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ALGEBRAIC ORDERS AND CHORDAL LIMIT ALGEBRAS

by ALLAN P. DONSIG*
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We develop an isomorphism invariant for limit algebras: an extension of Power's strong algebraic order on
the scale of the K0-group (Power, J. Operator Theory 27 (1992), 87-106). This invariant is complete for a
certain family of limit algebras: inductive limits of digraph algebras (a.k.a. finite dimensional CSL algebras)
satisfying two conditions: (1) the inclusions of the digraph algebras respect the order-preserving normalisers,
and (2) the digraph algebras have chordal digraphs. The first condition is also used to show that the invariant
depends only on the limit algebra and not the direct system. We give an intrinsic characterisation of the limit
algebra and not the direct system. We give an intrinsic characterisation of the limit algebras satisfying both
(1) and (2).

1991 Mathematics subject classification: 47D25, 46K.50.

A limit algebra is the inductive limit of a direct system

A "' A * 2 A

where the A{ are digraph algebras (also called finite dimensional CSL algebras or
incidence algebras) and the a, are *-extendible embeddings. Different sequences can
have the same inductive limits (meaning isometrically isomorphic algebras), so two
natural problems arise:

• find isomorphism invariants for a family of limit algebras, and

• find intrinsic properties that characterise a given family.

This pair of problems has motivated much of the work on limit algebras [5, 9, 10, 13
14].

The spectrum, a topological binary relation, is a complete invariant for triangular
limit algebras [14]. It is an open question if the spectrum is an invariant for non-
triangular limit algebras: at the moment, the spectrum is only known to be an invariant
for the direct system (Ait a,) or equivalently, for the pair (A, V) of limit algebra and
canonical masa. (A canonical masa in A is, in essence, a limit of diagonal matrices in
the Aj such that its normalising partial isometries span the algebra.) If the limit algebra
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466 ALLAN P. DONSIG

is selfadjoint, i.e., an AF C*-algebra, then two canonical masas are conjugate by an
approximation inner automorphism (see, for example, [16, Theorem 5.7]). However,
there are limit algebras, necessarily non-selfadjoint, containing canonical masas that
are not conjugate by an approximately inner automorphism [6]. If, for limit algebras in
a particular family, we know that any two such masas in the limit algebra are
conjugate by an automorphism, then the spectrum is an invariant; for example, [17,
Theorem 4.1] shows such masas are conjugate if the limit algebra is the tensor product
of an AF C*-algebra and a digraph algebra.

One can also construct homology groups for the pair (A, V) [17] and these have been
used for classifications of various limit algebras and direct systems [7, 17].

Another invariant for limit algebras, based on the K0-group, was introduced by
Power in [15]. The /C0-group and its scale see only the selfadjoint part of the algebra,
even when the definition is extended from C*-algebras to limit algebras. However,
putting an order on the scale describes the non-selfadjoint part. Following [13], define
the diagonal order on projections by saying p is less than q if there is a partial isometry,
w, that normalises the diagonal of the algebras and so that w'w = q and ww' = p. This
induces a well-defined ordering, S(A), on the scale of the K0-group, called the algebraic
order [15]. In [15] Power also considered a second order, the strong algebraic order
S\(A), where an additional condition is imposed on the partial isometries w: namely,
conjugation by w preserves the diagonal ordering on projections. Such partial
isometries are called order-preserving in [5]. In other words, if £(.4 n A*) is the scale in
K0{A n A*) and [p] is the Murray-von Neumann equivalence class of the projection p,
then Sl(A)cZ.(AC\A*)xI.(AnA') denotes the set of elements ([p], [q]) for which
there is some w e N%d(A) with ww" = p and w'w = q; it is easy to check that this is
well-defined.

We add additional information to the strong algebraic order by replacing each pair
of equivalent classes of projections, ([p], [q]), with a triple ([p], [q], [r]) where p is less
than q in the strong algebraic order and r is a common subprojection of p and q.
Precisely, define

Sf(A) = {([p], [q][r]): there is w € N°i\A) with w'w = q, ww' = p
and r is the largest subprojection of p and q so that wr = rw = r.}.

We call Sf(A) the fixed-point algebraic order.
The main result of this paper is that the scaled K0-group Ko(.4 n .4*) together with

Sf(A) is a complete invariant for limit algebras A — lim(/4,, a,) where

(1) the a, send order-preserving elements to order-preserving elements, and

(2) the At have chordal digraphs.

Direct systems satisfying the second condition have been characterised by Thelwall
[18] in terms of the spectrum of the limit algebra. Combining this result with a
characterisation of the first condition gives an intrinsic characterisation of this family
of limit algebras.

https://doi.org/10.1017/S0013091500019830 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500019830


ALGEBRAIC ORDERS AND CHORDAL LIMIT ALGEBRAS 467

Condition (1) is natural, since such partial isometries are used in our invariant. If
the A( are maximal triangular, i.e., a direct sum of upper-triangle matrix algebras, then
the a, satisfying (1) are direct sums of refinement em beddings; such limit algebras have
been studied in [5]. Thus, our primary interest here is for algebras A-t which are not
maximal triangular.

One consequence of condition (1), not previously mentioned, is that the invariants
S, and Sj- do not depend on whether the partial isometries normalise either A n A* or a
canonical masa in A. As a result, we have an invariant that is independent of the
choice of V, without losing the convenience of working with partial isometries that
normalise the masa T>.

Condition (2) is perhaps unexpected. A graph is chordal if every cycle of length more
than three has a chord, and we call a digraph chordal if the underlying graph is
chordal. (Recall that a cycle of length n is a sequence (u,, et, v2, e2,..., en) where
vlt..., vn are n distinct vertices, each e, is a distinct edge with ends vt and vi+l, except
en, which has ends vn and vt. A chord is an edge between some u, and Vj not joined by
an ek.)

