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Abstract We adapt the classical notion of building models by games to the setting of continuous model
theory. As an application, we study to what extent canonical operator algebras are enforceable models.

For example, we show that the hyperfinite II1 factor is an enforceable II1 factor if and only if the Connes

Embedding Problem has a positive solution. We also show that the set of continuous functions on the
pseudoarc is an enforceable model of the theory of unital, projectionless, abelian C∗-algebras and use

this to show that it is the prime model of its theory.
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1. Introduction

The technique of model-theoretic forcing and, more specifically, the approach via games,
is a well-developed part of classical model theory and has found applications in algebraic
areas such as in the model theory of groups. (Throughout this article, our main reference
for this topic is the wonderful book [23].) While model-theoretic forcing has been
transported to the setting of continuous logic (see [5, 10, 14]) and has found nice
applications to functional analysis and operator algebras, the approach via games has yet
to make its continuous appearance. In this paper, we present the approach of building
models by games in the continuous setting and use it to prove some new results in the
model theory of operator algebras. In addition to these aforementioned applications,
we believe that the approach to model-theoretic forcing via games is much easier to
understand for the nonlogician than the other presentations in the literature. Moreover,
the game approach allows one to consider an important notion not readily apparent in
the other approaches, namely that of an enforceable structure.

Let us briefly describe the game here. To be concrete, let us choose a particular setting,
say the setting of tracial von Neumann algebras. Let us fix a countable set C of distinct
symbols that are to represent generators of a tracial von Neumann algebra that two
players (traditionally named ∀ and ∃) are going to build together (albeit adversarially).
The two players take turns playing finite sets of expressions of the form |‖p(c)‖2− r | < ε,
where c is a tuple of variables, p(c) is a ∗-polynomial, and each player’s move is required
to extend the previous player’s move. These sets are called (open) conditions. Moreover,
these conditions are required to be satisfiable, meaning that there should be some tracial
von Neumann algebra M and some tuple a from M such that |‖p(a)‖2− r | < ε for each
such expression in the condition.

We play this game for ωmany steps.1 At the end of this game, we have enumerated some
countable, satisfiable set of expressions. Provided that the players behave, they can ensure
that the final set of expressions yields complete information about all ∗-polynomials over
the variables C (that is, for each ∗-polynomial p(c), there should be a unique r such that
the play of the game implies that ‖p(c)‖2 = r) and that these data describes a countable,
dense ∗-subalgebra of a unique tracial von Neumann algebra, which is often called the
compiled structure.

The question then becomes: What kinds of properties can we force the compiled
structure to have? More precisely, given a property P, is there a strategy for ∃ so that,
regardless of player ∀’s moves, if ∃ follows the strategy, then the compiled structure will

1In this article, ω denotes the first infinite ordinal, not an ultrafilter.
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have that property? If this is the case, we call the property P an enforceable property of
tracial von Neumann algebras. It is natural to ask: Are there any interesting enforceable
properties of tracial von Neumann algebras? We will later see that it is enforceable that
the compiled structure is a McDuff II1 factor. (Recall that a II1 factor is McDuff if it
tensorially absorbs the hyperfinite II1 factor R.)

Of central importance in this paper is a seemingly extraordinary case: Suppose that
the property P is the property of being isomorphic to a particular separable II1 factor E .
If this property is enforceable, we say that E is the enforceable II1 factor. Clearly, there
can be at most one enforceable II1 factor. But is there one? While this may seem like an
extreme possibility that never happens, there are many situations in classical logic where
there is an enforceable structure. For example, if one plays the discrete version of the
above game with fields of a fixed characteristic, then the algebraic closure of the prime
field is the enforceable structure.

Again, we ask: Is there an enforceable II1 factor? The answer is connected to arguably

the most famous open problem in the theory of II1 factors, namely the Connes Embedding

Problem (CEP). Recall that the CEP asks whether or not every II1 factor embeds into

an ultrapower of R. Here is one of the main results of the current paper.

Theorem. The CEP has a positive solution if and only if R is the enforceable II1 factor.

We also prove analogous results for various games concerned with C∗-algebras and

operator spaces and systems.

The original motivation for this work was model-theoretic questions around the

pseudoarc P. Using the game-theoretic machinery, we will prove the following theorem.

Theorem. C(P) is the prime model of its theory.

Let us conclude by outlining the contents of this paper. In § 2, we carefully describe

the aforementioned game in the setting of an arbitrary continuous language and describe

how the associated notion of forcing connects with the presentations of forcing that

have already appeared in the literature. In § 3, we describe the important notion of a

finite-generic structure. These are structures for which forcing and truth coincide. Many

of our applications rely on foundational properties of finite-generic structures and so a

careful presentation of these results is needed. In § 4, we describe the aforementioned

application to the model theory of the pseudoarc. In § 5, we discuss the already described

connection between enforceable models and embedding problems in operator algebras.

In the final section, we prove the so-called dichotomy theorem, which shows that, for

certain kinds of theories (including many of those appearing in operator algebras), either

there is an enforceable structure or else, for any enforceable property P, there are

continuum many nonisomorphic separable structures with property P. We speculate on

how this theorem might provide a new approach to CEP and other embedding problems

in operator algebras.

1.1. Preliminaries, notations, and conventions

We will assume that the reader is familiar with the basics of continuous logic. Standard

references are [4] and [10], the latter of which stresses applications to operator algebras.
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34 I. Goldbring

In this subsection, we will just collect a few preliminary notions that are of central

importance in this paper and deserve to be recalled. We also take the opportunity to set

up some notation.

Fix a continuous signature L, which, for simplicity, we assume is 1-sorted and of

diameter bounded by 1. For any n > 1, there is a natural seminorm on the space of

all L-formulas with free variables amongst the variables x = x1, . . . , xn , namely

‖ϕ(x)‖ := sup{|ϕ(a)| : A is an L-structure and a ∈ An
}.

By a restricted L-formula, we mean an L-formula constructed using only the unary

connectives 1
2 and ¬ (here, ¬r := 1− r) and the binary connectiveu (truncated addition).

We will need the following fact (see [4, Theorem 6.3 and Proposition 6.6]).

Fact 1.1. The family of restricted L-formulas is dense (with respect to the seminorm from

the previous paragraph) in the space of all L-formulas.

The infinitary logic Lω1,ω allows us to perform, in addition to the usual formation
rules for describing formulas, two new operations, namely countable supremum

∨
and

countable infimum
∧

. However, in order to be able to form
∨

m ϕm or
∧

m ϕm , two
things are required: (1) all ϕm have free variables among some fixed set x = x1, . . . , xn of
variables; and (2) the infimum of the moduli of uniform continuity of each ϕm is itself a
modulus of uniform continuity, that is, denoting 1ϕm the modulus of uniform continuity
of ϕm , we have infm 1ϕm (ε) > 0 for every ε > 0. (See, for example, [5, Definition 1.1] for
more details.)

Throughout, U denotes an arbitrary nonprincipal ultrafilter on N. For an L-structure
A, AU denotes the ultrapower of A with respect to U . While the isomorphism type of this
structure often depends on U , the use of such an ultrapower will not depend on U . For
example, if T is an L-theory, we say that a separable model A of T is locally universal for
T if every separable model of T embeds into AU . It is a standard fact that this notion
does not depend on U .

Recall that if θ : A→ B is an embedding between L-structures, then θ is said to be
existential if, for any quantifier-free L-formula φ(x, y) and any tuple a from A, we have

inf
b∈A

φ(a, b) = inf
b∈B

φ(θ(a), b).

If A is a substructure of B and the inclusion map is existential, we say that A is
existentially closed in B. An equivalent semantic reformulation of the latter property
reads: A is existentially closed in B if and only if there is an embedding of B into AU

which restricts to the diagonal embedding of A into AU . (If A and B are nonseparable,
then U may need to live on a larger index set.) If T is an L-theory and A is a model of
T , we say that A is an existentially closed (or simply e.c.) model of T if A is existentially
closed in all extensions that are models of T . Then A |H T is e.c. for T if and only if A is
e.c. for T∀, where T∀ is the collection of closed conditions σ = 0 such that σ is universal
and T |H σ = 0. Also, if T has the joint embedding property (JEP), namely that every
pair of models of T can be embedded into a common model of T , then existentially closed
models of T are locally universal for T .

A particularly important case is the case that T is an ∀∃-axiomatizable theory. Then

every (separable) model of T embeds into a (separable) e.c. model of T .
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2. Games and forcing

2.1. Introducing the game

Until further notice, L is a fixed countable continuous signature and T is an L-theory.

For the sake of simplicity, we assume that our language is 1-sorted, bounded, and that

each predicate (including the metric) takes values in [0, 1]. (Note that this is certainly

not the case for the languages and theories applicable in operator algebras, but we trust

that the reader should have no trouble convincing themselves that everything we do here

can be adapted to the more general setting.)

We let C be a countable set of new constant symbols and set L(C) := L ∪C .

Following the convention from [23], we denote L(C)-structures by A+, B+, etc... and

the corresponding L-reducts by A, B, etc...2 We call an L(C)-structure canonical if the

interpretations of the symbols from C are dense; if, moreover, every open ball contains

infinitely many such interpretations, we call the structure extra canonical.

A condition is a finite set p of expressions of the form ϕ < r , where ϕ is a quantifier-free

restricted L(C)-sentence, such that T ∪ p is satisfiable.3

As mentioned in the introduction, the game involves two players, ∀ and ∃. Players ∀

and ∃ take turns playing conditions extending the previous players move. Thus, ∀ starts

by playing the condition p0, whence ∃ follows up by playing the condition p1 ⊇ p0, and

then ∀ follows that play with some condition p2 ⊇ p1, etc... After ω many steps, the two

players have together played a chain p0 ⊆ p1 ⊆ p2 ⊆ · · · of conditions whose union we

will denote by p̄.

We call the above play definitive if, for every atomic L(C)-sentence ϕ, there is a unique

r ∈ [0, 1] such that T ∪ p̄ |H ϕ = r . In this case, p̄ describes an L(C)-prestructure A+0 ( p̄)
whose completion will be denoted by A+( p̄) and will be referred to as the compiled

structure.4 The reduct of A+( p̄) to L will be denoted by A( p̄). If p̄ is clear from context,

we will denote A+( p̄) and A( p̄) simply by A+ and A respectively.

Note that, regardless of player ∀’s moves, player ∃ can always ensure that the play of

the game is definitive.

Definition 2.1. Let P be a property of L(C)-structures. The game G(P) is the game

whose moves are as above and such that Player ∃ wins G(P) if and only if p̄ is definitive

and A+( p̄) has property P. We say that P is enforceable if Player ∃ has a winning strategy

in G(P).

By the remark preceding this definition, the vacuously true property is enforceable.

While some properties may not be enforceable, they may become enforceable if the game

has reached a certain point.

2This notation is potentially confusing to those in operator algebras as the notation A+ can sometimes
denote the set of positive elements from a C∗-algebra A.
3We should probably call these conditions open conditions to distinguish them from the conditions ϕ = 0
used, for example, in [4]. However, we hope that this poses no confusion.
4To wit: the underlying universe of A+0 is the term algebra on the set of constants from C and the
symbols are interpreted in the obvious way.
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Definition 2.2. Let P be a property of L(C)-structures and let p be a condition. We say

that p forces P if, for any position (p0, . . . , pk) of the game G(P), if p ⊆ pk , then the

position is winning for ∃.

The proof of the following lemma in the classical setting can be found in [23]; the

corresponding facts in the continuous setting provide no added difficulty.

Lemma 2.3.

(1) p forces P if and only if whenever ∀ plays p0 ⊇ p, then p0 is a winning position

for ∃.

(2) P is enforceable if and only if every condition forces P.

(3) If p forces P and q ⊇ p, then q forces P.

(4) (Conjunction Lemma) If p forces Pi for each i < ω, then p forces the conjunction

of the Pi ’s.

Lemma 2.4. The property ‘the compiled structure is extra canonical’ is enforceable.

Proof. Since the compiled structure is always canonical, by the conjunction lemma, it

suffices to show that, for every c, c1, . . . , cn ∈ C and every rational ε > 0, there is c′ ∈ C
such that c′ 6= ci for each i = 1, . . . , n and such that d(c, c′) < ε is enforceable. Since

conditions involve only finitely many elements of C , this latter fact is clear.

