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Abstract

A centre manifold or invariant manifold description of the evolution of a dynam-
ical system provides a simplified view of the long term evolution of the system.
In this work, I describe a procedure to estimate the appropriate starting position
on the manifold which best matches an initial condition off the manifold. I ap-
ply the procedure to three examples: a simple dynamical system, a five-equation
model of quasi-geostrophic flow, and shear dispersion in a channel. The analysis
is also relevant to determining how best to account, within the invariant manifold
description, for a small forcing in the full system.

1. Introduction

The behaviour of many systems can be quantified in terms of the evolution
of the descriptors of the state of the system. The evolution is then typically
governed by a set of differential equations, which are ordinary differential
equations if the system has a finite number of degrees of freedom, or often
partial differential equations if the system has an infinite number of degrees of
freedom. These statements refer to an enormously general class of problems
and their mathematical formulation. It is this vast range of problems which
is addressed in this paper; I shall refer to them as dynamical systems and use
ideas developed for dynamical systems.
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My particular concern is that the full evolution equations, which I will
take to be the exact equations, for many systems of interest are far too com-
plicated for any solution to be calculated. The aim of much applied math-
ematics is to develop tractable approximations to the equations of the full
system. However, many approximations are developed heuristically with lit-
tle mathematical understanding of precisely what it is that is being done.
Recently, centre manifold theory (see Carr [2]) has been extended (Roberts
[12, 13]) to provide a formal procedure to calculate invariant manifolds of
dynamical systems, and the evolution on them. The importance of this is
that many practical approximations, such as incompressible and irrotational
fluid flow, can immediately be seen to have the characteristics of a leading
approximation to an invariant manifold; see the discussion in [12] for more
details. Thus many useful approximations should be able to be put into a
centre manifold or invariant manifold framework. This would immediately
clarify their basic nature and lead to mechanistic improvements in the ap-
proximations, should they be needed; see the papers by Roberts [10, 11, 13]
and Mercer & Roberts [7]. For example, the multi-mode analysis of Smith
[16] for shear dispersion is being reworked and extended using the invariant
manifold view. Moreover, there are proved results about the nature and ap-
proximation of centre manifolds, so at least for these cases the approximation
of the full problem can be fully understood.

Previously, centre manifold theory has primarily been used to answer ques-
tions about the stability of fixed points of dynamical systems. However,
starting with the work of Coullet & Spiegel [3] on amplitude equations in
thermo-haline and triple convection, and with the work of Muncaster [8] on
"coarse theories" of elastic bodies and of the kinetic theory of gases, invariant
manifold theory has more recently been seen as a vital tool of mathematical
analysis. It provides a simplified description of the evolution of a dynamical
system by concentrating upon only a small subset of the solutions to the full
problem. In the usual case of a dissipative system this can be justified rig-
orously as a long term asymptotic description of the system's evolution. See
the proofs by Foias et al [5] for the Kuramoto-Sivashinsky equation, and by
Doering et al [4] for the complex Ginzburg-Landau equation.

The formal procedure inspired by the invariant manifold viewpoint pro-
vides a description of a set of states of the system, and also a description of
the evolution among those states by a set of differential equations; see Carr
[2] or Roberts [12] for some examples. However, it is not enough just to know
the differential equations governing the evolution on the centre or invariant
manifold. To form a complete problem we also need initial conditions; if
the evolution on the invariant manifold is governed by partial differential
equations then boundary conditions are also needed, see Smith [17].
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The simple geometric picture of an invariant manifold gives a way of de-
riving the appropriate initial conditions for an approximation. Previously
the initial conditions have been either guessed or derived by model-specific
heuristic arguments. The aim of this paper is to illustrate the derivation of
initial conditions for an approximation obtained through the invariant mani-
fold viewpoint. Because most invariant manifolds are only known asymptot-
ically (see Roberts [12]), the appropriate initial condition will also be known
only asymptotically. The results in some example applications are impres-
sive: in a very simple model of the atmosphere (due to Lorenz [6]) the cal-
culations of an initial condition on the analogue of the quasi-geostrophic in-
variant manifold is analogous to the process of balancing which is essential in
numerical meteorological models; in shear dispersion in a channel the calcu-
lation of the appropriate initial condition for a given discharge (which differs
from the usual assumption, see the end of Section 3 in Smith [16]) leads
naturally to the prediction of centroid displacements and variance deficits in
the dispersal of a contaminant.

In Section 2, I discuss a simple two-variable dynamical system which is
(nearly) solvable in closed form. The resulting analytic results about the
long-term behaviour show that there is a favoured starting location on the
invariant manifold to correspond to any given initial condition of the full
system. The two-dimensional geometric picture, which is drawn exactly, then
inspires the derivation of the projection of any initial condition onto the
invariant manifold. In the case of a centre manifold, the existence of such
a projection for initial conditions sufficiently close to the centre manifold is
assured by Theorem 2(b) in Carr [2]. However, no one has previously derived
an explicit formula for the projection. The analytic solution for this problem
then confirms the veracity of the derived formal procedure.

By a simple (in theory) change of basis, the full equations for a dynamical
system may be transformed into a convenient standard form. The proce-
dure to project initial conditions onto an invariant manifold is described
for the standard form in Section 3. The resultant procedure is then ap-
plied directly to a five-mode primitive equation model of the atmosphere
introduced by Lorenz [6]. The results described in Section 4 give the planes
of fast gravity-wave like oscillations around the quasi-geostrophic invariant
manifold. These planes govern the projection of initial conditions, or the
balancing, onto quasi-geostrophy. Another observation is that the projection
onto the invariant manifold conserves invariants of the full system.

However, in practical applications, the change of basis needed to put the
governing equations into standard form is typically undesirable as it reduces
the physical understanding of the details at hand. The most general procedure
for projecting initial conditions onto an invariant manifold is described in
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Section 5. It deals with the case of a possibly infinite dimensional system, not
in the standard form, which possesses a finite-dimensional invariant manifold
of interest which represents the approximation. In Section 6 the derived
procedure is applied to the problem of contaminant being dispersed by a
shear flow in a channel. The consequent derivation of appropriate initial
conditions for the Taylor model of shear dispersion then shows that effects
such as the variance deficit in the dispersion of contaminant may be predicted
within the Taylor model simply by using the correct initial condition.