In particular, Paulsen, Power and Smith [12] showed that, for digraph algebras with
chordal digraphs, all contractive representations are completely contractive, and so
admit ^-dilations. Muhly and Solel [11] extended this result to 'coordinatised'
subalgebras of hyperfinite von Neumann algebras. Thelwall [18] extended Paulsen,
Power and Smith's work to limit algebras with chordal spectrum, by showing that such
a limit algebra is the limit of a direct system satisfying (2). Applying [12] to each
algebra in the system then shows that contractive representations are completely
contractive.

Much of this work was done at Lancaster University and I would like to thank the
Department of Mathematics & Statistics for its hospitality; in particular, I would like
to thank Steve Power for helpful conversations. I would also like to thank Tim Hudson
for his comments on a draft of the paper.

1. Digraph algebras and normalisers

To begin, we study normalising partial isometries in digraph algebras. Our focus is
on elements that normalise either the algebra intersected with its adjoint or a specified
masa in the algebra. The distinction between these choices in limit algebras motivates
our concern here.

Definition 1.1. Suppose A is a digraph algebra and D c. A is a selfadjoint
subalgebra. Then

ND(A) = {x e A : x is a partial isometry and x'dx, xdx' e D for all d e D).

Call x e ND(A) minimal if x*x and xx* are minimal projections. We abbreviate
NAnA.{A) to N(A).
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The smallest and largest reasonable choices for D are, respectively, D a masa in A
and D equal to A n A'. If D is a masa, then the elements of ND(A) are closely tied to
matrix units; precisely, they are sums of unimodular multiples of matrix units, where
the matrix units in the sum have orthogonal initial and final projections. However,
ND(A) then depends, at least formally, on the choice of the masa D. This is not an issue
for A a digraph algebra, as all masas in A are unitarily equivalent, but will be
important when we turn to limit algebras.

In general N(A) neither contains nor is contained in ND(A) for D a masa in A.

Example 1.2. Consider

A =

* * * *

* * * *

* *

* *

and x =

0

0

0

0

1/V2

-1/V2

0

0

1/V2
1/V2

0

0

(1)

and D is the diagonal matrices. Then x is in N(A) but not in ND(A). Of course, there
is a unitary U e A n A' so that UxU* e ND(A). On the other hand, if

B =

*

* *

*

*

*

*

*

*

and

0

0

1

0

0

0

0

1

0

0

(2)

and D is the diagonal matrices, then y is in ND(B) but not in N(B). Since y is a sum
of elements in N(B), it may seem that the difficulty above can be overcome by using
the span of N(B) but this does not work for limit algebras, as we will show. •

Normalising elements with an additional property, order-preservation, are better
behaved.

Definition 1.3. Suppose A is a digraph algebra and D c A, a selfadjoint subalgebra.
If p, q € D are projections, then we write p <D q if there is some x e ND(A) so that
xx* = p and x'x = q. This ordering is reflexive and transitive; it is anti-symmetric if
A n A* = D and is symmetric if A — A'. Note that we use < and < for the usual
ordering on projections.

We say x e ND(A) is order-preserving if the map p i-» xpx* from {p < x'x} to
{p < xx'} preserves the diagonal order. Then

N°od(A) = {x e ND(A): x is order-preserving}.
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We use -< for <AnA. and N°'d(A) for N^.(A).

Every minimal element of N(A) is in N°ri(A) so in Example 1.2 x is in Nord(A) while
y is not in N°Dd(B). In general, we have the following relation between N°'d(A) and

Lemma 1.4. If A is a digraph algebra and D is a masa in A, then

N°r\A) = U {Nf(A) :Eisa masa in A}

= ( J {UN%\A)U' :Uisa unitary in AHA'}.

Proof. Suppose x e N°gd(A), for some masa E. If p is a projection in A n A* with
p < x*x, then p can be written as a linear combination of partial isometries in N^(A).
As conjugation by x carries these partial isometries to partial isometries in A, it follows
that xpx* is also in A. Being selfadjoint, xpx* is in A' also and hence x e N(A). As x
is order preserving by hypothesis, we're done.

Conversely, if x e N°rd(A), then it is straightforward to construct a masa E so that
p >-> xpx* maps E into itself. Indeed, if D, is a masa in x'xAx'x, then conjugation by x
carries this to a masa D2 in xx'Axx'. Now extend the abelian algebra Dx © D2 to a
masa E. By construction, x e N^d(A).

The second equality follows easily, as any masa E is unitarily equivalent to Din A. •

To finish the section, we relate the order-preserving normaliser of a digraph algebra
to its reduced digraph, which we now define. Recall that if A is a digraph algebra, then
the associated digraph, G(A), has vertices the minimal diagonal projections, p, , . ..,?„,
and edges given by

(p,, Pj) e G(A) if and only if p,/ip, / 0.

This graph is reflexive and transitive.

Definition 1.5. The reduced digraph associated to a digraph algebra A, denoted
Gr(A), is G(A)/ « where p, % p, if (p,, p;) and (p;, p,) are edges of G(A). This digraph,
Gr(-4), is a partial order on {p,, . . . , pn}/ %.

The advantage of the reduced digraph is that its vertices correspond to the
summands of AC\A*. Thus, Gr(A) reflects only the non-selfadjoint structure of A
whereas G{A) is encumbered with information about AHA'. Put an equivalence
relation on Nord(A) by setting x ~ y if x = pyq for some partial isometries p, q e A n A'
(such p, q are necessarily in N°rd(A)). It is easy to prove the following fact, which we
record for future reference.
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Lemma 1.6. Let A be a digraph algebra. There is a bijection between the edges of
Gr(A) and the equivalence classes (under ~J of minimal elements ofN°rd(A).

2. Order preserving embeddings

We describe the homomorphisms of digraph algebras that preserve the normalisers
of the previous section. It follows that for a limit algebra A, the strong algebraic order
S,(A) and the fixed-point strong algebraic order Sf(A) are independent of the choice
of a canonical masa.