Proposition 2.5. It is enforceable that the compiled structure be a model of T∀.

Proof. Suppose that σ = 0 belongs to T∀ with σ = supx ϕ(x), ϕ(x) quantifier-free. Let c
be a tuple of distinct constants and n > 1. Since being an extra canonical structure is

enforceable, by the conjunction lemma, it is enough to enforce that ϕ(c) < 1/n. Suppose

that player ∀ plays p0. Let A+ be a model of T ∪ p0; since σ A+
= 0, we know that

ϕA+(cA+) = 0. Let ψ(x) be a restricted quantifier-free formula such that ‖ϕ−ψ‖ < 1
2n . It

follows that p1 := p0 ∪ {ψ(c) < 1
2n } is a condition. If player ∃ plays p1, then the compiled

structure will be as desired.

Call a sentence σ of Lω1,ω a sup
∨

inf-sentence if

σ = sup
x

inf
n
ϕn(x),

where x is a (finite) tuple of variables and each ϕn is existential. We call a property

P of L-structures a sup
∨

inf-property if there are sup
∨

inf-sentences σm such that an

L-structure A has property P precisely when σ A
m = 0 for all m. It turns out that many

important properties of operator algebras are sup
∨

inf-properties, such as nuclearity for

C∗-algebras or hyperfiniteness for tracial von Neumann algebras; this will be discussed

at greater length later on in the paper.

We can often enforce sup
∨

inf-properties.

Proposition 2.6. Suppose that P is a sup
∨

inf-property. Further suppose that there is a

locally universal model of T with property P. Then P is enforceable.
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Proof. Suppose that A is a locally universal model of T with property P. Suppose that

P is defined by the sup
∨

inf-sentences

σm = sup
xm

inf
n
ϕmn(xm).

Fix a tuple of distinct constants c and k > 1. By the conjunction lemma and the fact

that being extra canonical is enforceable, it suffices to show that infn ϕmn(c) < 1/k is

enforceable. Here is the strategy: Suppose that ∀ opens with the condition p0 which is

satisfied in some L(C)-structure B+ |H T . Embed B := B+|L into an ultrapower AU of A
and let (AU )+ be the expansion of AU to an L(C)-structure that makes this embedding

of L-structures an embedding of L(C)-structures as well. It follows that there is an

expansion A+ of A such that p0 is also satisfied in A+. Since A has property P, there is

n such that ϕmn(cA+) < 1/k. It follows that p1 := p0 ∪ {ϕmn(c) < 1/k} is a condition and

if ∃ plays p1, the compiled structure will satisfy the property infn ϕmn(c) < 1/k.

Of particular interest is what (infinitary) first-order properties can be forced.

Definition 2.7. Let p be a condition, ϕ an L(C)ω1,ω-sentence, and r ∈ R>0. We write

p g ϕ < r if p forces the property ϕ < r .5 When p = ∅, we simply write g ϕ < r . We

also set

Fg
p (ϕ) := inf{r : p g ϕ < r}.

By Lemma 2.3(3), we have that q ⊇ p implies Fg
q (ϕ) 6 Fg

p (ϕ). The following lemma is

immediate from the definitions.

Lemma 2.8. Suppose that p g ϕ < r and ‖ϕ−ψ‖ < ε. Then p g ψ < r + ε.

The following lemma is quite useful.

Lemma 2.9. Suppose that p is a condition all of whose constants are contained in the

tuple c. Further suppose that θ(x) is an existential L-formula and ε > 0 are such that

T ∪ p∪ {θ(c) < ε} is satisfiable. Then there is a condition q ⊇ p such that q g θ(c) < ε.

Proof. Write θ(x) = infy ψ(x, y). Let B+ be an L(C)-structure such that B+ |H T ∪ p∪
{θ(c) < ε}. Let d be a tuple of constants such that ψ(c, d) < ε. Then q := p∪ {ψ(c, d) <
ε} is a condition and clearly q g θ(c) < ε.

The following proposition is central for much of what we do in future sections.

Proposition 2.10. It is enforceable that the compiled structure be an e.c. model of T∀.

Proof. Suppose that c is a tuple of distinct constants, ϕ(x) is an existential formula, and

r ∈ Q>0. By the conjunction lemma, it is enough to enforce the following property: If

ϕ(c) > r , then there is no extension of the compiled structure that models T∀ ∪ {ϕ(c) < r}.

5We use the notation g to indicate that this is the forcing property stemming naturally from the game
apparatus. In the next section, we will soon see that this is exactly the notion of weak forcing already
present in the literature.
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38 I. Goldbring

Here is the winning strategy for ∃: Suppose that ∀ plays p0 = {ψi (c, d) < ri : i =
1, . . . , k}. If T ∪ p0 |H ϕ(c) > r , then

T∀ |H sup
x

min(sup
y

min
16i6k

ri −
. ψi (x, y), r −. ϕ(x)) = 0.

In this case, no extension of the compiled structure models T∀ ∪ {ϕ(c) < r}, whence the

conditional statement that we are trying to enforce is true. Otherwise, by Lemma 2.9,

there is a condition p1 ⊇ p0 such that p1 g ϕ(c) < r . If ∃ plays p1, then the compiled

structure models ϕ(c) < r , whence, once again, the conditional statement that we are

trying to enforce is true.

Our notion of forcing satisfies a useful homogeneity property. For π a permutation of

C and ϕ an L(C)ω1,ω-sentence, let π(ϕ) be the L(C)ω1,ω-sentence obtained by replacing

every c ∈ C with π(c). If p is a condition, let π(p) denote the condition obtained by

replacing every ϕ < r in p with π(ϕ) < r . Once again, we leave the proof of the next

lemma to the reader.

Lemma 2.11 (Homogeneity). Suppose that π is a permutation of C, p a condition, ϕ an

L(C)ω1,ω-sentence, and r ∈ R>0. If p g ϕ < r , then π(p) g π(ϕ) < r .

The next lemma is the analog of [23, Lemma 2.3.3(d)] and is an indication of why game

forcing coincides with weak forcing.

Lemma 2.12. For every condition p and every L(C)ω1,ω-sentence ϕ, we have

Fg
p (ϕ) = sup

q⊇p
inf

q ′⊇q
Fg

q ′(ϕ).

Proof. First, if q ⊇ p, then infq ′⊇q Fg
q ′(ϕ) 6 Fg

q (ϕ) 6 Fg
p (ϕ), so

sup
q⊇p

inf
q ′⊇q

Fg
q ′(ϕ) 6 Fg

p (ϕ).

Now suppose that supq⊇p infq ′⊇q Fg
q ′(ϕ) < r ; it suffices to show that p g ϕ < r . Here

is the strategy: Suppose that ∀ opens with q ⊇ p. Then ∃ should play q ′ ⊇ q so that

Fg
q ′(ϕ) < r , for then q ′ g ϕ < r and by following the strategy that witnesses this latter

statement, ∃ can enforce that ϕ < r holds at the end of this play.

2.2. The finite forcing companion T f

In this subsection, we discuss the finite forcing companion T f of T consisting of all

enforceable conditions. The main result that we want to establish is that the theory T f

is complete when T has JEP. Toward this end, we first show that, given any sentence ϕ,

any ‘position’ p, and any ‘accuracy’ ε > 0, we can find a further position q ⊇ p forcing

ϕ to have a value in an interval of length at most ε. It will become useful to extend our

official use of the symbol g. For example, we may write p g a < ϕ < b to mean that

p forces the property a < ϕ < b. This result is similar to [14, Remark 3.6].

Proposition 2.13. Given a condition p, an L(C)ω1,ω-sentence ϕ, and ε > 0, there is q ⊇ p
and a < b with b− a < ε such that q g a < ϕ < b.
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Proof. By Lemma 2.8, it suffices to consider the case that ϕ is restricted. We may thus

prove the proposition for such ϕ by induction on complexity.

First, suppose that ϕ is atomic. Since p is a condition, there is A+ |H T ∪ p. Set r := ϕA+

and set q := p∪ {|ϕ− r | < ε}. Then q is a condition extending p and q g
|ϕ− r | < ε.

If ϕ = ¬ψ and q ⊇ p is such that q g a < ψ < b with b− a < ε, then q g 1− b <
ϕ < 1− a. The case that ϕ = 1

2ψ is handled similarly.

Now suppose that ϕ = ψ u θ . Take q ′ ⊇ p such that q ′ g a < ψ < b with b− a < ε
2 .

Take q ⊇ q ′ such that q g c < θ < d with d − c < ε
2 . Then q g a+ c < ϕ < b+ d and

(b+ d)− (a+ c) < ε.

Now suppose that ϕ =
∧
φi . Let a := inf{a′ : q g ϕ < a′ for some q ⊇ p}. Set δ := ε

3
and take q ⊇ p such that q g ϕ < a+ δ. We claim that q g ϕ > a− 2δ, which settles

this case. To establish this claim, we use Lemma 2.12. Take q ′ ⊇ q. For each i , take qi ⊇ q ′

such that qi g ci < ϕi < di with di − ci < ε. Since qi 6g ϕi < a− ε (else qi g ϕ < a− ε,
contradicting the definition of a), we have a− ε < di . It follows that qi g ϕi > ci >

di − ε > a− 2ε. Since q ′ ⊇ q was arbitrary, it follows that q g ϕi > a− 2ε for each i ,
whence q g ϕ > a− 2ε.

Finally, suppose that ϕ = infx ψ(x). By the previous case, we may choose q ⊇ p such

that q g a < infc∈C ψ(c) < b with b− a < ε
2 . Since being canonical is enforceable, it

follows that q g a− ε
2 < infx ψ(x) < b.

Theorem 2.14. Suppose that T has JEP. Then for every Lω1,ω-sentence ϕ, there is a

unique r such that ϕ = r is enforceable.

Proof. Fix ε > 0. Fix an interval (a, b) of length less than ε and a condition p such

that p g a < ϕ < b. We claim that g a 6 ϕ 6 b. Suppose otherwise. Without loss of

generality, we may assume that 6g ϕ 6 b. Take δ > 0 such that 6g ϕ < b+ δ. Take (c, d)
with d − c < δ and q such that q g c < ϕ < d. Then b+ δ < d so b < d − δ < c, so

(a, b)∩ (c, d) = ∅. Since ϕ has no constants from C , by Lemma 2.11, we may assume that

p and q have no constants in common and thus can be realized in a common model of T by

JEP, which is a contradiction as then p∪ q is a condition and p∪ q g ϕ ∈ (a, b)∩ (c, d).
Taking ε = 1

n , we get intervals (an, bn) of length at most 1
n such that g an 6 ϕ 6 bn .

If
⋂

n[an, bn] = {r}, the conjunction lemma implies that ϕ = r is enforceable.

Definition 2.15. We let T f be the L-theory containing the closed conditions σ = r
whenever that condition is enforceable. T f is called the finite forcing companion of T .

Corollary 2.16. If T has JEP, then T f is complete.

Given an L-structure A, we may always expand it to a canonical L(C)-structure A+

(although there is no canonical choice for doing this). We may then define the diagram of

A to be the set of closed L(C)-conditions of the form ϕ = 0, where ϕ is a quantifier-free

L(C)-sentence such that ϕA+
= 0. It is then a standard fact that B+ |H T ∪Diag(A)

if and only if B |H T and A embeds into B. (Even though Diag(A) depends on how

we expand A to A+, this latter fact is independent of our choice.) We will also write

AppDiag(A+) (or simply AppDiag(A)) for the set of expressions of the form ϕ < r , where

ϕ is a restricted quantifier-free L(C)-sentence such that ϕA < r . Of course, T ∪Diag(A)
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and T ∪AppDiag(A) have the same models. If A happens to be a model of T , then

AppDiag(A) is the union of the set of conditions that are satisfied in A+.

Corollary 2.17. T∀ = (T f )∀.

Proof. Since it is enforceable that the compiled structure is a model of T∀, we have

that T∀ ⊆ T f . For the other direction, it is enough to show that any model of T∀ can

be extended to a model of T f . Suppose that A |H T∀; we need to show that Diag(A)∪
T f is satisfiable. By compactness, it suffices to show that, for any p ∈ AppDiag(A) and

any condition σ = 0 belonging to T f , there is a model of p∪ {σ = 0}. Since σ = 0 is

enforceable, we have that p g σ , whence by following the strategy we can construct a

model where p holds and σ = 0 is true.