Another useful consequence of the invariant manifold viewpoint is that a
time dependent forcing of the full system can be incorporated systematically
into the approximation. The procedure to do this is described in Section 7,
and is based directly upon the projection of initial conditions which is the
topic of this paper.

2. A simple dynamical system

The purpose of this section is to illustrate simply many of the concepts
and details which will be derived in general in later sections. I do this by
examining the simple but nontrivial dynamical system

x = -xy, (2.1a)

y = -y + x2-2y2, (2.1b)

(in which (") denotes a derivative with respect to time) for which much anal-
ysis can be done exactly. The trajectories of this two dimensional system are
given by the solid lines on Figure 1.

The centre manifold of this system is easily found by standard analysis,
see Carr [2], to be exactly y = x2, which is plotted as the bold solid line on
Figure 1. It is convenient to use a new variable s to parameterise the location
of the system on the centre manifold (later n will be used as a complementary
coordinate to s). Thus the center manifold description is

x = s, y = s2, on which s — -s3, (2.2)

which is soon valid as the system tends exponentially quickly to this state.
We view (2.2) as an approximate description of the behaviour of solutions

to (2.1). The question we address is: what starting value of s, say SQ, should
be used for (2.2) to best match the long term behaviour of the solution of
(2.1) which is initially at the point (xo,yo) not on the centre manifold?
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FIGURE 1. Trajectories of the dynamical system (2.1), with the bold solid line being the centre
manifold. The dashed lines are those initial points whose long-term behaviour is identical (to
an exponentially decaying difference).

2.1 Trajectories near the centre manifold
If the system is near but not on the centre manifold, then it follows a

trajectory which asymptotes to the centre manifold. In this problem, trajec-
tories can be found exactly (see Roberts [9]) to be the curves of constant yi
where

(2.3)

(2.4)

(2.5)

The trajectory y/ = 0 is the centre manifold (2.2). Near the centre mani-
fold, y/ is small, so that nearby trajectories are given as

y = x2 + y/x1 exp ( - ( l /2x 2 ) - l ) + O(y/2).

On such a trajectory the system evolves such that

x = [C + 2t - 2y/exp{-\ - C - t)]~1'2 + O(y/2),

where C is a constant.
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Now if the system is initially at {xo,y>o) at time t — 0, then the constant C
in (2.5) is determined to be

C = l/x0
2 + 2T where x = (yo/xl - l) exp (yo/x% - l ) , (2.6)

whence the evolution (2.5) on the particular trajectory may be rewritten as

x = [l/x$ + 2(t + T) - xe-'/xl] ~'/2 + O{W
2). (2.7)

From this form of the evolution along the trajectories it is apparent that there
are two effects on the system if it is initially off the centre manifold; that is,
if T ^ 0. Firstly, there is an exponential transient e~' which is negligible as
it has no long term effect. Secondly, there exists a time shift T in the long
term algebraic decay to the stable fixed point at the origin. This time shift is a
significant long term effect of initially being off the centre manifold. I deduce
that if the system is started on the centre manifold at the same x-coordinate
as the initial point (xo,yo), then the evolution on the centre manifold does
not approach the true evolution exponentially quickly.

Instead of starting the centre manifold evolution at the same value of the
x-coordinate as the initial condition, we should find a starting location on the
centre manifold which best corresponds to the full system initially being at a
point {xo,yo) off the centre manifold. Neglecting the exponential transients,
(2.7) can be rewritten in the form

x = [l/sj} + 2/] where so = x o - xo(yo - *o) + O(y/1). (2.8)

Thus the long term behaviour of a solution which is off the centre manifold
is the same as a solution on the centre manifold, provided that the starting
point on the centre manifold is s — So as given in (2.8).

2.2 Numerical computation of initial conditions
The task of this subsection is to find numerically a start point on the

centre manifold which best corresponds to a given initial condition. Given
an initial point, I integrated the original ordinary differential equation (2.1)
until, at some position, the solution came within some tolerance of the centre
manifold. The appropriate start point on the centre manifold is that which
reaches this same position after the same time.

Thus there exists a function So(xo,yo) which gives the best start point
on the centre manifold as a function of the initial point. Contours of this
function are plotted in Figure 1 as the dashed lines. The intercept of these
lines with the centre manifold shows the appropriate start point on the centre
manifold to be used for any given initial condition. Thus this defines an
appropriate projection of initial conditions onto the centre manifold. In
meteorology, this is known as balancing (see Section 4). In the later analysis
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of more general systems, I shall define the contours displayed in Figure 1 to
be the projection manifolds.

In Figure 1 it is apparent that for initial conditions below and too far away
from the centre manifold, there is no appropriate start point on the centre
manifold. In this problem, this is just a reflection of the fact that it only
takes a finite amount of time to come from infinity on the centre manifold
to a finite position on the centre manifold. Thus the concept of projecting
the initial conditions is only necessarily valid near the centre manifold.

2.3 The local direction of the projection manifolds
In this subsection, I derive an equation which could (but will not) be solved

to give the projection manifolds displayed in Figure 1. Suppose s is a pseudo-
time along the trajectories (related to the time by s = -s3 as in (2.2)), and n
parameterises the family of trajectories (hence n is a function of y/). I treat
s and n as a new set of coordinates for the phase space. The coordinate lines
of the (s, n) system are the trajectories and contours plotted in Figure 1. Let
x = X(s,n) and y = Y(s,n) describe the coordinate transform between the
new system and Cartesian coordinates, and let xT = (X, Y). Represent the
governing differential equation as x = f(x) where xT = (x,y), and let the
Jacobian of the right-hand side be & = fx = [dfi/dXj].

Consider Figure 2 in which two neighbouring trajectories, n and n + An,
are displayed for a small time interval, As = sAt, in which the system evolves

FIGURE 2. A small part of the phase plane with two neighbouring trajectories and two
neighbouring projection manifolds.
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from the points At to the corresponding point Bt. Now, from the coordinate
transformation

AXBX = AsXs + {As2/2)XSS + 0(A3)

and
A2B2 = AsXs + (As2/2)XSS + AsAnXns + O(A3),

where the subscripts n and 5 denote partial differentiation with respect to the
subscript, and where all the above quantities are evaluated at the point A\.