Definition 2.1. Let A, B be digraph algebras with D c A and E c B specified
selfadjoint subalgebras. Call an algebra homomorphism <f>: A -*• B an embedding if <j>
extends to an injective *-homomorphism between the generated C*-algebras (and so is
necessarily isometric) and 4>(ND(A)) c NE{B).

Usually D and E are masas. One could also set D to An A* and £ to BDB*. These
choices give different families of embeddings. Motivated by Example 1.2, consider

* * * *
* * * *

* *

a b

and

B =

* * *
* * * 'a b~\

. c\

a

0

—>

0

a

'a

b/y/2

-b/V2

c

0

b

a 0

c

0

b/JI
b/V2

0

c

°1
b

0

c

Then 4>(N(T2)) C N(A) but </>(ND2(T2)) £ NDi(A) while M"D2(T2)) C NDt(B) but
WN(T2)) <£ N(B). However, if we ask that Nood{T2) be mapped into N"\A), then both
choices of D and E give the same family of embeddings and similarly with B instead
of A.

Lemma 2.2. Let A, B be digraph algebras and <j>: A -*• B a *-extendible algebra
homomorphism. Then (j>(N°rd(A)) C N°rd(B) if and only if there are masas D C A and
EQBso that 4>(N°E

ril(A)) c Nf(B).

Proof. (<=0 Suppose x e N°rd(A). By Lemma 1.4, there is some unitary
U e A n A', so that UxU* 6 N°od{A). By the hypothesis on (/>,
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y = <KU)<K*)<KUY = 4>(UxU') 6 N?(B).

If V = 4>(Uy + 1 - 0(1), then <p(x) = VyV* with V unitary and y e N°E
d(B). Applying

Lemma 1.4, <ft(x) e Nor\B).
(= • ) Let D C -4 be a masa. Since JVJftA) c N°rd(A) and <j)(N°rd(A)) c Ar'(B), we
have ( ^ ( C ' W ) c r ' ( B ) . Hence it suffices to choose £ so that (j>(N%\A))
normalises £.

We can choose a system of matrix units {e,y} for C(A) so that £) = span{e,,}. It
suffices to choose E so that 4>(et]) e NE(B) for all matrix units etj in /I. To see this, note
that every x e N%d(A) is a sum of unimodular multiples of the et/s with orthogonal
initial and final projections, say x = Ylf>- If P is a projection in E with p < x*x, then
we may write p = YlPi where p, < / % By 0 s action on matrix units, </>(yi)p,0(/)* e E
for all i e /. However,

by orthogonality, so $(x)p#(x)* e £. Similar arguments work for projections p < xx*
and conjugation by <f>(x)'". Hence </>(x) e NE(B).

To construct a masa E in B with </>(c,7) € NE(B) for all matrix units etj in /I, first pick
one ea in each summand of C(A) and write each <f>(eu) as a sum of orthogonal minimal
projections in B. We construct a set of orthogonal minimal projections summing to
(f>(\) by looking at images of these minimal projections under conjugation by (/>(/) and
#(/)* for / a matrix unit with either/*/ = eu in the first case or ff* = eu in the second.
Since </> is *-extendible, this set is closed under conjugation by $( / ) for / any matrix
unit of C*(/4). Now write 1 — <£(1) as a sum of orthogonal minimal projections and set
E to be the span of all these minimal projections. By construction, E is a masa and
</>(ey) e NE(B) for all matrix units e,7. •

The same argument also proves the following lemma.

Lemma 2.3. Let A, B be digraph algebras and <f> : A —*• B a *-extendible algebra
homomorphism. Then $ maps the minimal elements of N°rd(A) into Nord(B) if and only if
there are masas D c A and E C B so that (f> maps the minimal elements of N%d(A) into
N°E

r\B).

Definition 2.4. Let A, B be digraph algebras and D c A and E c B be selfadjoint
subalgebras. Call an algebra homomorphism <j>: A -*• B an order-preserving embedding
if it is an embedding and (t>(N%\A)) c N"E'd(B). Call <f> a locally order-preserving
embedding if it is an embedding and (j> maps minimal elements of N%d(A) into

These concepts were introduced in [15]. By the previous lemmas, they do not depend
on the choice of D and E. The following pair of examples shows, first, that a general
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embedding need not be order-preserving and, second, that a locally order-preserving
embedding need not be order-preserving;

T4 :

has e]2 € N°r\T2) but Nor\T<), while

T6 :

a b d

c e

f

a 0 0 b

a b 0

c 0

c

a b 0 0 d 0

c 0 0 e 0

a b 0 rf

c 0 e

/" 0

has eu + e23 e N'^T^) and its image is not in Nor<i(T6).
In [5], the order-preserving embeddings between maximal triangular digraph algebras

were shown to be direct sums of refinement embeddings. A refinement embedding
pk : Tn -v Tkn is the restriction of the map Mn -*• Mnk — Mn <8> Mk given by a *-* a ® \k.
This was used in [5] to obtain a classification of limit algebras lim(Tn. a,) with each a, an
order-preserving embedding and to construct an invariant for the analogous limit
algebras where the 7 .̂ are replaced with direct sums of upper-triangular matrix algebras.

A masa V in an AF C*-algebra C is a canonical masa if there is a nested sequence
of finite dimensional subalgebras of C, say (C,), so that

(1) C = U.C,,

(2) Dj = T>n Cj is a masa in C, for all i, and

(3) NDl(C,) is contained in ND|+1(C(+I) for all i.

In other words, C is the inductive limit of finite dimensional C*-algebras with respect
to embeddings and C is spanned by NV(C), where V is the limit of masas in the finite
dimensional C*-algebras.