2.3. Locally universal models revisited

As pointed out in the introduction, if T has JEP and A is an e.c. model of T , then A is

a locally universal model of T . Since being an e.c. model of T∀ is enforceable, it follows

that if T has JEP and B is a separable model of T such that being BU -embeddable is

enforceable, then B is a locally universal model of T . However, it turns out that the

conclusion of the following sentence is true even without assuming JEP.

Theorem 2.18. Suppose that B is a model of T such that being BU -embeddable is

enforceable. Then B is a locally universal model of T .

Proof. Suppose that A is a separable model of T . By saturation, it suffices to show,

given any condition p ⊆ AppDiag(A), that BU has an expansion to an L(C)-structure

that is a model of p. Viewing p as ∀’s first move, by following ∃’s strategy to ensure that

the compiled structure is BU -embeddable, it follows that p can be satisfied in BU , as

desired.

2.4. Connection to weak forcing

Model-theoretic forcing has already appeared in continuous logic in many places, the first

being [5]. The purpose of this section is to connect the above forcing theory with that

already appearing in the literature. As alluded to in [23, Historical Reference for Chapter

2], the forcing associated with games is the same as what is traditionally referred to as

weak forcing.6 The purpose of this subsection is to show that, in fact, the function Fg
p

defined above coincides with the corresponding function Fwp for weak forcing appearing

in [5].

Let us first review the setup from [5]. If p is a condition and ϕ is a restricted atomic

L(C)-sentence, we define f p(ϕ) := min{r 6 1 |ϕ < r ∈ p}, with the understanding that

min(∅) = 1. For a condition p and a restricted L(C)ω1,ω-sentence ϕ, we define the value

Fp(ϕ) ∈ [0, 1] by induction on ϕ:

• Fp(ϕ) = f p(ϕ) if ϕ is atomic.

6Unfortunately, this helpful remark is quite hidden in this section. In fact, Hodges simply writes ‘(Our
forcing is weak.)’
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• Fp(¬ϕ) = ¬ infq⊇p Fq(ϕ).

• Fp(
1
2ϕ) =

1
2 Fp(ϕ).

• Fp(ϕuψ) = Fp(ϕ)u Fp(ψ).

• Fp(
∨
8) = infϕ∈8 Fp(ϕ).

• Fp(infx ϕ(x)) = infc∈C Fp(ϕ(c)).

If r ∈ R and Fp(ϕ) < r , we say that p (strongly) forces that ϕ < r , and write p  ϕ < r .

We can now define the weak forcing relation.

Definition 2.19. For a condition p and a restricted L(C)ω1,ω-sentence ϕ, we set

Fwp (ϕ) = sup
q⊇p

inf
q ′⊇q

Fq ′(ϕ).

If r ∈ R and Fwp (ϕ) < r , we say that p weakly forces that ϕ < r , and write p w ϕ < r .

The following facts are Lemma 2.8 and Proposition 2.9 from [5] respectively.

Fact 2.20. For a condition p and a restricted L(C)ω1,ω-sentence ϕ, we have

Fwp (ϕ) = sup
q⊇p

inf
q ′⊇q

Fwq ′ (ϕ).

Fact 2.21. Fwp satisfies the following inductive rules.

• Fwp (¬ϕ) = ¬ infq⊇p Fwq (ϕ).

• Fwp (
1
2ϕ) =

1
2 Fwq (ϕ).

• Fwp (ϕuψ) = supq⊇p infq ′⊇q Fwq ′ (ϕ)u Fwq ′ (ψ).

• Fwp (
∨
8) = supq⊇p infq ′⊇q infϕ∈8 Fwq ′ (ϕ).

• Fwp (infx ϕ(x)) = supq⊇p infq ′⊇q infc∈C Fwq ′ (ϕ(c)).

The following is the main result of this subsection; it says that game forcing and weak

forcing are the same.

Theorem 2.22. For all conditions p and restricted L(C)ω1,ω-sentences ϕ, we have

Fg
p (ϕ) = Fwp (ϕ).

Proof. We proceed by induction on the complexity of ϕ.

First suppose that ϕ is atomic. Fix ε > 0 and choose r such that r < Fg
p (ϕ)+ ε and

p g ϕ < r . Fix q ⊇ p, so q g ϕ < r . In particular there is s < r such that q ′ := q ∪ {ϕ <
s} is consistent. Clearly q ′ w ϕ < s so Fwp (ϕ) 6 r < Fg

p (ϕ)+ ε; letting ε approach 0, we

see that Fwp (ϕ) 6 Fg
p (ϕ). Conversely, if p w ϕ < r , then for every q ⊇ p, there is q ′ ⊇ q

such that q ′  ϕ < r , whence ϕ < s belongs to q ′ for some s < r and thus q ′ g ϕ < s
and Fg

q ′(ϕ) < s. By Lemma 2.12, we have that Fg
p (ϕ) 6 r and thus Fg

p (ϕ) 6 Fwp (ϕ).
Now suppose that ϕ = ¬ψ . First suppose that p g ϕ < r . Take q ⊇ p. Then q 6g

ψ < 1− r , so Fg
q (ψ) > 1− r whence Fwq (ψ) > 1− r by induction. Therefore,

Fwp (ϕ) = 1−. inf
q⊇p

Fwq (ψ) 6 1− (1− r) = r
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and thus Fwp (ϕ) 6 Fg
p (ϕ). Now suppose that p w ϕ < r and fix q ⊇ p and ε > 0; it

suffices to find q ′ ⊇ q such that q ′ g ϕ < r + ε, for then, by Lemma 2.12, we have that

Fg
p (ϕ) 6 r + ε and thus, letting ε approach 0, we have that Fg

p (ϕ) 6 Fwp (ϕ). Take q ′ ⊇ q
such that q ′ g a < ψ < b with b− a < ε. Since p w ϕ < r , we have that Fwq ′ (ψ) > 1− r ,

whence 1− r < b by the induction hypothesis. It follows that q ′ g ϕ < 1− a < 1− b+
ε < r + ε, as desired.

The case that ϕ = 1
2ψ is easy. Now suppose that ϕ = ψ u θ . We first show that Fwp (ϕ) 6

Fg
p (ϕ). Suppose p g ϕ < r . Take q ⊇ p; it suffices to show that infq ′⊇q(Fwq ′ (ψ)u

Fwq ′ (θ)) 6 r . Fix ε > 0 and take q ′ ⊇ q such that q ′ g a− ε < ψ < a+ ε and q ′ g

b− ε < θ < b+ ε. It follows that a+ b− 2ε < r and that (by induction) Fwq ′ (ψ) 6 a+ ε
and Fwq ′ (θ) 6 b+ ε, so Fwq ′ (ψ)u Fwq ′ (θ) 6 a+ b+ 2ε < r + 4ε; letting ε approach 0 yields

the desired result. Now suppose that p w ϕ < r . Fix q ⊇ p. Take q ′ ⊇ q such that (by

induction) Fg
q ′(ψ)u Fg

q ′(θ) < r . Then there are s, t such that q ′ g ψ < s and q ′ g θ < t
and s+ t < r . It follows that q ′ g ϕ < r , whence Fg

p (ϕ) < r .

Now suppose that ϕ =
∨
ϕi . First suppose that Fwp (ϕ) < r . Fix q ⊇ p and find q ′ ⊇ q

and i such that Fwq ′ (ϕi ) < r , whence Fg
q ′(ϕi ) < r and thus q ′ g ϕi < r and hence q ′ g

ϕ < r . It follows that Fg
p (ϕ) 6 Fwp (ϕ). Now suppose that Fg

p (ϕ) < r . Fix q ⊇ p. Then

there is i such that q 6g
¬ϕi 6 1− r , whence q 6w ¬ϕi 6 1− r , and thus there is q ′ ⊇ q

such that q ′ w ϕi < r . It follows that p w ϕ < r .

Finally suppose that ϕ = infx ψ(x). Since it is enforceable that the compiled structure

is canonical, we have that p g ϕ < r if and only if p g ∨
c∈C ψ(c) < r ; now use the

previous case.

3. Finite-generic structures

In this section, we once again fix an L-theory T and forcing is with respect to this theory.

3.1. Introducing finite-generic structures

Suppose that B+ is a canonical L(C)-structure. Given an L(C)ω1,ω-sentence ϕ and

r ∈ R>0, we say B+ forces ϕ < r , written B+ g ϕ < r , if there is a condition p ⊆
AppDiag(B+) with p g ϕ < r . In general, whether a structure forces the expression

ϕ < r (for ϕ finitary) is not the same as whether or not ϕB+ < r is true. These notions

coincide for a very important class of structures.

Definition 3.1. We say that a canonical L(C)-structure is finite-generic+ if, for any

(finitary) L(C)-sentence ϕ and any r ∈ R>0, we have

B+ g ϕ < r ⇔ B+ |H ϕ < r.

We leave the following lemma to the reader.

Lemma 3.2. Suppose that B+ is a canonical L(C)-structure. Then B+ is finite-generic+

if and only if for every L(C)-sentence σ and every ε > 0, if σ B+
= r , then B+ g

|σ −

r | < ε.
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Definition 3.3. An L-structure will be called finite-generic if it is the L-reduct of a

finite-generic+ L(C)-structure.

If we want to emphasize the base theory T , we shall say that B is finite-generic with

respect to T .

Remark 3.4. If one compares our definition of finite-generic+ with the corresponding

classical definition [23, § 4.3], it seems as if we should demand that finite-generic+

structures be extra canonical. It does appear that this leads to a more restrictive notion

of finite-generic+-structures, but we invite the reader to check that this leaves the class

of reducts (i.e., finite-generic structures) unchanged. (Simply add a new set of countably

many constants.) It seems that Hodges prefers the more restrictive notion to make certain

proofs easier but we note that this is not at all necessary.

Let us next show how this notion is the same as the one presented in the continuous

logic literature using generic sets of conditions.

Definition 3.5. Let G be a nonempty set of conditions. We say that G is generic if:

• the union of two elements of G is once again an element of G, and

• for every restricted L(C)-sentence ϕ and every r > 1, there is p ∈ G such that Fp(ϕ)+

Fp(¬ϕ) < r .

It is proven in [5] that generic sets always exist. If G is generic and ϕ is a restricted

L(C)-sentence, set ϕG
:= infp∈G Fp(ϕ). [5, Lemma 2.13] asserts that ϕG

= infp∈G Fwp (ϕ).
The following fact combines Lemma 2.16 and Theorem 2.17 from [5].

Fact 3.6 (Generic Model Theorem). Let MG
0 denote the term algebra equipped with the

natural interpretation of the function symbols and interpreting the predicate symbols

by P MG
0 (Eτ) := P(Eτ)G . Let MG be the completion of MG

0 . Then MG is a canonical

L(C)-structure such that, for all restricted L(C)-sentences ϕ, we have ϕMG
= ϕG .

We can now prove the following proposition.

Proposition 3.7. B+ is finite-generic+ if and only if B+ ∼= MG for some generic set G.

Proof. First suppose that B+ is finite-generic. Let G consist of all conditions contained in

AppDiag(B+). We first note that G is generic. It is clear that the union of two conditions

in G is a condition in G again. Now suppose that ϕ is an L(C)-sentence and r > 1.

Choose ε > 0 such that 1+ 2ε < r . Take p ∈ G and a ∈ R such that p g
|ϕ− a| < ε.

Then Fwp (ϕ)+ Fwp (¬ϕ) < 1+ 2ε < r . It follows that G is generic. By the construction of

MG , it is now clear that B+ ∼= MG .

Conversely, suppose that G is a generic set; we must show that MG is finite-generic+.

Suppose that ϕ is a restricted L(C)-sentence such that ϕMG
= r . Fix ε > 0. Since ϕG

= r ,

we have p ∈ G such that p w ϕ < r + ε; since p ⊆ AppDiag(MG), by Theorem 2.22, we

have MG g ϕ < r + ε. By considering ¬ϕ, we see that MG g
|ϕ− r | < ε. By density of

the restricted formulas, we see that MG is finite-generic+.
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Remark 3.8. Returning to our earlier remarks about the difference between our definition

of finite-generic+ and the one appearing in [23], we note that if one were to demand

finite-generic+-structures to be extra canonical, then it does not appear that one would

be able to obtain the previous proposition as the generic G may be agnostic about the

infinitary expression
∨

k>m d(ck, cn) < ε.

