To reveal
the nature of each excitation, we drive the MNP at the
excitation resonance frequency. The time evolution of the
induced charge density when driven at the two indicated
frequencies is shown in Figs. 1(b) and 1(c). The induced
charge density oscillation for the most prominent peak is
localized mostly at the MNP surface, behaving as one
would expect for the classical surface plasmon. There is
structure in the induced charge density near the surface
that arises due to the quantum confinement. The excita-
tion illustrated in Fig. 1(c) also shows an oscillating
induced charge density, but it is localized to the core of
the MNP. We have previously referred to this as

a quantum core plasmon, because it is a plasmon-like
internal excitation that arises because of confinement
effects. The dependence on size is shown by comparing
the response of a 600-electron MNP [Fig. 1(d)] with the
response for the 100-electron MNP. In the larger MNP,
the response of the core plasmon is much weaker and not
easily identifiable. For the 100-electron MNP, there are
two additional strong excitations between the core and
surface plasmons that have mixed character of both the
core and surface plasmons. In addition, there are a large
number of weak resonances, especially for the smaller
MNP. These resonances are sensitive to the boundary
conditions used to define the computational region for the
DFT. This indicates that these excitations have higher-
energy electrons that can escape the MNP and are
sensitive to the details of the computational boundary.
The energy and spatial character of the classical surface
and quantum core plasmons do not depend on the
boundary conditions, indicating that these are internal
excitations of the MNP.

It is tempting to conclude that this analysis has
determined that the prominent excitations are plasmonic.
However, further analysis will show that the core
plasmon is really predominately single-particle-like. This
is already hinted at by the size dependence. The core
plasmon is much weaker than the surface plasmon in the
larger dot, indicating that the strength of the core plasmon
does not scale with the size of the system, as it would if it
were a plasmon-like, collective, many-electron excitation.

To get a clearer picture of which excitations are
collective and which are single-particle-like, one must
determine which single-electron transitions contribute to
each excitation and how these contributions evolve as the
MNP is driven on resonance. In a time simulation of
a driven MNP, the MNP starts at t 5 0 in its DFT ground
state with the DFT Kohn–Sham orbitals for ei , eF
occupied. These occupied orbitals change in time when
the driving field is applied for t. 0. The projection of the
time-evolving occupied orbital, fi tð Þ, onto its initial,
t 5 0, orbital gives the probability Æfi tð Þjfi 0ð Þæj j2 that
ith state has evolved without changing its initial state.
The probability that the state undergoes a transition
to another state j is given by the off-diagonal projection
Æfi tð Þjfj 0ð Þæ�� ��2. Many of these single-electron transitions
could contribute to an excitation. How they contribute
will define the character of the excitation. Figure 2 shows
these transition probabilities at one time when the
100-electron MNP is driven continuously at the surface
plasmon resonance. The off-diagonal transitions are
small, in the 10�4 range. The decrease in the probabilities
to remain unchanged in the ground-state Kohn–Sham
state is in the same range. The total induced charge
density is small and the response is well within the linear
regime. The orbital symmetries of the states in the
transitions are indicated on the axes in Fig. 2. The Fermi
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level is in the 2f level. As expected for optical excitation,
the allowed transitions have a change of orbital angular
momentum of 61. Four types of transitions are high-
lighted. Strong transitions from occupied states just
below the Fermi level to empty states just above the
Fermi level have the appropriate change in angular
momentum. However, the change in energy due to these
single-electron transitions is much smaller than the
excitation energy, indicating that these transitions must
contribute collectively to the excitation. As the total
occupation of the ground-state Fermi sea is depleted by
the driving field, a second class of transitions between
states inside the Fermi sea develops and agitates the
Fermi sea. At the same time, charge accumulates above
the ground-state Fermi sea and a third class of transitions
between states above the Fermi level develops. These two
classes of transitions that arise because the ground-state
Fermi sea is depleted also have energies well below the
excitation energy and must contribute collectively to the
excitation. Finally, a fourth class of transitions couples
states well below the Fermi level to states well above the

Fermi level. For these transitions, the energy changes are
comparable to the excitation energy indicating that these
transitions add single-particle-like character to the exci-
tation. These are transitions that can also contribute to the
hot electron generation mentioned previously.