But also AjBj is part of a trajectory, and it follows that

AyBx = Atf + (At23r/2)f + 0(A3)

and
A2B2 = At{f + AnFXn) + (At2^/2){ + 0(A3),

where all of the above quantities are also evaluated at the point A\. Upon

considering A2B2 - A\B\ we find

AsAnXns = AtAnFXn + O(A3),

from which we readily deduce that

sXns = ?Xn. (2.9)

Geometrically Xn is the local direction of the n-coordinate curves, and thus
the Xn appearing in this equation gives the local direction of those initial
points which have the same long term behaviour; that is they will have the
same best starting point on the centre manifold. Hence Xn is the local tangent
to the local projection manifold. Remembering that s is simply a function
of s, given by (2.2), this equation is solved by integration with respect to s,
that is by integrating along trajectories. A difficulty is that (2.9) is very hard
to solve, even approximately, the reason being that each value of n is tied
to a particular trajectory, and so solving (2.9) also gives the shape of nearby
trajectories as well as the local direction of an ^o-contour. Fortunately we do
not need Xn precisely, just its direction, and this removes the difficulty.

2.4 The projection of initial conditions
Given the earlier warning about the local nature of projecting the initial

conditions onto the centre manifold, it is appropriate to find the direction of
the projection only on the centre manifold, especially as in many situations
this is all that will be known about the solutions to the full problem. That
is, all I am seeking is the direction of the projection manifolds, displayed in
Figure 1, on the centre manifold. From the results expressed in (2.8), we
may readily deduce that the desired slope of these contours is just 2s + l/s.
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My aim here is to derive this sort of result without knowing all the details of
the trajectories adjacent to the centre manifold.

Near the origin we expect the projection to be vertical, as this is the direc-
tion of the eigenvector corresponding to the exponential decay; more gener-
ally this is the direction of the stable manifold. Thus I seek the direction of
the projection on the centre manifold in the form (p(s), 1)T. Suppose that

(2.10)

where we do not need to find q(s). Substituting this into (2.9) and eliminating
q(s), I find that p(s) must satisfy the Ricatti equation

(2.11)

For the particular problem (2.1), and its centre manifold (2.2), (2.11) reduces
to

-s3p' = -s + (\ + 3s2)p-2sp2, (2.12)

to be solved such that p(O) = 0, as the projection manifold should be vertical
at the origin (from a linear analysis). It is easy to check that p(s) = s/(l + 2s2)
is an exact solution to (2.12) and hence the local direction of initial conditions
which should be projected to the same starting point on the centre manifold
is (s/(\ + 2s2), 1)T. This is the same direction as found earlier.

Thus, for any given initial condition off the centre manifold the appropri-
ate starting point on the centre manifold is approximately the position such
that the initial condition is in the above direction from the starting position.

3. Standard projection of initial conditions

I now derive a way to project initial conditions, which are near an invariant
manifold, onto the invariant manifold when the governing differential equa-
tions have been transformed into a convenient form. Suppose the differential
equations are in the standard form

x = ^x+f(x ,y) , x e R m (3.1a)

y = By+g(x,y), y€R" (3.1b)

in which Ax and By contain all the linear terms of the equations and the
functions f and g are strictly nonlinear, of O(|x|2 + |y|2), and are sufficiently
well behaved near the origin. In principle, this standard form can always be
obtained by a change of basis.

If the real part of the eigenvalues of A are all zero and the real part of
the eigenvalues of B are all negative, then rigorous results exist about the
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existence and the calculation of the m-dimensional centre manifold y = h(x)
for the system, see Carr [2]. However, my interest lies in the more general
situation where I suppose there exists an m-dimensional invariant manifold
described parametrically by

x = s, y = h(s) on which s = ^ s + f(s,h(s)), (3.2)

where s e Rm parameterises the locations on the invariant manifold (see
Roberts [12] for some examples). This forms a valid long term description
of the evolution of the full system if the real parts of the eigenvalues of B
are all large and negative. In this general situation I now seek to find the
appropriate projection onto the invariant manifold of an initial condition
which is off the manifold.

For any starting point on the invariant manifold, there exists a set of
points which, if the system starts at one of the points, has the same long term
behaviour. The set of points form an /i-dimensional projection manifold (for
example, the dashed lines in Figure 1). I aim to find a set of vectors spanning
the tangent space of such a projection manifold at the invariant manifold.
This set of vectors will serve to define an approximately correct projection of
initial conditions onto the invariant manifold.

3.1 An equation governing the direction
I start by investigating how a given infinitesimal vector at an angle to the

invariant manifold evolves in time with the flow of the system (3.1). By
similar arguments to that employed in Section 2 it is easy to see that such a
vector n (analogous to Xn in Section 2) evolves according to

4 = ^ n , where ? =[A+J* ^ g J (3.3)
is the Jacobian of the right-hand side of (3.1).

Let N be a matrix composed of n such vectors which are linearly inde-
pendent. Then they span the desired tangent space and satisfy N = FN.
However, just as in Section 2, this equation is generally too difficult to solve.
Since I am only interested in the space spanned by the columns of N, let

0.4)

where P is an m x n matrix and Q is an invertible n x n matrix. Thus

[ p 1
, for m a new basis for the tangent space and hence for
' » J

the projection. Substituting (3.4) into (3.3), premultiplying by [Im -P], and
considering P as a function of s (the parameter of the invariant manifold) I
obtain

\f] (3.5)

https://doi.org/10.1017/S0334270000006470 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000006470


58 A. J. Roberts [11]

where s is given in (3.2) and the matrix

Equation (3.5) is to be solved such that P at s = 0 is zero as, for equations
in the form of (3.1), the projection manifold at the origin is normal to the
invariant manifold.

3.2 Asymptotic solution
Exact solutions of (3.5) will be very rare, especially as the invariant man-

ifold is typically only known approximately. It is usually most convenient
to rewrite (3.5) in a form suitable for iteration (or for a formal power series
solution), namely

^ £][£] (3-7)
The right-hand side of this equation contains all the nonlinear terms in s, and
the left-hand side contains all the linear terms. The usual iteration scheme
is to start with P — 0, and then solve for the left-hand side P given the right-
hand side evaluated for the previous estimate of P. The result is usually a
multinomial in s which, near the origin, is asymptotic to an exact solution.