Proposition 3.9. Being finite-generic+ is enforceable.

Proof. We already know that we can enforce the compiled structure to be canonical. Now

suppose that ϕ is a restricted L(C)-sentence and ε ∈ Q>0. It suffices to show that we can

enforce the following property: if ϕA+
= r , then A+ g

|ϕ− r | < ε. Here is the strategy:

Suppose that ∀ plays p0. Then there is p1 ⊇ p0 and an interval I with |I | < ε such that

p1 g ϕ ∈ I . Have ∃ play p1 and use the winning strategy. Then the compiled structure

A+ will have p1 ⊆ AppDiag(A+).

The following characterization of finite-generic structures in terms of the forcing

companion T f will prove quite useful.

Proposition 3.10. For an L-structure B, the following are equivalent:

(1) B is finite-generic;

(2) B |H T f and for all B ⊆ C |H T f , we have B � C;

(3) B |H T∀ and for all B ⊆ C |H T f , we have B � C.

Proof. (1) implies (2): Suppose that B is the reduct of the finite-generic+ structure B+.

We first show that B |H T f . Suppose that ϕT f
= r but ϕB

= s 6= r . Fix ε > 0 such that

|r − s| > ε. Then we arrive at a contradiction since B+ g
|ϕ− s| < ε whilst g

|ϕ− r | <
ε. Thus B |H T f .

Now suppose that B ⊆ C |H T f . Let ϕ(c) be an L(C)-sentence and r ∈ R>0 such that

ϕ(c)B+ < r ; it suffices to show that ϕ(cB+)C 6 r . Take p ⊆ AppDiag(B+) such that p g

ϕ(c) < r . Write p = {ψi (c, d) < ri : i = 1, . . . , k}, where d is a tuple of distinct constants

disjoint from the tuple c. Then we have that min(min16i6k(ri −
. ψi (c, d)), ϕ(c)−. r) = 0

is enforceable. Indeed, if player ∀ plays p0, then either p0 ∪ p is unsatisfiable (whence

the first term in the minimum is 0 in the compiled structure) or else ∃ can play p0 ∪ p
and then follow the strategy witnessing p g ϕ(c) < r . By homogeneity and the fact that

being extra canonical is enforceable, it follows that the closed condition

(sup
x

sup
y

min(min
i
(ri −

. ψi (x, y)), ϕ(x)−. r)) = 0

is enforceable, whence belongs to T f . Since

ri −
. ψi (cB+ , d B+)C = ri −

. ψi (cB+ , d B+)B

and C |H T f , we have ϕ(cB+)C 6 r .

(2) implies (3) follows from the fact that T∀ ⊆ T f . Now suppose that (3) holds. Expand

B to a canonical L(C)-structure B+. Now suppose that ϕ is an L(C)-sentence such that

ϕB+
= r and fix ε > 0. By (3), Diag(B+)∪ T f

|H |ϕ− r | < ε. By compactness, there is
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p ⊆ AppDiag(B+) and a closed condition χ = 0 from T f such that p∪ {χ = 0} |H |ϕ−
r | < ε. It suffices to show that p is a condition, for then since χ = 0 is enforceable, we

have that p g
|ϕ− r | < ε, as desired. Write p = {ψi < ri : i = 1, . . . , k}. If p is not a

condition, then T∀ |H supx
∏

i (ri −
. ψi ) = 0, contradicting that B |H T∀.

Corollary 3.11. Suppose that B is finite-generic. Then B is an e.c. model of T∀.

Proof. Suppose that B ⊆ C |H T∀, ϕ(x) is an existential formula, and a ∈ B. By Corollary

2.17, we may find D |H T f with C ⊆ D. Since B � D, we have that

ϕ(a)C 6 ϕ(a)B
= ϕ(a)D 6 ϕ(a)C .

It follows that ϕ(a)B
= ϕ(a)C , as desired.

Corollary 3.12. Suppose that A is e.c. in B and B is finite-generic. Then A is

finite-generic.

Proof. We first show that A is actually elementary in B. Since A is e.c. in B, there is an

embedding B ↪→ AU that restricts to the diagonal embedding A ↪→ AU . We thus have

the chain

A ⊆ B ↪→ AU
⊆ BU ↪→ (AU )U ⊆ (BU )U ↪→ · · ·

with union A∞. Since the maps between the successive ultrapowers of A are just

ultrapowers of the diagonal map, we have that A � A∞. Since B is finite-generic and

BU
|H T f , we have that the embedding B ↪→ BU is elementary, whence so are the

successive ultrapower maps. It follows that B � A∞, whence A � B.

Now suppose that A ⊆ C |H T f . Since A |H T∀, it suffices to show that A � C . By

Corollary 3.11, B is an e.c. model of T∀, whence so is A. It follows that the inclusion

map A ↪→ CU can be extended to a map f : B ↪→ CU , which is elementary since B is

finite-generic. We then have that

ϕ(a)A
= ϕ(a)B

= ϕ( f (a))C
U
= ϕ(a)C

U
= ϕ(a)C .

3.2. Finite-generic, enforceable, and prime structures

In this subsection, we maintain the convention that forcing is with respect to the L-theory

T . The following definition contains one of the central notions of this paper.

Definition 3.13. An L-structure A is enforceable if the property ‘the reduct of the

compiled structure is isomorphic to A’ is an enforceable property.

If we want to stress the base theory T , we say that A is enforceable with respect to T .

If T is universal and A is enforceable with respect to T , then by Proposition 2.5, A is

necessarily a model of T , whence may also speak of A being the enforceable model of T .

From Proposition 3.9, we immediately have the following corollary.

Corollary 3.14. If A is enforceable, then A is finite-generic.
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Recall that an L-structure B is said to be an algebraically prime model of its theory if

B embeds into C whenever C ≡ B.7 B is further said to be the prime model of its theory

if B embeds elementarily into C whenever C ≡ B.

The following corollaries follow immediately from Proposition 3.10.

Corollary 3.15. Suppose that B is a finite-generic structure and an algebraically prime

model of its theory. Then B is the prime model of its theory.

Corollary 3.16. Suppose that B is the enforceable structure and an algebraically prime

model of its theory. Then B is the prime model of its theory.

The next theorem will be the key tool in showing that certain operator algebras are

the enforceable models of their universal theories. This proof will involve a bit more

model-theoretic background than the rest of this paper.

Theorem 3.17. Suppose that D is a finite-generic structure with respect to Th∀(D) and

the prime model of its theory. Then D is the enforceable model of Th∀(D).

Proof. Since being finite-generic is enforceable and any two finite-generic models with

respect to Th∀(D) are elementarily equivalent (as Th∀(D) has JEP), it is enforceable that

the compiled structure is a model of Th(D).
Let Si

n(Th(D)) denote the set of isolated n-types in Th(D), a closed subset of Sn(Th(D)).
Let c be an n-tuple of distinct constants and let m > 1 be fixed. It is enough to show that

we can enforce that, in the compiled structure, the type realized by the interpretations of

c is within 1/m of Si
n(Th(D)). Indeed, by taking the conjunction of these countably many

requirements, we can enforce that the compiled structure will be an extra canonical

structure that is a model of Th(D) and that, for every n, a dense set of n-tuples

realize isolated types, whence they all do; consequently, the compiled structure will be a

separable, atomic model of Th(D) and hence isomorphic to D.

Fix an n-tuple c of distinct constants and m > 1. We now describe the strategy ∃ can

use to enforce that the type of c in the compiled structure is within 1/m of Si
n(Th(D)).

Suppose that ∀ plays p0 = {ϕi (c, d) < εi : i = 1, . . . k}, where d is a tuple of distinct

constants disjoint from c. By homogeneity, we can assume that p0 ⊆ AppDiag(D). Let

[θ(x) < δ] be a logically open set contained in the ball around tpD(cD) of radius 1/m. Let

q ⊆ Diag(D) be such that q g θ(c) < δ. Then p := p0 ∪ q is a condition extending p0
and p g θ(c) < δ. Thus, in the compiled structure A, we have that d(tpA(cA), tpD(cD)) <

1/m, as desired.

Corollary 3.18. Suppose that D is a finite-generic structure with respect to Th∀(D) and

an algebraically prime model of its theory. Then D is the enforceable model of Th∀(D).

3.3. Model companions and T f

We end this section by mentioning the connection between finite-generic structures and

model companions. Recall that the theory T ′ is a model companion of the theory T

7Recall that ≡ denotes the relation of elementary equivalence.
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if T∀ = T ′
∀

and T ′ is model-complete, i.e., every embedding between models of T ′ is

elementary. We note that T has at most one model companion. If T is ∀∃-axiomatizable,

then T has a model companion if and only if the class of e.c. models of T is the class of

models of some first-order theory, which is then necessarily the model companion of T .

We leave the proof of the following proposition to the reader.

Proposition 3.19. The following are equivalent:

(1) T has a model companion.

(2) T f is the model companion of T .

(3) Every model of T f is finite-generic.

In particular, when T has a separably categorical model companion, then the unique

separable e.c. model of T is necessarily enforceable. While this phenomenon is rare in

analysis, there are a few notable examples.

Example 3.20. Let T be the universal theory of Banach spaces. Then the Gurarij Banach

space G is the unique separable e.c. Banach space and is thus the enforceable Banach

space.

Example 3.21. Let T be the universal theory of unital abelian C∗-algebras. Then C(2N)
is the unique separable e.c. unital abelian C∗-algebra and is thus the enforceable model.

4. The pseudoarc

The original motivation for this work actually stemmed from studying the model theory

of the pseudoarc P and in particular trying to establish Corollary 4.4. We recall that a

continuum is a connected compact Hausdorff space. Note then that a compact space X
is a continuum if and only if C(X) is projectionless. The class of unital projectionless

abelian C∗-algebras is universally axiomatized by an L-theory T , where L is the language

of C∗-algebras. Forcing in this section is relative to the aforementioned T .

K.P. Hart proved the following striking fact [22, Lemma 2.1] about T (although not in

this terminology).

Fact 4.1. If C(X),C(Y ) |H T are both infinite-dimensional (i.e., neither X nor Y are a

single point), then Th∀(C(X)) = Th∀(C(Y )).

The pseudoarc P is the unique metrizable continuum that is both hereditarily

indecomposable and chainable.8 In [1], it was shown that hereditary indecomposability

is an ∀∃-property of models of T .9 On the other hand, the main result of [7] shows that

chainability is a sup
∨

inf-property. The above discussion was then used in [7] to prove

that C(P) is an e.c. model of T , answering a question of Bankston.10

8The reader can consult [25] for more information on the pseudoarc, including definitions of these terms.
9If P is a property of continua, we will be abusive and say that C(X) has property P if X has property
P.
10This result was motivated by a result of Bankston showing that chainability is a ∀

∨
∃ property in
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Proposition 2.6, Fact 4.1, and the fact that chainability is a sup
∨

inf-property

immediately yield the following theorem.

Theorem 4.2. Chainability is an enforceable property.

Since being e.c. is an enforceable property and e.c. models of T are hereditarily

indecomposable (see [1] again), we have the following corollary.

Corollary 4.3. C(P) is the enforceable model of T .

The following corollary was the original motivation for this work.

Corollary 4.4. C(P) is the prime model of its theory.

Proof. By Corollary 3.16, it suffices to show that C(P) is an algebraically prime model of

its theory. To see this, note that if C(X) ≡ C(P), then X is hereditarily indecomposable,

whence, by a result of Bellamy [2], X surjects onto P, i.e., C(P) embeds into C(X).

5. Enforceable operator algebras and embedding problems

5.1. II1 factors

In this subsection, L denotes the language of tracial von Neumann algebras and T denotes

the universal L-theory for tracial von Neumann algebras. (See [12] for details.)

Theorem 5.1. R is the enforceable model of its universal theory.

Proof 1. By Theorem 3.17 and the well-known fact that R is the prime model of its

theory,11 it suffices to show that R is a finite-generic model of its universal theory.