The transition probabilities for collective and single-
particle contributions have distinctly different time
dependences. For the class of transitions that makes
single-particle-like contributions, the transition probabil-
ities increase monotonically as the MNP is driven for the
time-scale of the simulations. This monotonic increase is
expected from Fermi’s golden rule for single-particle
transitions weakly driven well below saturation. For the
three classes of transitions that contribute collectively,
the transition probabilities initially increase on average as
the MNP is driven, but this average increase is strongly
sinusoidally modulated at the resonance frequency and
by low frequency beating. These differences in the time
dependence for the single-particle and collective transi-
tions are also apparent in the time dependence of the
occupation of each ground-state level.22 Levels just

FIG. 2. Projections Æfn tð Þjfm 0ð Þæj j2 of time-evolved Kohn–Sham states for the classical surface plasmon onto the ground-state Kohn–Sham states
in the 100-electron MNP. The snapshot is shown for an arbitrarily chosen time. The circles highlight the four classes of transitions discussed in the
text.
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below the Fermi level deplete and then refill. This
oscillation in level occupation occurs at the resonance
frequency. In addition, charge accumulates in states just
above the ground-state Fermi level and then empties from
those states, in phase with the depletion and refilling of
the states below the Fermi level. This collective sloshing
of charge back and forth from just below the Fermi level
to just above the Fermi level is the hallmark of a plasmon-
like excitation. At the same time, single-particle-like
transitions from states well below the Fermi level to well
above the Fermi level deplete the levels well inside the
Fermi sea monotonically, leading to an inversion of
charge well above the Fermi level. For the 100-electron
MNP, all four classes of transitions contribute to each
resonance because the resonances are strongly mixed.
Nonetheless, the surface plasmon resonance is dominated
by transitions that slosh charge back and forth from just
below to just about the Fermi level. In contrast, the
resonance labeled a quantum core plasmon is dominated
by the transitions that invert the charge from well below
to well above the Fermi level. From this analysis, it
becomes clear that the quantum core “plasmon” is pre-
dominantly a single-particle excitation.

The spatial distribution of induced charge associated
with each class of transitions further defines the character
of the excitations. The sloshing transitions induce charge
density oscillations at the surface. Transitions between
states both inside the Fermi sea or both above the Fermi
sea make little contribution to the induced charge
oscillation of an excitation. The single-particle-like tran-
sitions contribute to the induced charge density oscilla-
tions inside the MNP, either to structure the charge
density oscillation near the surface or to define the
oscillations deeper inside the MNP that characterize the
core plasmon.

The TDDFT analysis shows that the single-particle and
plasmonic transitions in nanoscale systems can be identi-
fied and distinguished even though they can be strongly
mixed. To determine the nature of an excitation, both its
time-dependent induced charge oscillation and the time
dependence of the transitions that contribute to it must be
characterized. Single-particle-like excitations have contri-
butions from single-particle transitions with energy
changes comparable to the excitation energy. These
contributions increase monotonically with time and occur
mostly inside the MNP. The collective surface plasmon-
like excitations arise from charge sloshing back and forth
from just below to just above the Fermi level. Many low-
energy transitions contribute collectively to this excitation.

IV. ONE-DIMENSIONAL CHAIN MODELS FOR
NANOPLASMONICS

The TDDFT analysis says nothing about how to
quantize the excitations in nanoscale and atomic-scale

systems, nothing about whether the excitations are
bosonic or fermionic, and nothing about whether the
excitations are independent or coupled nonlinearly. Exact
solutions possible for small systems provide a framework
to address these questions. However, the first step in this
approach is still to see if the excitations have well-defined
characteristics that can distinguish them as plasmonic or
single-particle. In this section, we discuss initial exact
results for short linear chains of atoms to see what insight
can be gained. We only consider here chains with fewer
than 20 atoms where exact results for the entire spectrum
can be obtained. This allows us to examine the full
spectrum to find the signs of plasmonic excitations.

As we have already discussed, excitations in nanoscale
systems can be strongly mixed with both single-particle
and plasmonic character. Here, we follow an approach
recently developed by Bernadotte et al.2 to identify
single-particle and plasmonic excitations in TDDFT
calculations for short linear molecules. They found that
many excitations could be identified as single-particle or
plasmonic. To make this identification, they varied the
scale of the Coulomb interaction in the TDDFT using the
same scale factor kee that we use to define the electron–
electron repulsion in our model. In their TDDFT calcu-
lations, single-particle-like excitations had excitation
energies that depended only weakly on the Coulomb
scale factor kee. In contrast, other excitations had excita-
tion energies that scaled with the square root of the
Coulomb interaction strength. This square root scaling is
expected for plasmonic excitations. When these excita-
tions crossed, they had mixed character.

We have followed this approach for our exact calcu-
lations. Here, we illustrate the results by discussing
chains with 12 atoms and 6 electrons. This corresponds
to a half-filled band of spinless electrons and should have
metallic behavior. The full excitation spectrum, with
nearly a thousand states, is shown as a function of kee in
Fig. 3. All excitation energies are shown relative to the
ground-state energy. Qualitatively similar spectra are
obtained for eight-atom chains with 4 electrons and
70 excitations and for 16-atom chains with 8 electrons
and ten thousand excitations. The spectra for different
chain lengths have a similar energy span. The main
difference is the density of states. At kee 5 0, there is no
electron–electron repulsion and no collective response.
All excitations are single or multiple independent-electron
excitations. As kee increases, the electron–electron interac-
tion is turned on, the excitations become correlated and
collective response is possible.