If the matrix A is zero, and thus the invariant manifold is a simple centre
manifold, then the iteration process is almost trivial, it just involves inverting
B. If A is in Jordan form, then each iteration step may be done easily, so
long as the rows of P are found in an appropriate order.

If both A and B are diagonal, then each iteration step is straightforward,
and explicitly displays general features of which to be wary. When A and
B are diagonal, the equation for a particular element of the matrix P is
decoupled from the other elements. Consider the equation for the (i,j)th
element, and suppose that there exists a term in the right-hand side of (3.7)
of the form Cy Ylk sk w^ere 4 are a set of integral exponents. Letting A, and
fij be the diagonal elements of A and B respectively (i.e. their eigenvalues),
the equation is then of the form

which has the particular solution

Pu = -
j - M + Lk

The embarassing possibility in (3.8) is that of dividing by zero; it is impos-
sible if the invariant manifold is the centre manifold. Such a division by
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zero generally indicates that the object to be described is not unique, due
to nonlinear resonance, for example. This also often occurs in the actual
asymptotic description of an invariant manifold (see Roberts [12]) and there
it serves to warn of the non-uniqueness of the invariant manifold. The prac-
tical effect is that there is no purpose in computing any further refinement to
the approximate description, as such a refinement is immaterial. I expect a
similar conclusion here, but this needs further research.

3.3 The projection

Suppose uo = [*° I is a given initial point in Rm+". I want to find the

starting position on the invariant manifold, uf = | J ^ r J . such that uo - vtf

is a linear combination of the columns of | P(x» M. It is elementary to see
L *n J

that this will be the case if and only if
xf = xo - P(xf){y0 - h(xf)). (3.9)

This is a set of m nonlinear equations to be solved for the m unknowns in
xf. Near the origin it may be solved efficiently by iteration (starting with
xf = xo for example).

3.4 Discussion
For many dynamical systems, for example that discussed in Section 2,

the projection of the initial conditions onto the invariant manifold will be
accurate in the long term. However, if the flow on the invariant manifold has
a positive Lyapunov exponent, see Schuster [14], then the projection would
have to be exponentially accurate to guarantee the same long term behaviour
on and off the manifold. In general, this cannot be achieved. In such a
situation, there would be two time scales: on the time scale of attraction to
the manifold, the approximate solution on the manifold would be approached
exponentially-quickly by the true solution; on the time scale of the loss of
information on the manifold, the true solution and the approximation would
diverge, although the true solution would still be approaching the manifold.
However, this latter divergence is not a serious limitation as, due to the
divergence characterised by the positive Lyapunov exponent, it would occur
for almost every initial condition on the manifold.

Also, I have taken the full system (3.1) to be an exact description of the
full problem; rarely will this be precisely true. Thus, to be of relevance, the
invariant manifold must be structurally stable with respect to typical pertur-
bations of the full system. There is very little known about the structural
stability of invariant manifolds, although Beyn [1] has investigated the time
discretisation of a set of ordinary differential equations and its effect on the
centre-unstable manifold. I observe that if the eigenvalues of B are not near
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zero then the formal construction of invariant manifolds, as discussed in
[12], is largely insensitive to the details of the ordinary differential equations
(3.1). The exception to this is that the construction is sensitive at orders of
approximation corresponding to the non-uniqueness of the invariant mani-
fold. However, these orders should not be calculated, see Sections 3 and 5 in
[12], as they depend upon the initial conditions. Thus the significant orders
of approximation of an invariant manifold are typically structurally stable.

Although derived in the context of an exponentially attracting manifold,
the above derivation of the projection is not restricted solely to this situation.
The derivation is based upon the flow in the neighbourhood of the invariant
manifold, namely the evolution of n as given by (3.3). But because I am only
interested in the space spanned by the possible vectors n, it is immaterial
whether the invariant manifold is attracting, is repelling, or is a centre for
the neighbouring flow. What the derivation guarantees is that, if a solution
on the manifold and a solution just off the manifold start on the same projec-
tion manifold, then they will continue to be on the same projection manifold
(although different to the one they started on) as time progresses. Thus, as
seen in Section 2, if the invariant manifold is attracting then the projection
along a projection manifold gives the appropriate initial condition. But fur-
thermore, if the invariant manifold acts as a "centre" for the neighbouring
flow then this will still be true. In particular, if the invariant manifold con-
tains periodic cycles then the two solutions (one on and one off the invariant
manifold) will maintain the same phase relationship as they evolve around
the cycle. This property is used in the next section in an example of the
projection of initial conditions.

4. Example: a model of balancing onto quasi-geostrophy

Lorenz [6] proposed the following set of five coupled ordinary differential
equations,

u = -vw + bvz, (4.1a)

i) = uw — buz, (4.1b)

w = -uv, (4.1c)

x = -z, (4.1d)

z = x + buv, (4.1e)

to act as a model describing coupled Rossby waves and gravity waves in the
atmosphere. If the parameter b — 0 then the last two equations decouple from
the first three. In this case x and z just undergo rapid sinusoidal oscillation
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analogous to fast gravity waves in the atmosphere, while u,v and w undergo
slow nonlinear elliptic function oscillation analogous to Rossby waves. For
finite values of b the picture is qualitatively the same near the origin.

The geostrophic approximation in meteorology is simply to neglect x and
z and thus neglect the unwanted fast gravity waves; this is a tangent-space
approximation to an invariant manifold of (4.1). The particular invariant
manifold which is approximated represents a state of quasi-geostrophy; in
meteorology this manifold is often known as the slow manifold. One of
the problems in weather forecasting is that field data is often noisy, and
numerical models using the field data become swamped with large amplitude
gravity waves which make long range predictions impossible. Thus the data
is "balanced", before being used in a numerical model, by filtering out the
fast gravity waves. This balancing is equivalent to projecting the given initial
conditions onto the invariant manifold corresponding to quasi-geostrophic
flow. Thus it is precisely the process addressed in this paper.