Toward this end, suppose that A is a finite-generic model of Th∀(R). Then A is an e.c.

model of Th∀(R), hence a II1 factor (see, for example, [9]) and thus contains R. Since R
is an e.c. model of its universal theory (again, see [9]), R is finite-generic by Corollary

3.12.

The following alternative proof is worth pointing out.

Proof 2. First note that hyperfiniteness is a sup
∨

inf-property of tracial von Neumann

algebras. (This does not seem to have appeared explicitly in the literature but the proof

is the same as the fact that being uniformly hyperfinite (UHF) is a sup
∨

inf-property of

C∗-algebras; see [6]). Thus, by Proposition 2.6, hyperfiniteness is an enforceable property

for T . Since being e.c. is also enforceable, we have that we can enforce that the compiled

structure be a separable, hyperfinite II1 factor, whence the compiled structure must be

isomorphic to R by the fundamental result of Murray and von Neumann.

In what follows, let σhyp denote the supremum of the countably many

sup
∨

inf-sentences that define hyperfiniteness. Since T has JEP, there is a unique value

the language of lattice bases for continua. We should note that neither result obviously implies the
other and the continuous version was needed for the aforementioned application due to the imperfect
correspondence between e.c. lattice bases and co-e.c. continua.
11See, for example, [15, Remark after Lemma 3.1]. The main point is that every embedding R ↪→ RU

is unitarily conjugate to the diagonal embedding, and thus elementary.
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r such that σhyp = r is enforceable. We abuse notation and write σ T f

hyp for this unique

r (even though, technically, T f is a finitary theory). We follow this abusive practice in

other contexts throughout the remainder of this section.

The following was the result announced in the introduction to the paper; forcing here

is with respect to T , the theory of tracial von Neumann algebras.

Theorem 5.2. The following are equivalent:

(1) CEP has a positive solution.

(2) σ T f

hyp = 0.

(3) R is enforceable.

(4) RU -embeddability is enforceable.

Proof. (1) ⇒ (2): As in Proof 2 of Theorem 5.1, if CEP holds, then we can enforce

that the compiled II1 factor is hyperfinite. (2) ⇒ (3) follows from the fact that being

a II1 factor is enforceable together with the aforementioned result of Murray and von

Neumann, while (3)⇒ (4) is trivial. Finally, (4) implies (1) holds by Theorem 2.18.

Remark 5.3. As first pointed out in [13], there is a locally universal II1 factor. However,

locally universal II1 factors are far from unique as any separable II1 factor containing

a locally universal II1 factor is itself locally universal. Thus, asking whether or not R
is one of the many locally universal II1 factors makes the connection between CEP and

model theory a bit loose. However, an enforceable II1 factor, should it exist, is a canonical

object. Thus, asking whether or not the canonical enforceable II1 factor coincides with

the (arguably) canonical II1 factor R seems to be a more serious connection.

5.2. Unital C∗-algebras

In this subsection, L denotes the language for unital C∗-algebras.

Recall that a C∗-algebra D is strongly self-absorbing (or ssa for short) if there is

an isomorphism φ : D→ D× D such that φ and idD ⊗1D are approximately unitarily

equivalent ∗-homomorphisms. It is a well-known consequence of the definition that

every embedding D ↪→ DU is unitarily conjugate to the diagonal embedding, and thus

elementary. As a result, ssa algebras are e.c. models of their universal theories and the

prime models of their full theories. Particularly important ssa algebras are the Cuntz

algebra O2, the universal UHF algebra Q, and the Jiang–Su algebra Z.

Theorem 5.4. Strongly self-absorbing algebras are the enforceable models of their

universal theories.

Proof. Suppose that D is an ssa algebra. Since D is the prime model of its theory, it

suffices, by Proposition 3.17, to show that D is a finitely generic model of Th∀(D). Let A
be a finitely generic model of Th∀(D). By Corollary 3.11, A is an e.c. model of Th∀(D),
whence A⊗ D ∼= A by [11, Lemma 2.3]. Thus D is e.c. in A, whence D is finitely generic

by Corollary 3.12.

Alternate proofs for D = O2 and Q. Suppose first that D = O2. Since nuclearity is a

sup
∨

inf-property (see [10]), we can use Proposition 2.6 to show that we can enforce the
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compiled structure to be nuclear, whence embeddable in O2. Since the compiled structure

can also be forced to be an e.c. model of Th∀(O2), it follows that the compiled structure

is e.c. in O2 and thus isomorphic to O2 by [17, Theorem 2.14].

In the case that D = Q, we argue in the same way, using that being UHF is a

sup
∨

inf-property (see [6]). We can thus enforce that the compiled structure be an e.c.

subalgebra of Q, which thus forces12 it to be isomorphic to Q.

Let T denote the universal L-theory axiomatizing the class of unital C∗-algebras. In

the rest of this subsection, forcing is with respect to T .

Recall that the Kirchberg Embedding Problem (KEP) asks whether every C∗-algebra

embeds into an ultrapower of O2. The proof of the following theorem is just like the proof

of Theorem 5.2. Here, σnuc is the supremum of the sup
∨

inf-sentences defining nuclearity.

Proposition 5.5. The following are equivalent:

(1) KEP has a positive solution.

(2) σ T f

nuc = 0.

(3) O2 is enforceable.

(4) OU
2 -embeddability is enforceable.

There is one more equivalence we can add to the previous proposition, but first some

terminology. We say that a C∗-algebra A has a square root if there is a C∗-algebra B such

that A ∼= B⊗ B (minimal tensor product). Clearly ssa algebras have square roots. The

following is a remark in [17]; for the convenience of the reader, we repeat the statement

and proof here.

Lemma 5.6. Suppose that A is an e.c. C∗-algebra that has a square root. Then A is simple

and nuclear (and hence isomorphic to O2).

Proof. Suppose that B is a square root of A. A consequence of being existentially

closed is that every automorphism of A is approximately inner (see [17]). In particular,

the flip automorphism a⊗ b 7→ b⊗ a : A→ A is approximately inner; in other words,

B has approximately inner flip. This property passes to A as well [28]; since having

approximately inner half flip implies that A is simple and nuclear (see [28] again), the

result follows.

Corollary 5.7. KEP has a positive solution if and only if having a square root is an

enforceable property of the compiled structure.

Remark 5.8. The previous discussion also makes sense in the II1 factor category. In

that context, Connes showed that R is the only separable II1 factor with ultraweak

approximately inner flip. The above arguments thus show that CEP has a positive

solution if and only if having a square root is an enforceable property of the compiled II1
factor.

12No pun intended.
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In [18, § 7], it was shown that the local lifting property, or LLP for short, of Kirchberg

is captured by a family (σm) of Lω1,ω-sentences:13 a C∗-algebra A has the LLP if and

only if (supm σm)
A
= 0. Let σLLP := supm σm . We can thus ask: What is σ T f

LLP?

First suppose that σ T f

LLP > 0, so we can enforce that the compiled structure does not

have LLP. Since the compiled model can also be forced to be e.c., and thus has the weak

expectation property, or WEP for short (see [17]), we get that the compiled structure can

be forced to have WEP and not LLP, yielding a (potentially) new example of a C∗-algebra

with WEP but not LLP. (See [24] for the first example.)

Next suppose that σ T f

LLP = 0. If σ T f

nuc = 0, then KEP has a positive solution. Otherwise,

σ T f

nuc > 0, whence we can enforce that the compiled structure is not nuclear but has both

LLP and WEP, providing a positive answer to the so-called weak QWEP conjecture (see

[18] for more on this).

5.3. Unital stably finite C∗-algebras

Once again, L denotes the language for unital C∗-algebras. Except for the last results in

this subsection, T now denotes the universal L-theory axiomatizing the class of unital,

stably finite C∗-algebras.

Recall that the MF problem asks whether or not every stable finite C∗-algebra embeds

into an ultrapower of the universal UHF algebra Q. In what follows, σUHF is the

supremum of the sup
∨

inf-sentences defining being UHF and σQD is the supremum of

the sup
∨

inf-sentences defining being quasidiagonal (see [10]).

Theorem 5.9. The following are equivalent:

(1) The MF problem has a positive solution.

(2) σ T f

UHF = 0.

(3) Q is enforceable.

(4) σ T f

QD = 0.

(5) QU -embeddability is enforceable.

Remark 5.10. As pointed out in [19], it is currently unknown as to whether or not the

class of unital, stably finite C∗-algebras has JEP. Thus, in the previous proposition, it is

unknown as to whether or not σ T f

UHF even exists! Similarly, while in the cases of CEP and

KEP, we could have proven that (5) implies (1) using that being e.c. is enforceable and

using JEP, we cannot use such an argument in the case of the MF problem, and thus, at

the moment, the use of Theorem 2.18 really is needed.

The quasidiagonality problem (or QD problem) asks whether or not every stably

finite nuclear algebra is quasidiagonal (equivalently, by the Choi–Effros Lifting Theorem,

QU -embeddable). The best progress toward resolving the QD problem is the main result

13It is left as an open question there whether or not LLP is a sup
∨

inf-property.
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of [27], which states that a unital, simple, stably finite, nuclear algebra satisfying the

Universal Coefficient Theorem (UCT) is QU -embeddable. Since being simple and nuclear

are both sup
∨

inf-properties (see [10]), if we assume that every nuclear C∗-algebra has

the UCT, then we can add

σ T f

nuc = σ
T f

simple = 0
to the above list of equivalent formulations of the MF problem.

As pointed out in [19], the stably finite version of Lemma 5.6 holds: If A is a stably

finite C∗-algebra that is e.c. for the class of stably finite algebras and A has a square

root, then A is simple and nuclear (and is furthermore isomorphic to Q if A is UCT).

Consequently, we have the following corollary.

Corollary 5.11. Assume that every nuclear C∗-algebra is UCT. Then the MF problem has

a positive solution if and only if having a square root is an enforceable property of the

compiled structure.
The previous discussion makes one wonder about the logical status of the UCT. In

particular, the following question comes to mind.

Question 5.12. Is the UCT an Lω1,ω property of nuclear C∗-algebras?

The next theorem spells out the precise difference between the QD problem and the

MF problem.

Theorem 5.13. The following are equivalent:

(1) The MF problem has a positive solution.

(2) The conjunction of the following two statements:

(a) The QD problem has a positive solution.

(b) Nuclearity is an enforceable property.

Proof. (1) implies (2) since the MF problem having a positive solution implies that Q is

enforceable. For (2) implies (1), note that once we know that nuclearity is enforceable,

then a positive solution to the QD problem implies that quasidiagonality is enforceable.

Remark 5.14. In [19], it is conjectured that the only possible stably finite algebra that

is both nuclear and e.c. for the class of stably finite algebras is Q. If this conjecture

holds, then we see that the MF problem having a positive solution is simply equivalent

to nuclearity being enforceable.

A problem related to the MF problem is whether or not every stably finite C∗-algebra

has a trace. Of course, if the MF problem has a positive solution, then the aforementioned

problem has a positive solution. There is a connection with enforceability.

Theorem 5.15. Every stably finite C∗-algebra has a trace if and only if having a trace is

an enforceable property of the compiled structure.

Proof. Suppose that we can enforce that the compiled structure has a trace. Let A be

a stably finite C∗-algebra. It suffices to show, given any condition p ⊆ AppDiag(A), that
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p can be satisfied in a tracial stably finite algebra. Indeed, by writing AppDiag(A) as

an increasing union of conditions, we can then satisfy AppDiag(A) in an ultraproduct of

tracial stably finite algebras, which is itself tracial. It follows that A can be embedded in

a tracial algebra and is thus, itself, tracial.

Now given a condition p from AppDiag(A), view p as ∀’s first move in the game and

have ∃ follow its strategy to ensure that the compiled structure is tracial. We then have

that p is realized in a tracial algebra, as desired.

A related question is whether or not every quasitrace on a stably finite C∗-algebra is

necessarily a trace. It is known that every stably finite C∗-algebra has a quasitrace, so a

positive answer to the previous question implies that every stably finite C∗-algebra has

a trace.

In [19, Proposition 31], it is shown that, in the language Lτ obtained by adding a unary

function symbol τ to the above language L, the class of structures (A, τ ), where A is a

C∗-algebra and τ is a quasitrace on A, is universally axiomatizable, say by the universal

Lτ -theory Tτ . Moreover, it is easy to see that the class of such pairs where τ is actually

a trace is also universally axiomatizable. Arguing in the same way as in the preceding

theorem, we can see the following.