The inset in Fig. 3 shows the excitation spectra for
kee , 0.5t, where the electron–electron repulsion is
comparable to the hopping. A few low-energy and high-
energy excitations are well separated from the quasicon-
tinuum of excitations at intermediate energies. At low
energies, these excitations correspond to single-electron
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excitations in a short chain. The quantum confinement of
a finite chain length ensures that the single-electron states
have discrete energies. At high energies, the discrete
excitations are those formed by removing a single-electron
excitation from the fully excited state. Figure 4(a) shows
a blowup of the low-energy spectra. The excitation
energies increase weakly as the electron–electron repulsion
is added. The excitation energies for a few of the states
increase faster than others. However, there is no clear

separation of states, as predicted by TDDFT, into a set of
single-particle states which are nearly independent of
kee and another set of states with excitation energies that
scale as the square root of kee. An analysis of the low-
energy excitations shows that they are single independent-
electron excitations. In this range of kee, interaction is too
weak to have much effect.

This weak dependence on kee might seem counterin-
tuitive because the electron–electron repulsion is compa-
rable to the hopping. However, the full Coulomb
interaction includes both the electron–electron repulsion
which leads to collective response and the electron–
nucleus attraction which contributes to the independent
single-electron energies. Because the chains are chosen to
be charge neutral, these interactions compensate each
other and the net Coulomb interaction is weak. The
spectra for kee increasing up to 25t are shown in Fig. 3.
The low-energy excitations for this range of kee are
shown in Fig. 4(b). For low kee, the ground-state electron
density is uniform along the chain, as would be expected
for a metallic state. For very large kee (kee � 25t), the first
excited state and the ground state become degenerate. For
these kee, the ground-state electron density becomes
localized to every other site, as would be expected for
a Wigner crystal where the electrons separate and localize
into an array due to their mutual repulsion. For a chain
with an even number of sites, there are two ways to
realize this ground-state density and the ground state
becomes doubly degenerate. This suggests that metallic

FIG. 3. The spectra of a 12 atom, 6 electron linear atomic chain as
a function of the electron–electron interaction strength kee. The
excitation energies DE are shown relative to the ground-state energy.
The inset shows spectra for small kee.

FIG. 4. The low-energy spectra of a 12 atom, 6 electron linear atomic chain as a function of the electron–electron interaction strength kee for
(a) weak electron–electron interaction and (b) stronger interaction where collective effects develop. The metallic and Wigner crystal regimes and the
regimes of weak and strong Coulomb effects are indicated.
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behavior extends up to kee � 25t and the onset of Wigner
crystallization. In addition, the highest two excitations
become degenerate for kee . 1.5t. The highest energy
state becomes fully localized to one half of the chain.
Because there are two ways for this to happen, the highest
excitation becomes doubly degenerate for kee . 1.5t.
For smaller kee, even the highest excitation has a uniform
electron density along the chain. These results suggest
that strong collective response begins to appear for
kee . 1.5t but metallic behavior persists until kee � 25t.
These regimes are indicated in Fig. 4. In this range of kee,
the low-energy excitations remain well separated from the
quasicontinuum and show a clear strong linear dependence
on kee. An analysis of these states shows that they are
formed from many single and multiple independent-
electron states, indicating a strong collective character.

To better identify the optically active single-particle-
like and plasmonic/collective excitations, we eliminate
from the spectra all excitations that are dipole forbidden.
This eliminates all excitations that have the same parity
as the ground state and eliminates all excitations made up
only from independent-electron states with multiple-
electron excitations. This dramatically reduces the den-
sity of states in the spectra, as shown in Fig. 5. The
largest (blue) circles indicate excitations with the largest
oscillator strength. Circles of smaller size (respectively
green, red, and gray) have oscillator strengths reduced by
one order of magnitude for each size step. The smallest
(black) dots indicate all other excitations with finite
oscillator strength.

