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Abstract

In recent years, plant biologists interested in quantifying molecules and molecular events in vivo
have started to complement reporter systems with genetically encoded fluorescent biosensors
(GEFBs) that directly sense an analyte. Such biosensors can allow measurements at the level of
individual cells and over time. This information is proving valuable to mathematical modellers
interested in representing biological phenomena in silico, because improved measurements
can guide improved model construction and model parametrisation. Advances in synthetic
biology have accelerated the pace of biosensor development, and the simultaneous expression
of spectrally compatible biosensors now allows quantification of multiple nodes in signalling
networks. For biosensors that directly respond to stimuli, targeting to specific cellular com-
partments allows the observation of differential accumulation of analytes in distinct organelles,
bringing insights to reactive oxygen species/calcium signalling and photosynthesis research. In
conjunction with improved image analysis methods, advances in biosensor imaging can help
close the loop between experimentation and mathematical modelling.

1. The first glimmers of green light

Since the cryptic intron was removed from Aequorea victoria green fluorescent protein (GFP;
Haseloff et al., 1997), fluorescent protein (FP) expression has had an incalculable impact on
plant biology. The diverse uses of FPs include characterising protein expression pattern and
localisation (Benková et al., 2003), marking the endomembrane system (Geldner et al., 2009),
demonstrating intracellular transcription factor movement (Nakajima et al., 2001; Raissig et al.,
2017) and quantifying phloem unloading (Stadler et al., 2004). Some of the most innovative
FP uses have come from the development of GEFBs. These are proteins that contain one or
more FPs, the fluorescent properties of which change with a given stimulus. This outlook piece
will not detail the many biosensors used in plants [for a comprehensive overview, see a recent
review (Walia et al., 2018)] but instead will emphasise recent developments, particularly of
GEFBs that report on molecules and molecular events via direct sensing and independently
of other components. We will then explore how biosensors are leading to a deeper more
quantitative analysis of plant biology by providing more robust data for model construction and
parametrisation.

2. From transcriptional reporters to direct biosensors

Over the years, FP expression has been placed under the control of a variety of promoters,
many of which were chosen for their responsiveness to a given stimulus, such as a hormone.
This principle was taken further with the development of synthetic promoters, which act
as indirect hormone reporters, such as the auxin responsive DR5 promoter. In DR5::GFP,
tandem repeats of an auxin responsive element are placed upstream of a minimal 35S
Cauliflower Mosaic Virus promoter, to drive expression of GFP (Figure 1a; Benková et al.,
2003; Ulmasov et al., 1997). Higher FP fluorescence in a cell or tissue indicates sites of
increased auxin response. Using fluorescent transcriptional reporters to infer hormone
accumulation revolutionised plant developmental biology and acted as the basis for a series
of spatial models of hormone distributions, helping establish the developmental regulation of
patterning by auxin in both shoots and roots (Grieneisen et al., 2007; Jönsson et al., 2006).
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Fig. 1. Different types of genetically encoded fluorescent biosensors and their molecular mechanisms. (a) The mechanism of action of the auxin reporter DR5::GFP, where the

auxin receptor complex targets the AUX/IAA transcriptional repressors for degradation, allowing green fluorescent protein transcription and fluorescence in the presence of the

hormone. (b) The mechanism of action of the auxin biosensor DII:VENUS, where a venus fluorescent protein (FP) fused to domain II (DII) from an AUX/IAA protein is targeted for

degradation by the auxin receptor complex, causing loss of fluorescence in the presence of the hormone. (c) The mechanism of action of the direct abscisic acid biosensor

ABACUS1, where hormone binding causes the interaction of two sensory domains of a single fusion protein. This conformational change causes increased Förster resonance

energy transfer (FRET) between two FP domains (a FRET donor and acceptor) and an altered emission ratio upon donor excitation. (d) The mechanism of action of the direct

glutathione redox potential biosensor roGFP. A disulphide bond on the barrel of roGFP is reversibly sensitive to oxidation, causing an altered absorption spectrum.

This approach has been extremely useful and has consequently
been used to create reporters for other hormones such as cytokinin
and abscisic acid (ABA; Wu et al., 2018; Zürcher et al., 2013),
but at best transcriptional reporters such as DR5 indicate where
hormone responses were. The levels and distribution of plant
hormones are dynamically adjusted, to regulate a variety of
processes such as tropisms (Band et al., 2014), developmental
patterning (Benková et al., 2003) and stress responses (Iuchi et al.,
2000; Rowe et al., 2016). The time required for transcription,
translation and maturation of FPs (Balleza et al., 2018) mean that
fluorescence increases following stimuli are delayed; in fact, a
DR5::VENUS auxin response does not become visible until 2 hr
after the mRNA accumulation and follows different dynamics
(Brunoud et al., 2012). FP longevity is such that a reduction in
fluorescence following removal of a stimulus could be even slower,
for example, wildtype GFP has a 26-hr half-life in mammalian
systems (Corish & Tyler-Smith, 1999). Transcriptional reporters
are indirect and so rely on endogenous signalling components and
transcriptional/translational machinery, which may vary over time
or from tissue to tissue (Bargmann et al., 2013; Prigge et al., 2020).