Theorem 5.16. Let forcing be with respect to Tτ . Then every quasitrace on a stably finite

C∗-algebra is a trace if and only if it is enforceable that the quasitrace on the compiled

structure is a trace.

Haagerup [20] showed that quasitraces on exact C∗-algebras are traces, so if one can

enforce (with respect to Tτ ) that the compiled structure is exact, then every quasitrace

on a stably finite C∗-algebra is a trace.

We end this subsection by mentioning the case of stably projectionless algebras.

Theorem 5.17. Let Tsp be the ∀∃-axiomatizable L-theory for unital, stably projectionless

C∗-algebras and let forcing be with respect to Tsp. Then the following are equivalent:

(1) Every unital stably projectionless algebra is ZU -embeddable.

(2) Z is enforceable.

(3) ZU -embeddability is enforceable.

5.4. Operator spaces and systems

In this section, we let L denote the language of operator spaces and T the universal

L-theory for operator spaces. (See [17, Appendix B].) Let NG denote the so-called

noncommutative Gurarij space, which is the Fraisse limit of the finite-dimensional 1-exact

operator spaces. (See [26] for other equivalent descriptions of NG.) It is readily checked

that the proof that nuclearity is a sup
∨

inf-property of C∗-algebras also establishes the

same fact for operator spaces. Since every operator space embeds into an ultrapower of

NG, it follows that we can enforce that the compiled operator space be nuclear.

In [26, § 5.6], building on ideas from [16], it was shown that NG is the unique e.c.

operator space that is also 1-exact (in particular nuclear). Since we can also enforce that

the compiled operator space be e.c., we have the following proposition.
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Proposition 5.18. NG is the enforceable model of T .

If we instead work in the operator system category, the analog of NG is the Gurarij

operator system GS, whose model-theoretic properties were laid out in [16]. The exact

same arguments show that GS is the enforceable model of the theory of operator systems.

6. The dichotomy theorem

6.1. The dichotomy theorem and embedding problems revisited

The goal of this chapter is to prove the following theorem, which is the continuous analog

of [23, Theorem 4.2.6].

Theorem 6.1. Suppose that T is an ∀∃-axiomatizable theory with JEP. Then exactly one

of the following happens:

(1) For every enforceable property P, there are continuum many nonisomorphic models

of T with property P.

(2) T has an enforceable model.

The remaining subsections will be devoted to the proof of the dichotomy theorem.

However, before we turn to the proof, let us mention how this theorem suggests a new

method for providing a positive solution to the embedding problems from the previous

section. Let us first consider CEP.

Step 1: Find an enforceable property P of II1 factors shared by fewer than continuum

many nonisomorphic separable II1 factors.

By the dichotomy theorem and Step 1, there is an enforceable II1 factor E .

Step 2: Show that the enforceable II1 factor E must be isomorphic to R.

Clearly one (or both!) of these steps must be difficult, but it is not clear to us which

step that is. That being said, as mentioned in Remark 5.3, since being an enforceable II1
factor is such a canonical property, it is hard to envision one existing without it being

isomorphic to arguably the most canonical II1 factor R. In fact, as we will see below,

the enforceable II1 factor, if it exists, embeds as a subfactor of every e.c. II1 factor,

reminiscent of the fact that R embeds into every II1 factor.

Remark 6.2. In trying to establish Step 1, one should not try to show that there is a

first-order property P that has fewer than continuum many nonisomorphic separable

models. Indeed, as shown in [13], given any II1 factor M , there are continuum many

nonisomorphic separable II1 factors elementarily equivalent to M .

The above strategy can be stated in an analogous fashion for the KEP. In connection

with Step 2 for the KEP, the following remark seems in order.

Remark 6.3. Suppose that E is the enforceable C∗-algebra. Then E is finite-generic,

whence every embedding E ↪→ EU is elementary. Thus, assuming the Continuum

Hypothesis (CH), any two embeddings of E into EU are conjugate by an automorphism

of EU . If one can show that these automorphisms are implemented by unitaries and
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that E ≡ E ⊗ E , then, by [11, Theorem 2.14], it follows that E is ssa and hence E ∼= O2.

Since the question of whether or not E and O2 are isomorphic is absolute (see [8]), the

assumption of CH is harmless here.

The case of the MF problem is different in that, as mentioned in the last section, it is

currently unknown whether or not the class of stably finite C∗-algebras has JEP. If we

assume that the class of stably finite C∗-algebras has JEP and the above strategy then

worked, we would conclude that the MF problem has a positive solution. Of course, if

the MF problem has a positive solution, then every stably finite C∗-algebras has a trace,

which itself implies that the minimal tensor product of two stably finite C∗-algebras is

stably finite [20, Theorem 2.4], so the above strategy in the stably finite case would

amount to a strategy for solving the following (possibly outlandish) conjecture.

Conjecture 6.4. The following are equivalent:

(1) The class of stably finite C∗-algebras has JEP.

(2) The MF problem has a positive solution.

(3) Every stably finite C∗-algebra has a trace.

6.2. The topometric space S∃n (T )

In this subsection, we let T be an ∀∃-axiomatizable L-theory with JEP. For A |H T and

a tuple a from A, set

etpA(a) = {ϕ(x) = 0 : ϕ existential and ϕA(a) = 0}.

We call etpA(a) the existential type of a in A. For n > 1, an existential n-type is the

existential type of an n-tuple from a model of T .

The following lemma will prove useful a number of times.

Lemma 6.5. Suppose that A, A′ |H T and a and a′ are tuple from A and A′ respectively

of the same length such that etpA′(a′) ⊆ etpA(a). Then there is A′′ |H T and embeddings

i : A→ A′′ and j : A′→ A′′ such that i(a) = j (a′).

Proof. Let C and D denote two disjoint countably infinite sets of new constant symbols

and expand A and A′ to canonical L(C)- and L(D)-structures A+ and (A′)+ respectively.

Without loss of generality, a and a′ are named by tuples of constants, say c and d. It is

enough to show that

T ∪Diag(A)∪Diag(A′)∪ {d(c, d) = 0}

is satisfiable. Fix ϕ(c, c1) = 0 from Diag(A) and ψ(d, d1) = 0 from Diag(A′), with c and

d disjoint tuples of constants and likewise for c′ and d ′. Also fix ε > 0. By compactness,

it is enough to show that

T ∪ {ϕ(c, c1) = 0, ψ(d, d1) 6 ε, d(c, d) = 0}

is satisfiable. Since infy ψ(x, y) = 0 belongs to etpA′(a′) ⊆ etpA(a), there is e ∈ A such

that ψ(a, e) 6 ε. Expand A to an L(C ∪ D)-structure A++ by further expanding A+ to
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interpret d as a and d1 as e and the other constants by anything. It follows that A++

satisfies the last displayed set of conditions.

Definition 6.6. An existential type is maximal if it is not properly contained in any other

existential type. For n > 1, we set

S∃n (T ) := {etpA(a) : etpA(a) is a maximal n-type}.

We will use letters like π and ρ to denote elements of S∃n (T ).

Lemma 6.7. Elements of S∃n (T ) are precisely the existential n-types etpA(a) where A |H T
is e.c.

Proof. First suppose that π ∈ S∃n (T ). Write π = etpA(a) for some A |H T and a ∈ A. Let

B ⊇ A be an e.c. model of T . Then π ⊆ etpB(a); by maximality, π = etpB(a).
Conversely, suppose that π = etpA(a) for A |H T e.c. Suppose that π ⊆ etpA′(a′) for

some A′ |H T . By Lemma 6.5, there is A′′ |H T and i : A→ A′′, j : A′→ A′′ such that

i(a) = j (a′). Now suppose that ϕ(x) = 0 belongs to etpA′(a′). Then ϕ(x) = 0 belongs to

etpA′′( j (a′)) = etpA′′(i(a)). Since A is e.c., it follows that ϕ(x) = 0 belongs to π .

Definition 6.8. Given an existential formula ϕ(x), with x an n-tuple of variables, and

ε > 0, let [ϕ < ε] denote the set of elements π ∈ S∃n (T ) such that, writing π = etpA(a) for

A |H T e.c., then ϕA(a) < ε. The logic topology on S∃n (T ) has, as basic open neighborhoods

of π(x), sets of the form [ϕ < ε], where ϕ = 0 belongs to π(x) and ε > 0.

Lemma 6.9. The logic topology on S∃n (T ) is Hausdorff.

Proof. Suppose that π, ρ ∈ S∃n (T ) are distinct. Without loss of generality, we may take an

existential formula ϕ such that ϕ = 0 belongs to π but not to ρ. By maximality of ρ, there

must be some ε > 0 such that ρ ∪ {ϕ 6 ε} is not satisfiable, whence, by compactness, there

is some ψ(x) and some δ > 0 such that ψ(x) = 0 belongs to ρ and {ψ(x) 6 δ, ϕ(x) 6 ε}
is not satisfiable. It follows that [ϕ < ε] and [ψ < δ] are disjoint open neighborhoods of

π and ρ respectively.

There is also a natural metric on S∃n (T ).

Definition 6.10. For π, ρ ∈ S∃n (T ), set

d(π, ρ) := inf{d(a, b) : a, b ∈ A |H T, π = etpA(a), ρ = etpA(b)}.

Note that JEP is needed to ensure that π and ρ are realized in a common model,

whence d(π, ρ) <∞. Note also that, by saturation, the infimum in the above definition

is actually a minimum.

Lemma 6.11. d is a metric on S∃n (T ).

Proof. Reflexivity and symmetry are clear. For transitivity, fix ε > 0 and take A, A′ |H
T , a, b ∈ A, b′, c ∈ A′ such that π = etpA(a), ρ = etpA(b) = etpA′(b′), and σ = etpA′(c)
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with d(a, b) 6 d(π, ρ)+ ε and d(b′, c) 6 d(ρ, σ )+ ε. By Lemma 6.5, there is A′′ |H T
and embeddings i : A→ A′′ and j : A′→ A′′ such that i(b) = j (b′). By maximality, π =

etpA′′(i(a)), ρ = etpA′′(i(b)) = etpA′′( j (b′)) and σ = etpA′′( j (c)). It follows that

d(π, σ ) 6 d(i(a), j (c)) 6 d(i(a), i(b))+ d( j (b′), j (c)) 6 d(π, ρ)+ d(ρ, σ )+ 2ε.

Since ε > 0 was arbitrary, we are done.

Recall from [3] that a topometric space is a triple (X, τ, d), where (X, τ ) is a Hausdorff

topological space, (X, d) is a metric space, and the following two conditions hold:

• The metric topology refines the topology τ .

• d is τ -lower semi-continuous, i.e., for all r > 0, the set

{(x, y) ∈ X2
: d(x, y) 6 r}

is (τ × τ)-closed.

Proposition 6.12. S∃n (T ) is a topometric space.

Proof. It is clear that d refines the logic topology. For the second item, suppose that

d(π, ρ) > r . Then T ∪π(x)∪ ρ(y)∪ {d(x, y) 6 r} is not satisfiable, so by compactness,

there are existential formulas ϕ and ψ and δ > 0 such that ϕ = 0 belongs to π , ψ = 0
belongs to ρ, and T ∪ {ϕ(x) < δ,ψ(y) < δ, d(x, y) 6 r} is not satisfiable. It follows that

d(π ′, ρ′) > r for any π ′ ∈ [ϕ < δ] and any ρ′ ∈ [ψ < δ].

6.3. Isolated existential types and e-atomic models

We continue to assume that T is an ∀∃-axiomatizable theory with JEP. As discussed

in [3], in topometric spaces there are two appropriate notions of isolated point. For a

topometric space (X, τ, d), x ∈ X is called:

• d-isolated if the two topologies agree at x ;

• weakly d-isolated if, for every ε > 0, the open ball B(x, ε) centered at x of radius ε has

nonempty τ -interior.

Clearly every d-isolated point is weakly d-isolated. In general topometric spaces, these

notions may be distinct. However, we have the following lemma.

Lemma 6.13. In S∃n (T ), every weakly d-isolated point is d-isolated.

Proof. The corresponding fact for Sn(T ) is [4, Proposition 12.5]; we note that the proof

applies to S∃n (T ) verbatim.

