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ABSTR ACT. A algorithm for digital image centering with the maximum likelihood method 
is described. The astrometric accuracy of this algorithm is similar to the two-dimensional 
Gaussian fitting. For saturated images, this algorithm is better than the Gaussian fitting. 
With the maximum likelihood method, some systematic effect, such as coma, and magnitude 
equation, can be reduced significantly. 

1 Introduction 

In modern astrometry, star positions are being determined by digital image analysis more 
and more commonly, besides automatic two-dimensional digital scanning of photographic 
plates, classical instruments, such as meridian circle, astrolabe, are also acquiring digital 
image of stars and determining their positions by digital algorithm. Several algorithms 
of digital image centering have been developed and extensively applied to photographic 
astrometry (van Altena & Auer 1975, Cliiu 1977, Auer & van Altena 1978,Stetson 1979, 
Stone 1989, Pla.ta.is 1991 ). Among them, the Gaussian fitting proved to be the most accurate 
one. However, the algorithm does have some disadvantages, e.g. it is not very good for 
centering faint images, the solution may diverges in certain cases, and it is the slowest 
algorithm (Stone 1989). To avoid of them, Platais( 1991) offered the centering algorithm 
using the cubic spline technique. It has improved convergence for faint stars, but for the 
normal range of star image, its precision is 10-15% lower than the two-dimensional Gaussian 
fitting (van Altena 1991). 

On the other hand, Gaussian fitting is a kind of least-square estimation, which is the 
optimal algorithm only under the condition of white noise. In practice, star image affected 
by a lot of factors, such as coma, magnitude equation, guiding error, blending etc. Based 
on these consideration, we introduced the maximum likelihood method into digital image 
centering. This paper will describe the method and its application. 

2 Algorithm 
In this paper, only the algorithm of two-dimension is discussed and it can be deduced to 
the case of one-dimension easily. Suppose the theoretical density distribution of an image 
is 

G = G(x, y; .rc, yc), (I) 
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where xc and yc are the center of the image, thru the probability to obtain a. measurement 
D(.v, y) of the image density is 

P(D\G) = - 7 = — exp ί - - - ^ γ [D(χ, y) - G(x,y; xc,yc )]21. (2) 
\/2πσΌ [ 2σΌ J 

Τ lie likelihood function is 

ι Γ ι 
(3) Z ( D | G ) = — θ χ ρ 1 (2π)"·/2σβ 

- — ^ - ( D - G) · (D - G) 
2σΙ 

where D is the sample set of η independent measurement values, being marginal distribution 
for t he case of one dimension 01* density array for two dimension,G is the corresponding set 
of the theoretical values,and σο is the standard error of the measurement. 

For a set of given measurement D, Z (D |G) ca.11 be considered as the function of xc, yc-
According to the principle of maximum likelihood, the values xc and yc which make Z (D |G) 
maximum are the maximum likelihood estimation of the image center coordinate. Therefore 
xc and yc can be obtained from the following equations: 

<91nZ(D|G) 
dxc 

dh\ Z ( D | G ) 

= 0 (4) 

= 0 (5) 0yc 

From eqs.(4) and (5) we have 

= 0 (6) 

oxc oxc 

OG OG 
—,— · D — —— · G = 0 (7) oijc oyc 

In practical application to density arrays of photographic star image obtained by PDS 
scanning, Gaussian function is usually adopted to represent the density distribution of star 
images. In this case, the second terms in eqs.(6) and (7) equal to zero because the Gaussian 
function is even function, and we have 

= 0 (8) 
ax c 

= 0 (9) 
dyc 

Solveing (8) and (9), we can obtain the image center xc and yc. 
It is difficult to solve eqs. (8) and (9) directly. We used a. method similar to the 

calculation of convolution. To solve the equation, the model G should be defined first, 
which need three parameters, that is, the half width R and the approximate values of xc 

and yc. xc and yc can be obtained by moment analysis. Then the second order moments 
Mj-r and Myy can be calculated. The smaller one between Mxo: and Myy is adopted a s R. 