The model equations (4.1) are in the standard form (3.1), and so I seek
a 3-dimensional invariant manifold of the model which is parameterised by
u = (u,v,w)T. Thus the 3 x 3 matrix A is identically zero, the matrix B is

".']• - [I
' -vw + bvz

uw - buz
—uv

0
buv

(4.2)

are the nonlinear terms. Firstly, I find the quasi-geostrophic invariant mani-
fold. Secondly, I use the results of Section 3 to find the projection onto this
invariant manifold. One thing to note is that this invariant manifold is not
approached exponentially by nearby trajectories. Because the eigenvalues of
B are pure imaginary, representing neglected oscillations, the invariant man-
ifold acts more like a centre for the nearby trajectories; indeed this invariant
manifold is an example of what is termed a sub-centre manifold (see Sijbrand
[15]). Geometrically the plane which is projected onto a particular point on
the invariant manifold is the plane in which rapid gravity wave oscillations
take place if the system starts off the invariant manifold.

4.1 The quasi-geostrophic invariant manifold

Since u,v and w are to parameterise locations on the invariant manifold,
I pose that

x = X(u,v,w) and z = Z(u,v,w) (4.3)
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describes the invariant manifold. Substituting into (4.1) and using the chain
rule, X and Z must satisfy

X = -buv - Zu(vw - bvZ) + Zv(uw - buZ) - Zwuv, (4.4a)

Z = Xu(vw - bvZ) - Xv(-uw + buZ) + Xwuv. (4.4b)

This may be solved by iteration or substitution of a formal power series (see
Roberts [9, 12, 13] for some examples) to find that the first nontrivial curving
shape of the invariant manifold is given by

x = X(u,v,w) = -buv + O(\u\4), (4.5a)

z = Z(u,v,w) = b(u2 - v2)w + O(|u|5). (4.5b)

On this invariant manifold the system evolves according to

M = -vw [l - b\u2 - v2)] + O(|u|6), (4.6a)

v = uw[l- b2(u2 - v2)] + <9(|u|6), (4.6b)

w = —uv. (4.6c)

The expressions in (4.5) and (4.6) are the first few terms of an asymp-
totic series which is likely to be divergent. Indeed, Lorenz [6] numerically
constructed an invariant manifold for the system (4.1), and found that it
contained weak singularities due to nonlinear resonances. An asymptotic ex-
pansion for such a manifold would necessarily be divergent. Furthermore,
practical algorithms for balancing data also appear to be divergent if too
many iterations are carried out. A divergent series is often of practical use.

4.2 Balancing
I now use this as an example of the application of the equations derived in

Section 3. I seek a 3 x 2 matrix P(v) such that the two columns of | { | span
the plane of gravity wave oscillations about the quasi-geostrophic invariant
manifold (4.5). The task of balancing some given initial data is then the same
as finding the position on the invariant manifold whose projection plane
passes through the given data. That this is not exactly true is due to the
curving nature of the projection manifolds, but for practical purposes it will
probably suffice.
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For this problem (3.7) becomes
' -vw + bvZ~

PB = - uw - buZ • VaP
-uv

0

+ \h ~P]
w-bZ

-w + bZ
0

-v
M

0
0
0

0
0
0
0
1

bv
-bu

0
-1
0

(4.7)

0 0
bv bu

where Z is given approximately by (4.5b). Solving this by iteration, starting
with P(°) = 0 on the right-hand side of (4.7), I find that

-bv
bu
0

0
0
0

and P(2> =
0
0 (4.8)

where some third-order terms in

-bv
bu
0 -b(u2-v2)_

have been neglected, as they may be
changed in the next iteration. Thus the plane of gravity-wave oscillations at
some location u on the invariant manifold is approximately spanned by the
two columns of \p 1, namely by

-bv
bu
0
1
0

<9(|u|3) and e2 =

0
0

-b(u2-v2)
0
1

+ O(|u|3). (4.9)

It is interesting to note that, at this order of accuracy, the curving nature
of the invariant manifold has no effect on these results; it is only at fourth
order that it has an effect. To obtain the above results the quasi-geostrophic
invariant manifold could have been approximated simply by x - z — 0.

4.3 Conserved quantities
A further interesting feature of the differential equations (4.1) is that they

possess the two invariants

H = u2 + v2, and / = v2 + w2 + x2 + z2. (4.10)

These invariants arise from conservation of analogies to energy and potential
enstrophy. It is clearly desirable that these quantities be conserved in the
projection, although in practice it is enough for them to be approximately
conserved in the approximate projection.

Here, such conservation of the invariants during the projection may be
shown by establishing that the normals, VH and V/, to the invariant hyper-
surfaces are orthogonal to the vectors defining the tangent plane of the pro-
jection manifold, ei and e2 given by (4.9), where they are all evaluated on
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the quasi-geostrophic invariant manifold. It is elementary algebra to find that
this is indeed the case.

5. General form of the projection of initial conditions

In principle, the standard form of the projection derived in Section 3 would
always suffice, as a given dynamical system could always be transformed
into the standard form (3.1). In practice, such a transformation is often
inconvenient to do and furthermore it often gives a set of equations for
which a meaning, in terms of the original problem, cannot be assigned to any
of the terms. This is clearly undesirable. Instead it is preferable to work with
the original equations as much as possible.

In this section suppose that the system of equations is in the general form

u = ^ u + N(u), (5.1)

such that u = 0 is a fixed point, where Sf is a linear operator, and where N(u)
is strictly nonlinear, of O(|u|2), and sufficiently well-behaved near the origin.
I shall allow the system to be infinite dimension (although I shall still refer
to u as a vector), but for ease of exposition I shall assume that the invariant
manifold is finite dimensional. Thus, let ( , ) be the inner product defined
on the (possibly complex) phase space ^ , and suppose that (5.1) possess the
/n-dimensional invariant manifold Jt', parameterised by s 6 Rm, which is
described by

u = v(s) such that s = ^ s + g(s), (5.2)

where S?s is linear in s and g(s) is strictly nonlinear. Asymptotic approxima-
tions to such an invariant manifold description may be found by a formal
procedure, see Roberts [12], which is a generalisation of one proposed for
centre manifolds by Coullet & Spiegel [3] (and explained more simply in
Roberts [9]).