We may thus just refer to isolated types in S∃n (T ).

Corollary 6.14. The set of isolated types in S∃n (T ) is metrically closed.

Proof. In [3, Lemma 2.2], it is shown that the set of weakly d-isolated points in an

arbitrary topometric space is metrically closed.

Suppose that π is isolated, ε > 0, and O is a logically open set contained in B(π, ε).
If B |H T is e.c. and etpB(b) ∈ O, then a priori, all we are guaranteed is that there are
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realizations of π and etpB(b) in some (possibly different) e.c. model of T that are within

ε of each other. Our next goal is to show that this can in fact be improved by showing

that, after possibly shrinking O, if etpB(b) ∈ O, then there is some realization of π in B
that is within ε of b. First, we have a preliminary lemma.

Lemma 6.15. Fix π ∈ S∃n (T ) and ε > 0. Suppose that O is a logically open neighborhood

of π contained in B(π, ε). Suppose that B |H T is e.c. and b ∈ B is such that etpB(b) ∈ O.

Then for all logically open U containing π , there is b′ ∈ B such that etpB(b′) ∈ U and

d(b, b′) < ε.

Proof. Fix a logically open neighborhood U of π . By hypothesis, there is e.c. C |H T and

c, d ∈ C such that π = etpC (c), etpB(b) = etpC (d), and d(c, d) < ε. By Lemma 6.5, there

is e.c. D |H T and i : B → D and j : C → D such that i(b) = j (d). Thus, π = etpD( j (c)),
etpB(b) = etpD(i(b)), and d(i(b), j (c)) < ε. The result now follows from the fact that B
is e.c. in D.

Proposition 6.16. Suppose that π ∈ S∃n (T ) is isolated. Then for all ε > 0, there is a

logically open set O such that if B |H T is e.c., b ∈ B and etpB(b) ∈ O, then there is

c ∈ B with π = etpB(c) and d(b, c) < ε.

Proof. Take K ∈ N such that
∑
∞

k=K 2−k < ε. For k > K , let Ok be a logically open

neighborhood of π contained in B(π, 2−k). Set O := OK . We claim that O is as

desired. Suppose that b ∈ B and etpB(b) ∈ O. By the previous lemma, there is b1 ∈ B
such that etpB(b1) ∈ OK+1 and d(b, b1) < 2−K . By the previous lemma again, there

is b2 ∈ B such that etpB(b2) ∈ OK+2 and d(b1, b2) < 2−K+1. Continuing in this way,

it follows that (bk)k>K is a Cauchy sequence in B. Set c = lim bk . We have that

d(b, b′) 6
∑

k>K d(bk, bk+1) < ε and etpB(c) = π .

Definition 6.17. A |H T is called e-atomic if, for every n > 1 and every n-tuple a from A,

etpA(a) is an isolated element of S∃n (T ).

Note that, in particular, every existential type realized in an e-atomic model is maximal,

so e-atomic models are e.c.

The proof of the following fact follows the outline of the corresponding fact for atomic

models of complete theories given by Bradd Hart in his online lecture notes [21, Lecture

7]. We recall our outstanding assumption that T has JEP.

Proposition 6.18. If A, B |H T are both separable and e-atomic, then A ∼= B.

Proof. We will produce sequences

a0
0, a1

0a1
1, a2

0a2
1a2

2, . . . ,

and

b0
0, b1

0b1
1, b2

0b2
1b2

2, . . . ,

from A and B respectively such that:
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(1) for all n > k, etpA(an
0 · · · a

n
k ) = etpB(bn

0 · · · b
n
k );

(2) for all k 6 n, d(an
k , an+1

k ), d(bn
k , bn+1

k ) 6 2−n ; consequently, for every k, (an
k )n>k and

(bn
k )n>k are Cauchy sequences in A and B respectively whose limits we shall denote

by ak and bk ;

(3) (ak) and (bk) are dense in A and B respectively.

Assuming that these sequences have been produced, then the map ak 7→ bk clearly

extends to an isomorphism from A to B.

Let (ck) and (dk) enumerate countable, dense subsets of A and B respectively. We

perform the usual back-and-forth style argument, at each stage putting either some ck
in the sequences of a’s or some dk in the sequence of b’s, revisiting each ck and dk
infinitely often. We start by setting a0

0 := c0. Let O be a logically open set contained in

B(etpA(c0),
1
2 ). By JEP, there is b ∈ B such that etpB(b) ∈ O. By Proposition 6.16, there

is b′ ∈ B such that etpB(b′) = etpA(c0). We set b0
0 to be this b′.

Now suppose that we have constructed an
0 an

1 · · · a
n
n and bn

0bn
1 · · · b

n
n and we

are considering ck . We set an
0 an

1 · · · a
n+1
n+1 := an

0 an
1 · · · a

n
n ck , π := etpA(an

0 an
1 · · · an), and

ρ = etpA(an
0 an

1 · · · anck). Let O be a basic logically open set as guaranteed to

exist by Proposition 6.16 for π and 2−n , say O = [ϕ(x0, . . . , xn, y) < ε]. Since

A |H infy ϕ(an
0 , . . . , an

n , y) < ε, by the inductive assumption, we have that B |H
infy ϕ(bn

0 , . . . , bn
n , y) < ε. By Proposition 6.16, there is bn+1

0 bn+1
1 · · · bn+1

n+1 ∈ B such that

ρ = etpB(bn+1
0 · · · bn+1

n+1) and d(bn
i , bn+1

i ) 6 2−n for i 6 n.

We clearly have (1) and (2). It remains to show (3). Fix ε > 0 and take N ∈ N such

that
∑

n>N 2−n < ε. Suppose ck is visited at stage n > N . Then d(an, ck) < ε; since the

(ck)’s are dense, we get that (an) is dense. The same argument holds for (bn).

A ‘forth-only’ version of the above proof shows the following.

Proposition 6.19. If A is an e-atomic model of T , then A embeds into all e.c. models of

T .

We will see later (Corollary 6.26) that the converse of this proposition holds. Now that

we have settled the uniqueness of separable e-atomic models, the question of existence

remains. We first note a necessary condition.

Lemma 6.20. If T has an e-atomic model, then the isolated types in S∃n (T ) are logically

dense for all n > 1.

Proof. Let A be an e-atomic model of T . Fix a nonempty logically open set [ϕ < ε].

Then there is an e.c. model B |H T such that (infx ϕ(x))B < ε. By JEP, (infx ϕ(x))A < ε.

If a ∈ A is such that ϕA(a) < ε, then the isolated type etpA(a) belongs to [ϕ < ε].

What is more important is that the converse holds. In fact, we have the following

lemma.

Lemma 6.21. Suppose that the isolated types in S∃n (T ) are logically dense for all n > 1.

Then the property that the compiled structure is e-atomic is enforceable.
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Proof. By the conjunction lemma and the fact that isolated elements of S∃n (T ) are

metrically closed, it is enough to show that, for any δ > 0 and any tuple c of distinct

witnesses, we can enforce that etpA(c) is maximal and within δ of an isolated type.

Suppose that ∀ opens with p0 = {ψi (c, d) < εi : i = 1, . . . , k}, where c and d are disjoint

tuples of constants. Fix ε > 0 and δi such that δi + ε < εi . By assumption, there is an

isolated maximal existential type π(x) contained in [infy maxi (ψi (x, y)−. δi ) < ε]. Suppose

that [θ(x) < η] is a neighborhood of π contained in B(π, δ). Since T ∪ p0 ∪ {θ(x) < η} is

consistent, by Lemma 2.9, ∃ can play p1 ⊇ p0 such that p1 g θ(c) < η. It follows that

in the compiled structure we can force that A is e.c. and d(etpA(c), π) < δ.

Combining Proposition 6.18 with Lemmas 6.20 and 6.21, we obtain the following.

Corollary 6.22. Suppose that the isolated points in S∃n (T ) are dense for all n > 1. Then

T has an enforceable model.

Corollary 6.23. Suppose that T has an e-atomic model A. Then A is the enforceable model

of T .

6.4. Games with many boards

Once again, we assume that T is an ∀∃-axiomatizable theory with JEP.

In the proof of the dichotomy theorem, it is important to extend our game to the

setting where we have ‘many boards’. More concretely, let us first consider the game with

two boards, which is played exactly as before, except each player plays two conditions

p1
i+1, p2

i+1 extending the previous players conditions p1
i , p2

i . It is important to note that

the two boards are independent of one another. At the end, providing both players played

definitive sequences, the players will have compiled two structures, say A+1 and A+2 with

reducts A1 and A2. Given a property R of pairs of structures, we say that R is enforceable

if ∃ has a winning strategy that ensures that the pair of compiled structures has property

R.

The following lemma is obvious but worth pointing out.

Lemma 6.24.

(1) If P and Q are enforceable properties of structures, then it is enforceable that the

compiled pair (A+1 , A+2 ) is such that A+1 has P and A+2 has Q.

(2) If (Ri ) is a family of countably many enforceable properties of pairs of structures,

then the conjunction of the Ri ’s is also enforceable.

For us, the main proposition about the two-board game is the following.

Proposition 6.25. It is enforceable that the only maximal existential types realized in both

A1 and A2 are e-isolated.

Proof. Fix δ > 0 and tuples of distinct constants c and d. By the conjunction lemma, it

suffices to show that if etpA1(c) = etpA2(d), then the δ ball around this common existential
type π contains a logically open set.
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Suppose that ∀ starts by playing p1
0 and p2

0. Write

p1
0 = {ψi1(c, b1) < εi1 : i = 1, . . . , k}

and

p2
0 = {ψi2(c, b2) < εi2 : i = 1, . . . , k}.

First suppose that O :=
⋂k

i=1[infy ψi1(x, y) < εi1] ⊆ B(ρ; δ2 ) for some ρ ∈ O. It follows

that if the game ends with etpA1(c) = etpA2(d) = π , then π ∈ O, whence d(π, ρ) < δ
2 , and

O ⊆ B(π, δ).
If the first case does not apply, then there are ρ1, ρ2 ∈ O such that d(ρ1, ρ2) >

δ
2 . Take

σ ∈
⋂k

i=1[infy ψi2(x, y) < εi2]. Without loss of generality, we then have that d(ρ1, σ ) >
δ
4 .

Since S∃n (T ) is a topometric space, there are logically open sets [χ < η] and [θ < ζ ]

containing ρ1 and σ respectively such that d([χ < η], [θ < ζ ]) > δ
8 . By Lemma 2.9, ∃ may

respond by playing p1
1 ⊇ p1

0 and p2
1 ⊇ p2

0 such that p1
1 

g χ(c) < η and p2
1 

g θ(d) < η.

It is clear then that in the compiled structures, d(etpA1(c), etpA2(d)) > δ
8 .

Corollary 6.26. Suppose that T is ∀∃-axiomatizable and A is an e.c. model of T that

embeds into all e.c. models of T . Then A is e-atomic and hence enforceable.

Remark 6.27. The previous corollary gives an alternative proof of the fact that ssa

algebras are enforceable models of their universal theories.

The other game that we will need is the following ‘splitting game’. While we will not

present the most general version of the game, this is the only version that we will need

in the proof of the dichotomy theorem. In this game, ∀ starts by playing a condition p∅0
and ∃ responds by playing p∅1 ⊇ p∅0 . Now, ∀ responds with two extensions p0

2, p1
2 ⊇ p∅1

and ∃ responds with single extensions p0
3 ⊇ p0

2 and p1
3 ⊇ p1

2. More generally, for every

s ∈ 2<ω, assume ∀ has played conditions ps
i . ∃ then responds with ps

i+1 ⊇ ps
i and then ∀

responds with two extensions ps0
i+2, ps1

i+2 ⊇ ps
i+1.

At the end of a play, we have a tree of plays, where nodes at even levels have precisely

one extension while nodes at odd levels have precisely two extensions. Provided each

infinite path through the tree is a definitive play of the original one-board game, we have

a family (A+α : α ∈ 2ω) of continuum many compiled structures. Given a property R of

families of structures indexed by 2ω, we hope it is clear to the reader how to make sense

of the statement that R is an enforceable property.

The main fact that we will need about the splitting game is the following. Its proof is

not difficult (just a notational mess) and is exactly the same as its classical counterpart

(see [23, Theorem 4.1.5]), so we omit the proof.