Suppose A is a subalgebra of an AF C*-algebra containing a canonical masa
V. Equivalently, consider A = \\m(Aha,) with a,(JVD.(/4,)) c NDM(AM). Although
span NDl(Ai) = span N(At) for each i, it does not follow that span NV(A) = span N(A).
The following example is from [17] where this issue and its implications for defining
homology groups are discussed. Let C be the l/f/F(2°°) C*-algebra and B a canonical
masa in C. Then the algebra
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\B C~\

will have span N(A) = A n A', although span NV(A) = A if V is, say B © B. However,
Nord(A) and N°id(A) have the same span, albeit An A'.

We finish the section by showing a close connection between Nord(A) and N%d(A).

Proposition 2.5. Suppose A is a subalgebra of an AF C'-algebra that contains a
canonical masa. Then

N°rd(A) = U [N%\A) :VCA,Visa canonical masa }.

Proof. (2) Let V c A be a canonical masa and v G N%d(A). Then there is a
sequence of subalgebras (4) so that A = U,>4, and NDl(Aj) c ND.+l(Ai+l) for all i, where
D,-, — V n At is a masa in At.

By [16, Lemma 5.5], v — dw where d is a partial isometry in V and w G NDk(/4t) for
some k. As </,ue N^(A), it follows that vv e N%d(A?) for all i > fc. Hence by
Lemma 1.4, vv is in Nmd(Aj) for i > /c and so is in N'

(c) Suppose that v G N0"*^); then p — vv' < q = v'v. By writing v as a sum of elements
of W^C/l), we may assume that pq = 0. Also, we may suppose p,qe£, for some
canonical masa £ c A. While the subalgebra p£p need not equal vq£qv*, by [15,
Lemma 2.2] there is WE N£(.4) with wi>g£qu*w* — p£p. Let 1/ = 1 — p + w* and
V — U£U*, a canonical masa in A. Then U is a unitary with Up£pU' — vq£qv' and
Uq£qU' = <?£<?, so y G NV(A). Since conjugation by u preserves the ordering on AC\A*,
it also preserves the ordering on V, hence v e N%d(A). •

It follows immediately from the next theorem that the invariants S, and Sf do not
depend on the choice of a canonical masa in the limit algebra. Recall from the
introduction that

Sf(A) = {([p], [q], [r]): there is w e N%\A) with w'w = q, ww' = p
and r is the largest subprojection of p and q so that wr = rw = r.}.

Theorem 2.6. Le/ A be a subalgebra of an AF C*-algebra that contains a canonical
masa V. Ifv G N°rd(A) then there is u e N%d(A) with uu' = vv' and u'u = v'v.

Proof. We can choose a direct system for the pair (A, V), i.e., finite dimensional
algebras A{ and embeddings from A{ to Al+l. Let p = vv',q = v'v. For some sufficiently
large k, p and q are Murray-von Neumann equivalent in Ak D A'k to projections in V n Ak.
As partial isometries in An A' are order-preserving, it follows that we can multiply v on
either side by these partial isometries and so assume that p and q are in V.
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As v is order-preserving, conjugation by v is an isomorphism from qAq to pAp.
Observing that pAq is a pAp—qAq bimodule, it follows that the compression of A by
p + q contains a subalgebra isomorphic to pAp®T2. This contains the further
subalgebra

S = p(An A')p ® T2 c A.

As v is order-preserving, we may choose the inclusion of S in A so that v is in S.
Since S is the tensor product of an AF C*-algebra and a digraph algebra, by [17,

Theorem 4.1] any two canonical masas in S are approximately inner conjugate. In
particular, there is some sequence of unitaries in S, (w,), so that the automorphism

p(s) =
i-.oo

exists for every s e S and p carries (p + q)V(p + q) — pVp + qVq to vqVqv* + qVq.
As p and q can be identified with 1 ® e, , and 1 <3>e22 in S, it follows that each w,

fixes p and q. Hence p(qVq) — qVq and pivqVqv*) — pVp. Thus u — p{v) conjugates
qVq to pVp and so u is in N%d(A) and uu* — p, u'u = <j, as required. •

3. Completeness of the invariant Sf

In this section we prove that the fixed-point algebraic order is a complete
isomorphism invariant for limits of digraph algebras with chordal digraphs and
order-preserving embeddings. The proof is based on a finite dimensional lifting
result, which in turn needs a number of technical lemmas. The first of these lemmas
is a generalisation of Lemma 3 in [5].

Lemma 3.1. Let cf> : A —*• B be an embedding between digraph algebras. Then (f> is
order-preserving if and only if 4>{x) e Nord(B) for all elements x e Nord(A) of the form
x = / , or x = / , +f2 where f is a minimal element of Nord(A).

If A is chordal, then we need only consider elements x of the form x = f or x = p + / ,
where f is a minimal element of N°rd(A) and p is a minimal projection in A D A'.

Proof. One direction of the first statement is trivial. For the other direction, if <p
is not order-preserving, then there is some y e N°rd(A) so that z = (j>(y) & Nord(B). In
particular, there are minimal projections a, b in B so that the diagonal order on zaz*
and zbz' is not the same as the diagonal order on a and b.

As za is a summand of <f>{y) and is a minimal element of N0Td(B), there is a minimal
element of/, e N°rd{A) so that za is a summand of <K/i)- If zfc is also a summand of
#(/i), then we let x = / , and are done. Otherwise, there is a minimal element
f2 e N°r<'(/1) so that zb is a summand of <f>(f2). Moreover, as za and zb are both
summands of 4>(y), then /, and f2 are both summands of y so x —f{ +f2 e N°rd(A), yet
cp(x) ? N°'d(B).
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To prove the final statement, we suppose A is chordal and show that if there is
/, +f2 e N°rd(A) with <£(/, +/2) $ N°rd(B), then there is some element p + / e N°rd(A)
with 4>{p + / ) & N°rd(B), where p is a minimal projection and / , /, ,/2 are minimal
elements of N°rd(A).