Basic entities which are needed in the following analysis are the following.
At the origin the tangent space, denoted by E-*, to the invariant manifold ^
is spanned by a set of m linearly independent vectors in ^ ; let these vectors
be denoted by erf. The tangent space E* is spanned by a set of m eigen-
modes of the linear operator _2". Let the space spanned by the corresponding
eigenmodes of the adjoint linear operator, J&i, be denoted by Z*\ and let
m linearly independent vectors in this space be denoted by tf. For example,
in a finite dimensional system the vectors erf and rf could be corresponding
pairs of right- and left-eigenvectors.
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5.1 An equation for the projection
Consider an infinitesimal vector n lying at an angle to the invariant man-

ifold J? and evolving with the flow of the system. By similar arguments
to that used in Section 2 n evolves in time according to (3.3), but here the
Jacobian is

r = &+jr = & + Nu, (5.3)

in which both £? and JV are linear operators but JV varies over the invariant
manifold, being zero at the origin, while 3" is constant. Thus, considering n
to be a function of position on the invariant manifold, the governing equation
is

s»Vsn = ^ n , (5.4)

where s is the function of s given in (5.2). Letting nQ be a family of vec-
tors (a need not be discrete) which span the tangent space to the projection
manifolds, they all evolve according to (5.4). Analogous with the argument
given in Section 3.3, what is really needed to calculate the projection onto the
invariant manifold is a set of m linearly independent vectors, r, say, which
are orthogonal to the n,,. The condition that so be the appropriate starting
point on the invariant manifold corresponding to a given initial condition uo
is that uo — v(so) be in the space spanned by the i^. This is then simply the
set of m equations

(r,(s0), u0 - v(s0)) = 0 for all /. (5.5)

This is important to realise, because it is much easier to find the m vectors
r, than the possibly infinite number of vectors na.

At the origin the projection manifold must be tangent to the space spanned
by all the eigenmodes of Sf which are not included in the invariant mani-
fold tangent space E-*'. Thus by the orthogonality of "left-" and "right-
eigenvectors" the tangent space to the projection manifold must be orthogonal
to Z*. Hence at the origin the vectors r, should be m linearly independent
vectors in Z*', and hence must tend to zf at the origin. Away from the
origin it is straightforward to show that the vectors r, should satisfy

(5.6)

in order to stay orthogonal to the projection manifolds, where 9*"* is the
adjoint of the Jacobian 3~.

As before, equation (5.6) is too hard to solve as it contains information
about the shape of neighbouring trajectories as well as the desired information
about the projection. Since I just want the space spanned by the vectors r,, I
seek to find the vectors zf - p, where

r, = q,j {zf - pj) such that (p,, e f ) = 0 and p, (0) = 0, (5.7)
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where #</ are the elements of an m x m invertible matrix Q(s), and the sum-
mation convention has, and will, be used. The vectors p, are analogous to
the rows of the m x n matrix P used in Section 3 (and Q is analogous to that
used in Section 3). Substituting (5.7) into (5.6), applying the operator ( ,ef)
to be able to eliminate the (fry, I find that the vectors p, must satisfy

(9-\tf - Pi),efyAfj{xf - p,) + (S?s + g(s)) . Vsp, = T\tf - p,), (5.8)

where the superscript * denotes complex conjugation, and where the m x m
constant matrix A* is the inverse of (zf ,ef)* (often the vectors are chosen
so that this matrix is the identity matrix). This is analogous to equations
(3.5).

5.2 Asymptotic solution
Exact solutions of (5.8) will be very rare, especially as the invariant man-

ifold is typically known only approximately. To find an asymptotic solution
of (5.8) near the origin it is convenient to rewrite it as

^tp. _ (^zf^AfjVj + {&*) • Vsp,

= -fVsPi+^(Tf-pi)-((zf-pl),^efyAfj(zf-j>j)

where the expression

has been omitted as it is zero. This can be seen by first realising that it
must be in the space Z-*', and second, by showing that it is orthogonal to
the space E* and hence must lie in the space spanned by those eigenmodes
of .S^ which are not in Z-*. These are mutually contradictory unless the
expression is zero.

Equation (5.9) is directly analogous to (3.7) and can be solved approxi-
mately in the same manner.

6. Example: shear dispersion in a channel

Taylor [ 18] considered dispersion of a solute in a channel or pipe and ar-
gued that after sufficient time had elapsed, the cross-sectionally averaged so-
lute concentration satisfied a one-dimensional advection-diffusion equation.
His analysis has been the basis of many mathematical predictions about dis-
persion in the environment. The approximate solution he derived can be
rigorously supported by the application of centre manifold theory. This is
discussed in Mercer & Roberts [7] who also give a formal extension of the
theory which allows effects of variations in the geometry and the flow pa-
rameters to be quantitatively included within the asymptotic approximation.
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With the theory developed in the previous section, I now derive what the
appropriate starting condition for the asymptotic approximation is, in terms
of the initial condition for the full problem.

To make things definite, but non-dimensional, consider a two-dimensional
channel extending to infinity in the x-direction and with straight sides en-
closing - 1 < y < 1. Let the concentration of some solute in the channel be
c(x,y, t). The solute is adverted by the plane-Poiseuille flow

u(y) = (3/2)U(l-y2), (6.1)

and is diffused across the channel (but, for simplicity, not down the channel).
Thus the governing differential equation for the concentration c is

Tt = ^ y

The centre manifold analysis will give the long term behaviour of the con-
centration c in terms of the evolution of the cross-sectional average con-
centration, denoted by C{x,t). The theory developed earlier will give the
appropriate starting condition, C = Co(x) at time t = 0, in terms of the
initial distribution of the solute, c = co(x,y) at time t = 0. In particular, I
show that the standard practice of assuming that Co(x) is the cross-stream
average of co(x,y) is not quite correct.

6.1 The centre manifold
To apply centre manifold theory most clearly, it is best to take the Fourier

transform of (6.2), although a more direct procedure is discussed in [10].
Denoting transformed quantities by A 's the governing differential equation
(6.2) becomes

— = ^ 2 - iku(y)c such that ^ = 0 on y = ±1 , (6.3a)

where k is the wavenumber of the Fourier transform. This transformation
decouples all the components at the different wavenumbers, and so they can
be considered separately. Thus adjoining the equation

dk/dt = 0, (6.3b)

I can write the two equations in (6.3) in the form of (5.1) where

u = [ * | , -S*=[n a°2 1 . and N(u) = [ . J \ , - 1 • (6.4)[c\ [0 JjjyJ [-iu(y)kc\

The linear operator 2C has two zero eigenvalues and all the rest are nega-
tive (the largest of these being -n2/4). Thus (6.3) has a 2-dimensional centre
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manifold, at least near the origin of u-space, which is approached exponen-
tially quickly and can be parameterised by the two variables k and C. I find
the centre manifold to be given approximately by

c ~ C - ikUvi(y)C in which vx{y) = (7 - 30y2 + 15/) /120, (6.5)

where k and C evolve according to

dC/dt~-ikUC-k2(2/105)U2C and dk/dt = O. (6.6)

These results are essentially power series in k and are thus valid for small
wavenumber; that is, for concentrations which are slowly varying in space.
See Roberts [10] for a detailed discussion of the slowly-varying approxima-
tion.