Proposition 6.28. Let R be an enforceable property of pairs of structures. Let P be the

property of families (B+α : α ∈ 2ω) of structures that states that (B+α , B+β ) has property

R whenever α 6= β. Then P is an enforceable property.
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6.5. Proof of the dichotomy theorem

We now have all the ingredients needed to prove the dichotomy theorem. If the e-isolated

types are dense for all n > 1, then we know that we have an enforceable model by

Corollary 6.22. So assume now that the e-isolated types are not dense and fix an

enforceable property P. Take a basic logically open set [ϕ < ε] that contains no e-isolated

type.

We play the splitting game from the previous section. Let p∅0 be a condition such

that p∅0 
g ϕ(c) < ε and then have ∀ play future stages any way they want. We obtain

models (A+α : α ∈ 2ω) with aα := cA+α . By Propositions 6.25 and 6.28, ∃ can enforce that

each A+α is an e.c. model of T with property P such that ϕ(aα)Aα < ε and that the only

types realized in distinct Aα’s are e-isolated. It remains to show that Aα and Aβ are not

isomorphic for α 6= β. Let πα := tpAα (aα). If πα is realized in Aβ , then πα is e-isolated,

contradicting the fact that πα ∈ [ϕ < ε].

Remark 6.29. From the dichotomy theorem and Lemma 6.21, we see that enforceable

models are e-atomic. In particular, C(P) is an e-atomic model of the theory of unital,

projectionless, abelian C∗-algebras. By Proposition 6.19, it follows that C(P) embeds

into C(X) whenever C(X) is e.c. This is a special case of the result of Bellamy used in

the proof that C(P) is prime, namely that any hereditarily indecomposable continuum

surjects onto P. It would be interesting to see if some further elaborations of the ideas

used in this paper could be used to give a model-theoretic proof of Bellamy’s result.
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1. P. Bankston, The Chang– Loś–Suszko theorem in a topological setting, Arch. Math.
Logic 45 (2006), 97–112.

2. D. Bellamy, Mapping hereditarily indecomposable continua onto a pseudo-arc, in
Topology Conference (Virginia Polytech. Inst. and State Univ., Blacksburg, VA, 1973),
Volume 375, pp. 6–14 (Springer, Berlin, 1974).

3. I. Ben Yaacov, Topometric spaces and perturbations of metric structures, Log. Anal. 1
(2008), 235–272.

4. I. Ben Yaacov, A. Berenstein, C. W. Henson and A. Usvyatsov, Model theory for
metric structures, in Model Theory with Applications to Algebra and Analysis, London
Mathematical Society Lecture Note Series (350), Volume 2, pp. 315–427 (Cambridge
University Press, Cambridge, 2008).

5. I. Ben Yaacov and J. Iovino, Model theoretic forcing in analysis, Ann. Pure Appl.
Logic 158 (2009), 163–174.

6. K. Carlson, E. Cheung, A. Gerhardt-Bourke, I. Farah, B. Hart, L. Mezuman,
N. Sequeira and A. Sherman, Omitting types and AF algebras, Arch. Math. Logic 53
(2014), 157–169.

7. C. Eagle, I. Goldbring and A. Vignati, The pseudoarc is a co-existentially closed
continuum, Topology Appl. 207 (2016), 1–9.

https://doi.org/10.1017/S1474748019000112 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748019000112


Enforceable operator algebras 63

8. I. Farah, Absoluteness, truth, and quotients, in Proceedings of the IMS Workshop on
Infinity and Truth,(ed. C.T. Chong et al.), pp. 1–24 (World Scientific).

9. I. Farah, I. Goldbring, B. Hart and D. Sherman, Existentially closed II1-factors,
Fund. Math. 233 (2016), 173–196.

10. I. Farah, B. Hart, M. Lupini, L. Robert, A.P. Tikuisis, A. Vignati and W. Winter,
Model theory of C∗-algebras, preprint, 2016, arXiv:1602.08072.

11. I. Farah, B. Hart, A. Tikuisis and M. Rordam, Relative commutants of strongly
self-absorbing C∗-algebras, Selecta Math. 23 (2017), 363–387.

12. I. Farah, B. Hart and D. Sherman, Model theory of operator algebras II: Model theory,
Israel J. Math. 201 (2014), 477–505.

13. I. Farah, B. Hart and D. Sherman, Model theory of operator algebras III: Elementary
equivalence and II1 factors, Bull. Lond. Math. Soc. 46 (2014), 1–20.

14. I. Farah and M. Magidor, Omitting types in the logic of metric structures, J. Math.
Logic 18(2) (2018), 1–58.

15. I. Goldbring, B. Hart and T. Sinclair, The theory of tracial von Neumann algebras
does not have a model companion, J. Symbolic Log. 78 (2013), 1000–1004.

16. I. Goldbring and M. Lupini, Model theoretic properties of the Gurarij operator system,
Israel J. Math. 226 (2018), 87–118.

17. I. Goldbring and T. Sinclair, On Kirchberg’s Embedding Problem, J. Funct. Anal.
269 (2015), 155–198.

18. I. Goldbring and T. Sinclair, Omitting types in operator systems, Indiana Univ.
Math. J. 66 (2017), 821–844.

19. I. Goldbring and T. Sinclair, Robinson forcing and the quasidiagonality problem, Int.
J. Math. 28 (2017), 1750008.

20. U. Haagerup, Quasitraces on exact C∗-algebras are traces, C. R. Math. Acad. Sci. Soc.
R. Can. 36 (2014), 67–92.

21. B. Hart, Continuous model theory course notes, available at http://ms.mcmaster.ca/∼
bradd/courses/math712/index.html.

22. K. P. Hart, There is no categorical metric continuum, Aportaciones Mat. Investig. 19
(2007), 39–43.

23. W. Hodges, Building Models by Games, London Mathematical Society Student Texts,
vol. 2 (Cambridge University Press, Cambridge, 1985).

24. M. Junge and G. Pisier, Bilinear forms on exact operator spaces and B(H)⊗B(H),
Geom. Funct. Anal. 5 (1995), 329–363.

25. W. Lewis, The pseudo-arc, Bol. Soc. Mat. Mexicana (3) 5 (1999), 25–77.
26. M. Lupini, Uniqueness, universality, and homogeneity of the noncommutative Gurarij

space, Adv. Math. 298 (2016), 286–324.
27. A. Tikuisis, S. White and W. Winter, Quasidiagonality of nuclear C∗-algebras, Ann.

of Math. 185 (2017), 229–284.
28. A. S. Toms and W. Winter, Strongly self-absorbing C∗-algebras, Trans. Amer. Math.

Soc. 359 (2007), 3999–4029.

https://doi.org/10.1017/S1474748019000112 Published online by Cambridge University Press

http://www.arxiv.org/abs/1602.08072
http://www.arxiv.org/abs/1602.08072
http://www.arxiv.org/abs/1602.08072
http://www.arxiv.org/abs/1602.08072
http://www.arxiv.org/abs/1602.08072
http://www.arxiv.org/abs/1602.08072
http://www.arxiv.org/abs/1602.08072
http://www.arxiv.org/abs/1602.08072
http://www.arxiv.org/abs/1602.08072
http://www.arxiv.org/abs/1602.08072
http://www.arxiv.org/abs/1602.08072
http://www.arxiv.org/abs/1602.08072
http://www.arxiv.org/abs/1602.08072
http://www.arxiv.org/abs/1602.08072
http://www.arxiv.org/abs/1602.08072
http://www.arxiv.org/abs/1602.08072
http://ms.mcmaster.ca/~bradd/courses/math712/index.html
http://ms.mcmaster.ca/~bradd/courses/math712/index.html
http://ms.mcmaster.ca/~bradd/courses/math712/index.html
http://ms.mcmaster.ca/~bradd/courses/math712/index.html
http://ms.mcmaster.ca/~bradd/courses/math712/index.html
http://ms.mcmaster.ca/~bradd/courses/math712/index.html
http://ms.mcmaster.ca/~bradd/courses/math712/index.html
http://ms.mcmaster.ca/~bradd/courses/math712/index.html
http://ms.mcmaster.ca/~bradd/courses/math712/index.html
http://ms.mcmaster.ca/~bradd/courses/math712/index.html
http://ms.mcmaster.ca/~bradd/courses/math712/index.html
http://ms.mcmaster.ca/~bradd/courses/math712/index.html
http://ms.mcmaster.ca/~bradd/courses/math712/index.html
http://ms.mcmaster.ca/~bradd/courses/math712/index.html
http://ms.mcmaster.ca/~bradd/courses/math712/index.html
http://ms.mcmaster.ca/~bradd/courses/math712/index.html
http://ms.mcmaster.ca/~bradd/courses/math712/index.html
http://ms.mcmaster.ca/~bradd/courses/math712/index.html
http://ms.mcmaster.ca/~bradd/courses/math712/index.html
http://ms.mcmaster.ca/~bradd/courses/math712/index.html
http://ms.mcmaster.ca/~bradd/courses/math712/index.html
http://ms.mcmaster.ca/~bradd/courses/math712/index.html
http://ms.mcmaster.ca/~bradd/courses/math712/index.html
http://ms.mcmaster.ca/~bradd/courses/math712/index.html
http://ms.mcmaster.ca/~bradd/courses/math712/index.html
http://ms.mcmaster.ca/~bradd/courses/math712/index.html
http://ms.mcmaster.ca/~bradd/courses/math712/index.html
http://ms.mcmaster.ca/~bradd/courses/math712/index.html
http://ms.mcmaster.ca/~bradd/courses/math712/index.html
http://ms.mcmaster.ca/~bradd/courses/math712/index.html
http://ms.mcmaster.ca/~bradd/courses/math712/index.html
http://ms.mcmaster.ca/~bradd/courses/math712/index.html
http://ms.mcmaster.ca/~bradd/courses/math712/index.html
http://ms.mcmaster.ca/~bradd/courses/math712/index.html
http://ms.mcmaster.ca/~bradd/courses/math712/index.html
http://ms.mcmaster.ca/~bradd/courses/math712/index.html
http://ms.mcmaster.ca/~bradd/courses/math712/index.html
http://ms.mcmaster.ca/~bradd/courses/math712/index.html
http://ms.mcmaster.ca/~bradd/courses/math712/index.html
http://ms.mcmaster.ca/~bradd/courses/math712/index.html
http://ms.mcmaster.ca/~bradd/courses/math712/index.html
http://ms.mcmaster.ca/~bradd/courses/math712/index.html
http://ms.mcmaster.ca/~bradd/courses/math712/index.html
http://ms.mcmaster.ca/~bradd/courses/math712/index.html
http://ms.mcmaster.ca/~bradd/courses/math712/index.html
http://ms.mcmaster.ca/~bradd/courses/math712/index.html
http://ms.mcmaster.ca/~bradd/courses/math712/index.html
http://ms.mcmaster.ca/~bradd/courses/math712/index.html
http://ms.mcmaster.ca/~bradd/courses/math712/index.html
http://ms.mcmaster.ca/~bradd/courses/math712/index.html
http://ms.mcmaster.ca/~bradd/courses/math712/index.html
http://ms.mcmaster.ca/~bradd/courses/math712/index.html
http://ms.mcmaster.ca/~bradd/courses/math712/index.html
http://ms.mcmaster.ca/~bradd/courses/math712/index.html
http://ms.mcmaster.ca/~bradd/courses/math712/index.html
https://doi.org/10.1017/S1474748019000112

	ENFORCEABLE OPERATOR ALGEBRAS
	Introduction
	Preliminaries, notations, and conventions

	Games and forcing
	Introducing the game
	The finite forcing companion Tf
	Locally universal models revisited
	Connection to weak forcing

	Finite-generic structures
	Introducing finite-generic structures
	Finite-generic, enforceable, and prime structures
	Model companions and Tf

	The pseudoarc
	Enforceable operator algebras and embedding problems
	II1 factors
	Unital C*-algebras
	Unital stably finite C*-algebras
	Operator spaces and systems

	The dichotomy theorem
	The dichotomy theorem and embedding problems revisited
	The topometric space Sn(T)
	Isolated existential types and e-atomic models
	Games with many boards
	Proof of the dichotomy theorem

	References