If we compress A by the sum of the initial and final projections of /, and f2, we
obtain a subalgebra of M4, call it C. Identify /, +/2 with e, 3 •+• e2 4 in Mt. This implies,
a s /i +fi ls order-preserving, that the two orthogonal 2 x 2 diagonal blocks in C are
the same. Note that compressing B by a + b + zaz* + zbz* gives a subalgebra of M4, D,
with

C c D c M4

and, with our identification, e, 3 + e24 is not order-preserving in D. We consider three
cases, as the two isomorphic diagonal blocks of C are either M2, T2, or D2, the diagonal
2 x 2 matrices. In fact, the case M2 cannot occur, as there is then no subalgebra D with
C C D c M4 and e1>3 -1- e2A ? N°rd(D).

For the case T2, C is either TA or 7̂  ® T2 and D is the span of C and either e2, or
e43. For example, if we have

C =

* * * *

* 0 *

* *

*

* * * *

* * 0 *

then e,, + e2 „ is in Nord(C) but not in Nord(D), giving the required element. The other
possibilities are similar.

For the case D2, (e,, + e22)C(ei} + c44) can be any subalgebra of M2 containing D2

except, as C is chordal, M2 itself. For example, if e23 £ C, then e, 3 + e22 and e24 + e33

are in N°rd(C). However, if both these elements are also in N°rd(D), then the two
orthogonal diagonal blocks in D are the same, contradicting /, +/2 £ W^D). If
e, 4 £ C, then the argument is similar. •

The hypothesis of chordality is essential; the natural inclusion from the digraph
algebra

A(D4) =

* 0 * *

* * *

* 0

*

into 7; is not order-preserving (consider e, 4 + e2 3) but the order-preserving elements
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of A(Dt) of the form p +f, namely sums of two diagonal matrix units, are all order-
preserving elements of T4.

Chordal digraphs are contained in the set of interpolating digraphs, introduced in
[2]. A digraph is interpolating if every 2/c-cycle, k > 3 has a chord and every 4-cycle has
an interpolating vertex, that is, if a, b, c, d are vertices with edges from a and b to c
and d, then there is another vertex v with edges from a and b to v and from v to c and
d. The arguments of the previous paragraph apply to the inclusion of

* 0 * * *

* * * *

* * *

* 0

*

in T5, so we cannot extend Lemma 3.1 to algebras with interpolating digraphs.

Lemma 3.2. Let B be a digraph algebra, P a projection in B and X an element of
N°rd{B) so that P + X is a partial isometry. If there is some Y e Nord(B) with the same
initial and final projections as X so that P+Y e Nord(B), then P + X e N°rd(B).

Proof. Let Q = X*X and R — XX*, both projections in B. The initial projection of
P + X is P + Q and the final projection is P + R.

Suppose a,b<P + Q are minimal projections and a' is the conjugate of a under
P + X and b' is the conjugate of b. To show P + X e Nord(B), it suffices to show that
a -< b if and only if a' < b'. If a, b < P, then a' = a and b' = b so there is nothing to do.
If a, b < Q, then X € Nord(B) implies that a < b if and only if a -< b'.

Next we suppose that a < Q,b < P. Then a < R and b' = b. If a -< b, then since
a! < a we have a' -< b'. It remains only to show that a' -< b' implies a <b. Let
S — v{c < Q : c < b] and S' = v{d < R:d< b'}. We have just shown that XSX* < S'.
If the projections S and S' have the same rank, then it follows that XSX* — S' which
implies a •< b. However, since P + Y e Nord(B) and b' = b is fixed under conjugation by
P+Y, we have YSY* = S'. Hence S and S' do have the same rank.

If a < P and b < Q, then we have b' < b so a' < b' implies a < b. If d •< b' then we
let S = v{c < Q : a -< c) and S — v{d <R:d<d) and repeat the argument of the
previous paragraph. •

Lemma 3.3. Let B be a chordal digraph algebra and let X, Y e Nord(B) have the same
initial and final projections. Then XY* e Bf\B*.

Proof. If B" is the compression of B by XX*, then conjugation by XY* gives an
automorphism of B', say p. Further, if a, b are projections in B1, then X, Y e N°rd(B)
implies that a •< b if and only if p(a) •< p(b). As B" n (B1)* is a direct sum of matrix
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algebras, the factors of B1 n (#)*, this follows p induces a permutation of these
factors.

Claim: this permutation is the identity.
Observe that the claim implies that XY' is a sum of elements in the factors of

B1 n (B')* and hence XY' e B n B'. Thus, it suffices to prove the claim.
If the permutation is not the identity, then we can decompose it into cycles. Let

B, , . . . , Bk, k > 2, be distinct factors in B1 n (B1)' so that p(B,) = Bi+1 modk.
If there were projections a e B,, b e Bj with i ^j so that a < b, then it would follow

that b < a and so B, and B; are contained in the same factor of B', contradicting our
choice of a and b. Thus there are no edges in Gr(B) between any B, and Bjt i ^j. Both
X* and Y* carry these factors of B1 n (#) to the same set of factors of B D B\ say
C, Ck. And as X, Y e N°rd(B), there are also no edges in Gr(B) between any C, and

The subgraph of Gr(B) with vertices corresponding to B , , . . . , Bk, Cu...,Ck contains
the 2/c-cycle digraph D2k. As Gr(B) is chordal, there must be an additional edge in the
subgraph, and by the previous paragraph, it must join some B, and C;-. If k > 2, then
we obtain a smaller cycle digraph and repeating this argument, we eventually obtain
factors B,, Bs and Cm, Cn so that the corresponding subgraph of Gr(B) is D4. But for the
4-cycle digraph, any additional edge must join B, to B, or Cm to Cn, a contradiction
proving the claim. •

Chordal digraphs have long been known to possess one vertex elimination scheme,
the perfect vertex elimination scheme [8]. As chordal digraphs are interpolating, they
also possess a vertex elimination scheme established for interpolating digraphs in [2].
That is, in any interpolating digraph, there is a vertex with at most one immediate
successor and one immediate predecessor, so that deleting this vertex and all of its
associated edges gives a subgraph which is itself interpolating. This provides an
effective scheme for proving theorems by induction on the number of vertices of an
interpolating digraph.