Substituting yc and R obtained with moment analysis into (8), searching for the xc 

which makes eq.(8) hold. Equation (9) can be solved similarly. 
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3 Astrometric accuracy 
Plates of Praesepe taken with the twin astrograph (f= 300cm, D=40cm) at Purple Mountain 
Observatorv(PMO) are used. The emulsion is Kodak 103a0, with 15 minutes exposure. 
The image is saturated at about, 9.5th magnitude. More than 300 stars were selected from 
Russell's catalog of Praesepe region (Russell 1976). 

The plates were raster scanned using the PDS 1010MS of PMO, with an aperture of 
20 χ 20/an and scanning step of 10/an. 

The digital images obtained by PDS scan are treated using both two-dimensional Gaus-
sian fitting and the maximum likelihood method. To test the astrometric accuracy, plate 
reduction is performed using Russell's catalog. The stars are divided into three groups ac-
cording to magnitude, each contains about 100 stars. The first group consists of bright stars 
with magnitude from 5.7 to 9.5, in which most of the images are saturated. The second 
group includes stars with magnitude from 9.5 to 12.2. The third one is fainter stars with 
magnitude 12.2 to 16.0. The reduction is carried out for each group as well as for all stars 
together with different plate models. It can be seen from the rms errors of plate solution 
that, for well-formed images, both algorithms give similar accuracies. But for saturated or 
under-exposured images, the accuracy obtained with the maximum likelihood method is 
higher than the one by Gaussian fitting. 

solutions are given in Table 1, where 'square' means the plate model with M is maximum 
likelihood method and G is two-dimensional Gaussian fitting. The number after G and M 
denotes the groups, no number means all stars. The unit is in /an. 

It. is noticed that, for simpler plate models,in which only terms related to coordinates 
are included, the rms errors of maximum likelihood method is obviously smaller, but for 
the optimum model chosen with the Eichhorn-Williams criterion (Eichhorn Sz Williams 
1963), in which the terms related to magnitude, e.g. coma and equation, are included, 
the differences between the rms errors of the two methods are not very significant. It 
is because that some effects depended on magnitude have been reduced greatly in the 
maximum likelihood method, so some terms, which are included in the plate models for 
Gaussian fitting, are not significant and not included in the plate models. 

TABLE 2. Coefficients of coma, terms 
Plate Method Coefficients (in 10 7) 

x y 
PI M 

G 
-1.42 ± 1.27 
-9.91 ± 1.30 

2.76 ± 1.64 
-7.97 ± 1.66 

Ρ 2 M 
G 

-5.36 ± 1.49 
-15.70 ± 1.50 

-3.50 ± 1.83 
-18.50 ± 1.88 

P3 M 
G 

-7.71 ± 1.24 
-11.20 ± 1.17 

-5.73 ± 1.57 
-9.87 ± 1.50 

In Table 1, the coefficients of radial coma terms are listed. The half width R is used as 
magnitude parameters, the unit of R and x, y is in μια. It is shown that the effect of coma 
is almost eliminated by the maximum likelihood method. The magnitude equation is also 
weakened. 
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4 Conclusion 
The maximum likelihood method is used to conter digital image. The accuracy obtained 
with this method is similar to the two-dimensional Gaussian fitting for well-formed images 
l)iit is higher for saturated images. One of the most attractive properties of the method is 
that it can significantly reduce some systematic effects related to magnitude. It is impor-
tant because the spread of magnitudes of the reference stars will not in general cover the 
complete range of all stars to be positioned, although in the conventional practice signifi-
cant magnitude dependent parameters can be found in plate solution, their extrapolation 
to fainter stars need not- be valid. 

As a kind of nonparametric approach, in principle, the maximum likelihood method 
will not diverge, no matter how the image is. Its speed of computation is much faster than 
two-dimensional Gaussian fitting. 

The main disadvantage of the method is that it can not provide the information about 
the image structure and quality. A remedy is to obtain image structure parameters by 
moment analysis while defining image model (Stobie 1980 ). About the internal precision of 
computed coordinates, although it is theoretically possible to give an estimation, it is not 
feasible because of the complicated calculation. 
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