In terms of the original physical variables, the centre manifold description
is

^ TT , XdC U.U.9C T,dC 2 U d C . . . .

c~C- UVl(y)— such that — ~ -U— + m j ^ , (6.7)

which is precisely Taylor's approximation for this problem. Higher orders
in the above approximation may be easily calculated through this approach;
this has been done by Mercer & Roberts [7], who showed that the resultant
series converges in some sense.

6.2 The projection of initial conditions
Having described the centre manifold for this problem, I now can solve

(5.9) to find the vectors defining the projection of initial conditions onto the
centre manifold.

Firstly, I need to define an inner product on the phase space, namely

(u, ,u2) = k;k2 + i J c\{y)c2{y) dy. (6.8)

Secondly, the adjoint of the Jacobian evaluated on the centre manifold is

a n d sr U | — i . i . / x« / s I >

where c and k are on the centre manifold as given in (6.5). Thirdly, I need
a basis for the tangent space, E*, to the centre manifold and a basis for
the corresponding space, Z*, of the adjoint. Since the linear operator 21 is
self-adjoint these may as well be the same, and so I take

and •*r-*-[ io->]- <610)
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To solve (5.9) to find the projection, I first observe that, because the invari-
ant manifold is actually a centre manifold and because of the above choices,
the form of (5.9) simplifies to

C+]
1 0 5 C + \dC (6.11)
{{zf -Pi),yref )*(zf -pj).

Substituting p, = 0 into the right-hand side of (6.11), we can then solve for
the first nontrivial approximations to p,, which are, neglecting some not-yet-
significant quadratic terms in k,

P</> = 0 and P?>

Further iterations may be carried out to provide more terms in the expan-
sion for the projection vectors. However, for my illustrative purposes, the
approximation (6.12) will suffice.

The aim of the projection is to find the starting point on the centre man-
ifold, parametrically given by ko and Co say, which best corresponds to the
initial condition, given by k and do(y) say. The earlier analysis shows that
the displacement from one point to the other should be orthogonal, with re-
spect to the inner product ( , ), to the two derived vectors zf - p,. Firstly,

zf - p ^ = I ' I with the immediate consequence that ko — k, that is, the
wavenumber of the initial condition is unchanged in the projection onto the
centre manifold. This is eminently reasonable from a physical point of view.
Secondly, zf - p^ = \+ikuv < ) ' wn*c^ gives the appropriate initial condi-
tion for the Fourier component of the cross-sectionally averaged concentra-
tion to be

I ^ ^ , (6.13)

where the overbar indicates the average over y, namely j / ! , • • • dy.
Returning to the original physical variables, by taking the inverse Fourier

transform, (6.13) becomes

^ (6.14)

Because the leading term on the right-hand side of (6.14) is just CQ, this
justifies the usual approximation of taking the given initial condition and
averaging over the channel to give the starting condition for the asymptotic
approximation. However, the analysis here shows how this simple approach
should be modified if the given initial condition involves significant spatial
variations; for example, a point release. The modification will improve the
long term agreement between the results of the centre manifold model and
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the solution of the full problem. Furthermore, by doing a bit more work
to solve (6.11) more accurately, further improvements may be made to the
expression for the starting condition.

6.3 A point release at the bank
To illustrate the sort of predictions that can be made from the above anal-

ysis I now consider the idealisation of a point release of solute adjacent to
the side of the channel y = 1. The centre manifold is only valid for slowly-
varying concentrations, which is certainly not true for this initial condition.
Thus the predictions for small time by the centre manifold model will be
unphysical, containing negative concentrations for example. Nonetheless the
long term predictions are improved remarkably.

Suppose the initial condition for the full problem is

co(x,y) = 2S(x)d(y-l-), (6.15)

then the starting condition for the centre manifold model of the full problem
is, from (6.14) and (6.5), simply

C0(x) = d{x) + Ud'(x)/l5. (6.16)

The new term from this analysis is the S'(x) term; this has long-term effects
on the solution of the one-dimensional advection-diffusion equation in (6.7).
For brevity denote the effective diffusivity and the coefficient of the new term
in the initial condition by

D = 2U2/l05 and a = £//15 (6.17)

respectively. The solution to (6.7) for the initial condition (6.16) is

Thus the effect of the aS'(x) term is to bias the cross-sectional average con-
centration C towards smaller x. This is the expected result, as solute released
at the side of the channel needs time to diffuse into the centre of the channel
where the bulk of the downstream advection takes place. Thus the advection
of the solute should be delayed somewhat, as (6.18) now shows.

The effects can be simply observed in the moments of the resulting distri-
bution. The mean location of the solute as predicted by (6.18) is

-i: xC(x,t)dx= Ut-a= U(t- 1/15). (6.19)

This increases linearly by the advection downstream, but there is a delay of
Af = 1/15 due to the release at the side. The spread of the solute, as measured
by the variance, predicted by (6.18) is

a2 = f x2Cdx- (x)2 = 2Dt - a2 = 2D(t - 7/60). (6.20)
J — oo
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As is conventional, the variance increases linearly due to the shear dispersion,
but again there is a delay in the effect of the shear dispersion due to side
release. These effects are well known in the study of dispersion in rivers and
channels. Previously there has been no known systematic way to include
these delays within the framework of the Taylor model.

One thing to observe in the variance (and in the mean, but to a physically
less disturbing extent) is that for small time the predicted variance is actually
negative! This is attributable to the negative concentrations which exist and
are significant for small time in the solution (6.18). It does not refute the
validity of the model; instead it acts as a useful warning that the concentration
gradients are too steep for the model to be valid. Because the original problem
is linear in c, this does not destroy the validity of the model in the long term.
Previously there has been no possibility of such a warning occuring in the
model.