We use a slight modification of the vertex elimination scheme. Instead of deleting a
vertex and its associated edges, we delete only the edges involving the vertex, leaving
the vertex isolated. As the vertices correspond to the summands of A n A', the
inductive step is now between two algebras with the same selfadjoint subalgebra and
the base case is now a finite dimensional C*-algebra. To distinguish this construction,
we call it an edge elimination scheme.

If <}>: A -*• B is an embedding, we use <j>, to denote the induced map from
K0(A n A') to K0(B n B*).

Theorem 3.4. Suppose that A and B are digraph algebras with chordal digraphs and
that 9 : K0(A n A') —*• K0(B n B*) is a scale-preserving ordered-group morphism. If 0
satisfies 6®\Sf(A)) c Sy(B) and 6 induces an ordered-group morphism from K0C'(A) to
K0C'(B), then there is an order-preserving embedding <j>: A -v B with </>, = 6.

If' x: A -+ B is another order-preserving embedding with T, = 6, then there is a unitary
in BnB'.U, so that x = Ad(/ o (f>.
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Proof. We proceed by induction on the number of proper edges of Gr(A), using the
edge elimination scheme. If Gr(A) contains no proper edges, then A = A n A' = C{A)
and the result, including inner conjugacy, then follows from the lifting result for finite
dimensional C*-algebras (for example, see [20, Lemma 12.1.2]).

For the inductive step, fix a digraph algebra A. By the edge elimination scheme,
there is a vertex of Gr(A), v, that has at most one immediate successor and at most one
immediate predecessor. Let A' be the subalgebra of A so that Gr(A') is Gr{A) with all
edges involving v deleted. Then Gr(A') has at least one less proper edge and so, by the
inductive hypothesis, the theorem holds for A' and we have an order-preserving
embedding \j/ : A' -*• B.

To prove the theorem for A, it suffices to extend ip to an order-preserving embedding
4> on A and to show that any other extension is of the form Ad U o <f> for some unitary
U e Bn B*. We prove the existence and uniqueness parts separately.

Existence. Case 1: v has one immediate predecessor and no immediate successor.
There is an additional proper edge in Gr(A) from the predecessor to v and by Lemma

1.6, there is an equivalence class of elements of N°rd(A) that corresponds to this
additional proper edge. Let x be one element of this class. Once <p(x) is specified, all
other elements of the class are determined, as they are products of x and elements of
A n A*. As <f> agrees with \ji on A', <f> is also determined on A.

Since xx* and x*x are in An A* c A', we need only specify a partial isometry from
iKx'x) to iKxx*). As x e N°rd(A), we have ([xx'], [x*x]) e S,(/l). The restriction of Sf(A)
equals S,(A) so we have 0(2)(S,(/1)) c S,(B). As r//\AnA. = 4>\AnA. induces 6, this fact
implies (W(xx*)], [^(x*x)]) e S,(B). So there is some X e N°rd(B) with

XX' = \ji(xx') and X'X = i/r(x*x).

Let 4>(x) = X. As <t>(x) e N°rd(B) and x ~ y imply <j>(y) e Nord(B), it follows that <f> is
locally order-preserving.

To show $ is order-preserving, it suffices, by Lemma 3.1, to show that
(j)(p + e) € Nord(B) for all minimal projections p and minimal elements e e Nord(A) with
p + e e Nord(A). Fix such an element e + p. Since e + pe Nord(A), we have

Then ([<p(p + ee')], [(f>(p + e'e)], [<p(p)]) e Sf(B), so there is some Y e N°rd(B) so that

P+Ye N°rd(B), YY' = <p(ee') and Y'Y = <p{e"e).

Applying Lemma 3.2 with P = <p(p), X = <p(e) and Y, it follows that <f>(p + e) =
P + X e Nor<'(B), as required. Thus (f> is order-preserving.

Case 2: v has no immediate predecessor and one immediate successor.
This case is dual to Case 1 and the same argument, with only trivial modifications,

applies.
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Case 3: v has one immediate predecessor and one immediate successor.
Let u be the predecessor and w the successor. We have two additional proper edges,

one from u to v and one from v to w. By Lemma 1.6, there are two equivalence classes
of minimal elements of Nord(A) that correspond to these edges. Let x be an element
of the first class and y an element of the second, chosen so that xx* = y'y. Then yx ^ 0
corresponds to the edge from u to w and so is in A'.

We will specify <j)(y) and 0(x) in N°rd(B) so that <j)(y)<p(x) = i//(yx). As before, this will
determine <f> and will imply that <f> is locally order-preserving.

Let p = yy*'. Note that p < y'y — xx' and xx* -< x*x implies p -< x'x. If p 4- x & Nord(A),
then either xx* -< p or x'x < p, which, together with the last sentence, implies y e AC\A',
contrary to our choice of y. Thus p + x e N°ri(A) and so we have

([p + xx'],[p + x'x],[p])eSr(A).

Since e(i\Sf(A)) c Sf(B), there is some X e Nord(B) so that

4>(p) + X e Nord(B), XX' = <p(x'x) and X'X = <p(xxm).

Let Y = ty(yx)X', the conjugate of \j/(yx) under <p(p) + X. As <p(p) + X e Nord(B), Y is
in B. Also, 7 is in N"\B) since both AT and ip(xy) are in AT^B).

Let <j)(x) — X and <£(y) = 7. Clearly, 4>(y)<f>(x) = ijj(yx). To show <£ is order-
preserving, we repeat the corresponding argument of Case 1.

Uniqueness. Suppose now that T : A -> B is another order-preserving map with
T, = 9. By the inductive hypothesis, there is a unitary U e B* C\B so that AdLf o TI^,
equals \]/. Thus, we may suppose that T = <f> on /!'. Let ^ 0 be the factor, i.e., matrix
summand, of AC\ A" corresponding to t; e Gr(A).