At kee 5 0, only the single-electron excitations are
optically active. They occur for excitation energies less
than 4t. In the low interaction regime for 0 , kee , 0.5t,
these single-particle-like excitations lose oscillator
strength as kee increases while higher-energy excitations
above the single-electron transitions become optically
active. Several of these higher-energy states in the
quasicontinuum have higher oscillator strength than
nearby states, suggesting that they might be plasmonic/
collective states. However, the character of these states
changes rapidly as kee increases because of multiple level
crossings and strong mixing with the other nearby states
in the high density of states. These higher-energy regions
in the spectra with strong oscillator strength might
correspond to plasmonic-like resonances but they will
be short lived. As kee increases further and correlated
response becomes important [Fig. 5(b)], the low-energy
excitations which are single-particle-like for kee , 0.5t
become correlated, collective excitations made from
many single- and multiple-electron transitions. The exci-
tation energies increase linearly with kee both at small kee
and at large kee with a crossover at intermediate kee. At
higher kee, these appear to be plasmon-like collective
excitations. There is no indication that collective and
single-particle-like excitations can both be present in the
spectra at the same kee as predicted by TDDFT.

The predictions of the exact calculations are in striking
contrast to the TDDFT predictions for linear chains.2 TDDFT
predicts that single-particle-like and collective/plasmonic
excitations can coexist at the same kee. Excitation energies

FIG. 5. Optically active excitations in the low-energy spectra of a 12 atom, 6 electron linear atomic chain as a function of the electron–electron
interaction strength kee for (a) weak electron–electron interaction and (b) stronger interaction where collective effects develop. The largest (blue)
circles indicate excitations with the largest oscillator strength. Circles of smaller size (respectively green, red, and gray) have oscillator strengths
reduced by one order of magnitude for each size step. The smallest (black) dots indicate all other excitations with finite oscillator strength.
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for single-particle excitations vary weakly with kee. The
TDDFT2 also predicts that plasmonic excitation energies
have a square root dependence on kee. The exact calculations
presented here show that the single-particle-like excitations
evolve into the collective excitations as kee increases with
a crossover region at intermediate kee. At low and high kee
the excitation energies depend linearly on kee. There is no
indication that well-defined single-particle-like excitations
and collective, plasmon-like excitations coexist at the same
interaction strength. These different predictions clearly pres-
ent a challenge that must be resolved to develop an
understanding for quantum excitations in these systems.

V. CONCLUSIONS

There is an increasing demand for nanomaterials that
can be used for quantum information, cryptography,
sensing, and metrology. For applications that require
nanooptics, single-particle, and plasmonic excitations
each play a key role. Single-particle excitations provide
the discrete energies needed for frequency-selective
emission, lasing and detection. Plasmons can be used to
enhance and control the coupling of light to these
emitters. However, in nanoscale and atomic-scale materi-
als, the character of the optical excitations is often
strongly mixed. This becomes especially troublesome
when a quantum description of these excitations is
needed, because there is no clear cut way to define their
quantization. It is not even clear whether they should be
treated as bosons or fermions. To move toward a quantum
theory for these materials and their optical excitations, the
optical excitations must first be characterized.

We have shown that TDDFT can be used to make that
characterization provided that both the charge density
induced by the excitation and the transitions that make up
the excitation are analyzed. Single-particle-like excita-
tions are primarily made from the single-electron tran-
sitions with transition energies close to the excitation
energies. These transitions grow monotonically in time
when the excitation is driven on resonance, depleting
low-energy states well inside the Fermi sea and filling
states high above the Fermi level. In contrast, for
plasmonic excitations, charge sloshes back and forth
from just below the Fermi level to just above the Fermi
level. These differences in time dependence and in
the states involved in the transitions that make up the
excitation are key signatures that distinguish single-particle
from plasmonic, collective excitations. The induced
charge density from the sloshing charge is localized near
the surface, as expected for surface plasmons, while the
induced charge of the single-particle-like excitations
reflects the charge distribution for the single-electron
orbitals that are involved.

A different picture emerges for nanosystems, such as
linear atomic chains, that are small enough for exact

calculations of the excitation spectra to be done. The results
for the exact calculations are in striking contrast to
predictions of density functional theory. Density functional
theory shows that single-particle-like and collective excita-
tions can coexist. The exact calculations predict that the
single-particle excitations evolve into collective excitations
as the electron–electron interaction strength is turned on.
There is no indication that both well-defined single-particle-
like excitations and well-defined collective, plasmon-like
excitations will coexist at the same interaction strength.

These qualitatively different predictions are a challenge
for theory that must be resolved to understand quantum
excitations in these systems. We have used TDDFT to
study metal nanoparticles with one to six hundred
electrons. In contrast, our exact calculations for the entire
excitation spectra were restricted to systems with up to
8 electrons. Larger systems with more electrons can be
studied using the same model. Although it becomes
impractical to find an entire spectrum for a larger system,
parts of the spectrum can be determined. In future work,
we will study the low-energy spectra of larger systems to
see if the differences between exact calculations and
density functional theory depend on the number of
electrons in this system. Understanding this dependence
on electron number will provide an important insight on
when and how plasmonic excitations appear in nano-
plasmonic structures.
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