7. Time dependent forcing on an invariant manifold

So far, all applications of centre manifold and invariant manifold de-
scriptions of the long term evolution of dynamical systems have been to
autonomous sets of differential equations. Having to ignore the possibility
of some time dependent forcing in the differential equations is a serious lim-
itation. However, with the projective tools developed in the earlier sections,
I can now show how to incorporate a weak forcing of the full system into a
forcing which is within the invariant manifold description.

7.1 The appropriate forcing
Suppose that a dynamical system of the form of (5.1) has some forcing

applied, say F(f), so that it is modified to

du/dt = &u + ti(u) + F(t). (7.1)

Further, suppose that the system without any applied forcing possesses an
invariant manifold J? described by (5.2). To see the effects of the applied
forcing, I suppose that the forcing can be approximated sufficiently well by a
series of isolated impulses, namely

*,), (7.2)

where // is the time of the /th impulse F/. In each force-free time interval
between impulses, the system will approach the invariant manifold exponen-
tially quickly. Thus suppose that at a time t = tj, which is just before the
/th impulse, the system is on the invariant manifold at a location given by
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û " = v(s/"). Assuming the differential operator J ? and N are smooth enough,
(7.1) may be integrated across the time of the /th impulse to give that

uf = u]-+Vh (7.3)

The problem is that u+ is generally off the invariant manifold J? and so has
to be projected back onto JH in order for the invariant manifold description
to be applied until the time of the next impulse. This consideration will
give the forcing F-^(f), which it is appropriate to use within the invariant
manifold description to best match the forcing of the full system.

The appropriate location on the invariant manifold corresponding to u+

(for simplicity I will, for a while, omit the subscript / refering to the /th
impulse), parameterised by s+, is found by requiring the displacement u+ -
v(s+) to be orthogonal to the vectors zf - p, derived for the projection of
initial conditions. If the impulsive forcing is not too big then the appropriate
location on JK after the impulse will not be too far from its location before
the impulse. Thus, s+ = s~ + As where As is small and can be found by
solving (zf - p,,u~ + F - v(s~ + As)) = 0. Linearising this equation for As,
I find that

As, = Bij (zf - pj, F) where fly = inverse of / z f - p,, ^ V (7.4)

Thus the evolution on the invariant manifold J? may be given by the forced
equation

s = 3?s + g(s) + F ^ , (7.5)

where the forcing (upon putting the subscript / back in) is in the form of the
isolated impulses

This particular forcing just models the continuous forcing,

F * ( M ) = Bij(s)(zf -Py(s),F), (7.7)

which is the appropriate one to be used in the invariant manifold description
of the evolution. The dominant contribution to the forcing (7.7) is just the
component of the original forcing which is aligned in the invariant manifold,
the components of F being determined by decomposing it into a component
in the local projection manifold plus a component in Jt'.

The above argument will be valid provided that the forcing of the full sys-
tem is never so big that it pushes the system far from the invariant manifold
J?. In application this would be hard to know. Perhaps the best measure
of its validity would be to compare the neglected components of the forcing
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with the rate of approach to the invariant manifold, as these are the compet-
ing influences. The approximation is valid if the neglected components of
the forcing are small in the comparison.

7.2 Example: a simple dynamical system
Consider the dynamical system (2.1) upon which some forcing F = Lf is

acting. The invariant manifold is one-dimensional and so I find that T* - p =
[1 -p] where p = s/(l + 2s2) is the solution to (2.12). It is straightforward to
calculate that B = 1/([1 -/>],[ 1 25]) = (1 +2.s2). Upon substituting into (7.7)
I find that the appropriate evolution equation for s, modified from (2.2), is

s = -s3 + (1 + 2s2)Fx - sFy. (7.8)

The obvious intuitive result follows: if Fx / 0 and Fy = 0, then the forcing
just pushes the stable fixed point to one side of the origin. However, what is
not obvious is the effect of non-zero Fy: if Fx = 0 and Fy = - e 2 , then the
evolution equation for 5 becomes

s = -si + e2s, (7.9)

which, instead of the one fixed point at the origin, predicts three fixed points
at s = 0, ±e. Furthermore, the fixed point at the origin is now predicted to
be unstable. This is an extremely surprising result; that a small force which
is essentially at right-angles to the invariant manifold (and that component
along the invariant manifold is always towards the stable origin) actually
destabilises the fixed point at the origin!

Nonetheless these predictions are correct. For small e the relevant fixed
points of the full system (2.1) with the above forcing are: two stable fixed
points at (±e,0); and an unstable fixed point at approximately (0 , -e 2 -
2e4). I surmise that this example demonstrates that the evolution on a centre
manifold, as it is very slow, is extremely sensitive to external forces. It is
remarkable that this projection of external forces onto the invariant manifold
is indeed appropriate and accurate.

8. Summary

Invariant manifold theory (and the simpler centre manifold theory) pro-
vides a long-term, lower-dimensional, asymptotic description of the evolution
of a dynamical system. The main principle is that the dynamical system will
tend exponentially quickly to a state on the invariant manifold and then
evolve according to the simpler set of differential equations which apply on
the invariant manifold.
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However, if an inappropriate starting point on the invariant manifold is
chosen to correspond to a given initial condition for the full system, then
there are long-term, nonexponentially decaying discrepancies between the
asymptotic predictions and the correct solution. This can be seen in equation
(2.7), and also in the shear dispersion results (6.18), (6.19) and (6.20). In this
last case, it can be seen that the annoying time-lag discrepancies between the
actual dispersion and the Taylor model of shear dispersion is not a weakness
of the Taylor model, but is instead a failure to provide the proper initial
conditions for the model. It is only with the simple geometric view provided
by invariant manifold theory that this can be easily perceived and correct
initial conditions found.

On another hand, these ideas can be applied to invariant manifolds which
are not approached exponentially, but instead which act as centres for os-
cillatory behaviour. This was done in Section 4 to a primitive model of
atmosphere flow, and was found to provide a systematic basis for the process
of balancing which is essential in numerical meteorology. These sub-centre
manifolds are also found in the derivation of continuum approximations to
gas dynamics, see Muncaster [8].

Lastly, this approach has shown how to rationally transform an inhomoge-
neous time-dependent forcing of the full system into a corresponding forcing
of an invariant manifold approximation.
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