Case 1: v has one immediate predecessor and no immediate successor.
It suffices to find a partial isometry V eBUB' with V'V = VV = 4>(\Av) so that

VT(X) = <«x)

for all x minimal elements of Nord(A) with initial projections in Av. Indeed, since each
minimal element of Nord(A) not in A', say z, is a product xy where y e N°rd(A') and x is
a minimal element of Nord(A) with initial projection in Av, it follows that
Vx(z) = (f>(z). Hence U = lB - 0(1^) + F will satisfy Ad(/ o T = 0, since AT^/l) spans
.4 and every element of AP^/l) is a sum of minimal elements. As U e BC\B', AdU
maps B to B and is order-preserving.

Let x be a minimal element of Nord(A) in the equivalence class corresponding to the
additional edge of Gr(A). Then T(X) and #(x) are both in N°ri'(B) and have the same
initial and final projections, so by Lemma 3.3 #(X)T(X)* is in B n B". Note that

(0(X)T(X)*)T(X) = 0(X)T(X)*T(X) = (t>(x)cp(x'x) = 0(x). (3)

Choose a system of matrix units for Ao, {e,-, | 1 < i,j < m), so that xx* = en. Note
that e,,x ~ x and that <f>{eiXx)i{eiXx)' is in B n B'. Define F by
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V =

As every partial isometry in BC\B* is order-preserving, V e Nord(B). We have e,,x ~ x
and repeating (3) it follows that Vx(ejXx) = <Ke;ix)- Similarly, for every y e Nord(A) with
y ~ x, we have Kr(y) = <£(x).

Case 2: v has no immediate predecessor and one immediate successor.
Again, this case is dual to Case 1.
Case 3: v has one immediate predecessor and one immediate successor.
Let u be the predecessor and w the successor. First, we show that it suffices to find

a partial isometry V e B with VV = VV* - 0(1^) so that

VT(X) = <j>(x) (4)

for all x minimal elements of Nord(A) in the equivalence class corresponding to the edge
from v to w. This condition implies that t(y)K* = <$>{y) where y is a minimal element
of Nard(A) in the equivalence class corresponding to the edge from u to v. To see this,
suppose that x is as above and y'y = xx"; then

<t>{y)4>{x) = 4>{yx) = TO0T(X) = x{y)V*Vx{x) - T(y)K'</»(x).

Since <£(x) is a partial isometry, it follows that t{y)V* — <f)(y).
As before, 7T(X) = <£(x) implies that U = 1B - 4>(lAv) + V will satisfy Uz(z)U' = <f>(z)

for all elements z e N°rd(A) with initial projection in Av. Similarly, x{y)V* = $(y) implies
Ux(z)U* — cf>(z) for all elements z e Nord(A) with final projection in Av. It remains only to
find V satisfying (4). However, we can now repeat the argument of Case 1. •

Remark 3.5. It is possible to prove an alternate form of this theorem, where we
drop the hypothesis that the digraph of B is chordal. We then conclude that there is an
automorphism of B, p, that p(N°rd(B)) - N°rd(B) and t = p o <f>.

We can now prove the main result of this paper, that the fixed-point algebraic order
is a complete invariant for a natural family of limit algebras.

Theorem 3.6. Let A — Iim(y4t, <xk) and B = lim(£t, fik) be inductive limits of algebras
with chordal digraphs and order-preserving maps.

Then there is a *-extendible isomorphism <t>: .4 -v B if and only if there is a
scale-preserving ordered-group isomorphism 0 : K0(A n A*) -*• K0(B n B*) so that
@0)(Sf(A)) = Sf(B) and 0 induces an isomorphism between K0C'(A) and K0C\B).

Proof. This proof is a typical intertwining argument; other examples for limit
algebras can be found in [16, 3, 5, 19].

One direction is trivial. For the other, suppose 0 is an ordered-group isomorphism
with the required properties. Then, after possibly restricting to subsystems, we obtain a
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commuting diagram of the form:

KoA

where the 0, are ordered-group injections preserving £/•(/!,), Sy(B,) and having
extensions to K0C(Ai) and /C0C*(fi,).

By Theorem 3.4, 0, lifts to an order-preserving *-extendible injection rit : At -*• B2.
Similarly, 62 lifts to (, : B2 -*• Ai.

As Ci ° 1\ is a n order-preserving *-extendible injection with K0(X{ o r/,) = 92 o Q\ =
K0<xt, by the uniqueness part of Theorem 3.4, there is some U e A2C\ A2 so that

C.ofy, = a , .

Replacing £, with AdU o £,, we have built the first triangle of the diagram:

Ax Ai - • A3 • • • •

Continuing in this way, we can build this commuting diagram. Applying the universal
property of inductive limits then gives the required isomorphism <t>. •

4. Intrinsic characterisation

We give an intrinsic characterisation of the limit algebras considered in the previous
section. In [18], Thelwall showed that a limit algebra is the direct limit of chordal
digraph algebras if and only if it has chordal spectrum. To characterise the condition
that the embeddings are order-preserving, we need the notion of a covering algebra
from [4].

Throughout this section, we assume that A is a subalgebra of an AF C*-algebra C
that contains a canonical masa V and that X is the maximal ideal space of V. For p a
projection in V, let p denote {x € X \ x{p) = 1}. Each c e NV(C) induces a partial
homeomorphism hc, from cc' to cU:, where hc(x) is d i-> x(cdc*). If c denotes the graph
of hc in X x X, then we can define

= \J{c:ceNI>(A)}.
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Topologise R(A) by using as a basis of open sets c for c e NV(A). We call R(A) the
spectrum of A. Its key property is that it is a complete invariant for the pair (A, V), up
to isometric isomorphism; see [14] or [16, Chapter 7].

Write A as lirn(/4;-, a;) and choose matrix units systems for each At so that matrix
units in As are sums of matrix units in AJ+l. Then R(A) equals the set of e as e runs
over the matrix units in all the Aj and we obtain the same topology if we use as basis
only the e where e is a matrix unit [16, Chapter 7].

A regular subalgebra of A is a subalgebra B containing a masa D so that the
inclusion B -*• A sends ND(B) into NV(A); in particular, the matrix units of B are in
NV(A).

Definition 4.1. Suppose Y is a finite subset of X. We call a finite dimensional
regular subalgebra of A, B, a covering algebra for R(A)\YxY if

(1) there is an isomorphism of digraphs <f> : G(B) -> R(A)\YxY,

(2) after identifying G(B) with a system of matrix units, <p(e) e e for all e in G(B).

The following lemma is proved in [4] but for the reader's convenience we repeat
the proof here.

Lemma 4.2. If Y is a finite subset of X, then we can find a covering algebra for

Conversely, if B is a regular digraph subalgebra of A, then there is a finite subset of
X, call it Y, so that there is an injection from G(B) to R(A)\YxY.

Proof. Let A = lim(/l,, a,). As usual, we identify the Aj with subalgebras of A when
convenient.

Since the topology in R(A) separates points, we can find a k so that for each
diagonal matrix unit e in Ak, e contains at most one point of Y. By increasing k,
we can arrange that each point of R(A)\YxY is in the graph of some matrix unit in
Ak. If we let B c Ak be the span of the matrix units in Ak that contain a point
in R(A)\YxY then it is easy to check that G(B) is isomorphic to R(A)\YxY and that
the edge associated to a matrix unit in B is sent to a point in the graph of that
matrix unit. Being a span of normalising matrix units, B is a regular digraph
subalgebra of A.

Conversely, if B is a regular digraph subalgebra of A, then there is a system of
normalising matrix units {etf} for C*(B) so that B is the span of the matrix units that it
contains. Let y e R(A) be an element of e,, and let

Y = {hc(y): c = eI; for some ; with es e B}.

Clearly, there is a bijection between Y and the set of minimal diagonal projections of
B. It follows that there is an injection from G{B) into R(A)\YxY. •
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In [5], the following conditions are shown to be equivalent:

(1) the closed span of N%d(A) is A,

(2) R(A) = U[e : e e N°i\A)}, and

(3) A = lim(/4t, ak) with V the limit of the diagonal matrices of the Ak, and where
for any i,j with i < y, a, o • • • o a, is locally order-preserving.

Using Lemma 4.2, we can add another condition to this list.

Proposition 4.3. Conditions (1) to (3) above are equivalent to

(4) for each Y a finite subset of X, there is a covering subalgebra for R(A)\YxY, B, with
the injection B -*• A locally order-preserving.

Proof. (3 => 4) This is immediate from the proof of Lemma 4.2, as by (3) we can
arrange that the matrix units of each Ak are contained in N%d(A).
(4 => 2) If (x, y) e R(A), then set Y — {x, y} c X and apply (4) to obtain B, either T2

or M2, with the inclusion B c A locally order-preserving. Letting e e N%d(A) be the
(1,2) matrix unit of B, it follows by the covering condition that (x, y) ee. •

The following theorem characterises a somewhat smaller family of limit algebras
and canonical masas, those pairs which have a presentation where all the maps are
order-preserving. See [5, p. 372] for an example of an algebra and canonical masa not
in this family which is nonetheless spanned by N%d(A).

Theorem 4.4. For A a subalgebra of an AF C-algebra containing a canonical
masa V, the following are equivalent:

(1) there is a presentation of A, \\m(Ak, cck), where the <xk are order-preserving, and

(2) for each Y a finite subset of X, there is a covering algebra for R(A)\YxY with the
injection B —*• A order-preserving.

Proof. (1 =» 2) The proof is the same as that of (3 => 4) in Proposition 4.3, save
only that the inclusion is order-preserving, and hence its restriction to B is also order-
preserving.
(2 => 1) Using some presentation of A, it is easy to construct a sequence of nested finite
subsets of X, {Yk}, so that if Y = UYk then R(A)\YxY is dense in R(A). By (2), for each
set Yk, there is a finite dimensional subalgebra Bk of A, with the inclusion Bk -> A
order-preserving. Replacing Bk by the algebra generated by B, Bk, we may assume
that the Bk are nested. Note that the Bk are still finite dimensional subalgebras and
the inclusions Bk -*• A are still order-preserving. However, the inclusion Bk —*• Bk+l

may not be order-preserving and to correct this we must enlarge each Bk.
Let Ak = span{y, xyx', x'yx :x,ye N°^Bk(Bk)}. As Bt_, c Bk, it follows that Ak_x c Ak.

Since we have only added elements of N%d(A) to Bk, the inclusion Ak -*• A is order-
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preserving. The key new property of the Ak is that if x, y e N^Ak{Ak), then xyx*, x*yx e

We claim that the inclusion Ak_t -*• Ak is order-preserving. To see this, note that if
x € N£,Ak-Mk-i) t h e n xeN%d(A). Thus the only way that x could fail to be in
^vnAk(

Ak) is if there is some y e JV^^(Ak) so that xyx* or x*yx is not in Ak. But by the
new property of Ak, no such y exists and so the inclusion is order-preserving.

To show that this gives a presentation of A, it remains only to show that
A = U/4fc = UBk. However, by the covering property, the spectrum of UBk contains a
dense subset of R(A) and being closed, it must equal R(A). •

Combining Theorem 4.4 and [18] gives the following characterisation.

Corollary 4.5. Let Abe a subalgebra of an AF C-algebra that contains a canonical
masa T> and let X be the maximal ideal space ofV. Then the following are equivalent:

(1) there is a presentation of A, lim(Ak, <xk), where the Ak have chordal digraphs and
the txk are order-preserving,

(2) for each Y a finite subset of X, R(*A)\YxY '•* a chordal digraph and there is a
covering subalgebra for R(A)\YxY

 w'tn the injection B -*• A order-preserving.
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