The next big advance in imaging hormone responses came with
the advent of degradation-based reporters such as DII-VENUS.
The second domain (DII) from IAA28 was fused to the yellow FP
Venus, to create a fluorescent fusion protein that is ubiquitinated by
the SCFTIR1 complex upon auxin perception (Figure 1b; Brunoud
et al., 2012). DII-VENUS ubiquitination causes rapid degradation
and loss of fluorescence, reducing the time delay between hormone
accumulation and response (Brunoud et al., 2012). This facilitated
the modelling of fast root auxin redistribution due to gravistim-
ulation (Band et al., 2014). Whilst this is a great improvement in
imaging hormone accumulations, problems arise in determining
whether differences in fluorescence are due to changes in expres-
sion or degradation of the FP. A powerful tool to overcome this
problem is the expression of a second FP, as in the R2D2 or
qDII reporters (Galvan-Ampudia et al., 2020; Liao et al., 2015).
By comparing the DII-VENUS fluorescence, which is lost in the

presence of auxin, to a stabilised control FP, tissue specific expres-
sion and optical differences are taken into account, leading to better
estimates of auxin concentration. However, DII-VENUS, R2D2
and qDII still rely on the endogenous SCFTIR1 and proteasomal
machinery to elicit fluorescence changes, so could experience tissue
to tissue variation in response, and they cannot be used to image
fast hormone depletions or oscillations as VENUS maturation can
take upwards of 18 min in bacterial systems (Balleza et al., 2018).

One approach to overcome these problems is to engineer a fluo-
rescent biosensor that changes its fluorescence properties depend-
ing on direct interaction with the molecule or molecular event
of interest and independently of other components; these are the
direct GEFBs. Many also have a ratiometric output to control for
optical artefacts (such as the loss of signal in deeper tissues) during
imaging and differences in expression.

Whilst direct GEFBs for small second messengers, such as cal-
cium, have existed for a long time (Miyawaki et al., 1997), the first
direct plant hormone GEFBs were developed fairly recently and all
follow a similar design principle to previous ratiometric Förster res-
onance energy transfer (FRET) sensors (Herud-Sikimić et al., 2021;
Jones et al., 2014; Rizza et al., 2017; Waadt et al., 2014). The abscisic
acid concentration and uptake sensor 1-2μ (ABACUS1-2μ), for
example, consists of a sensory domain and two FPs, all connected
by linkers to form a single protein (Figure 1c). The FPs undergo
FRET from the donor edCerulean to the acceptor edCitrine upon
donor excitation. The amount of energy transfer is sensitive to the
distance and orientation of the FPs (Jares-Erijman & Jovin, 2003).
Upon ABA binding, the biosensor undergoes a conformational
change, which causes changes in FRET and thereby in FP emission
ratio (Jones et al., 2014). ABACUS1-2μ is an example of an extrinsic
sensor, as it relies on a sensory domain separate to the fluorescence
domain to respond to a stimulus.

Intrinsic sensors, where the fluorescence properties of the FP
itself are varied by direct interactions with the stimulus, also exist
(Walia et al., 2018). roGFP, for example, is an intrinsic ratiometric
sensor for the glutathione redox potential (EGSH; Figure 1d; Hanson
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et al., 2004). A disulphide bond on the barrel of roGFP is reversibly
sensitive to oxidation, causing an altered absorption spectrum.
By sequentially exciting the FP at two different wavelengths, and
quantifying emission, a ratio of the oxidised and reduced roGFP
is obtained, which indicates EGSH at the subcellular level (Hanson
et al., 2004; Jiang et al., 2006).

There are too many other sensor types and designs to be sum-
marised here, and sensor development is the subject of much
ongoing research (Walia et al., 2018). An ideal sensor is reversible,
ratiometric, specific, responsive to the analyte in the endogenous
range, has minimal impact on endogenous signalling (i.e., highly
orthogonal) and therefore minimal phenotypes and has a large
signal-to-noise ratio. Developing sensors that fulfil all of these cri-
teria can take decades, but even imperfect sensors can be useful in a
host of research contexts. As numerous sensors for diverse analytes
are now widely available, researchers can simultaneously look at
different steps in complex systems to quantitatively understand
signal processing at high spatiotemporal resolution as detailed in
the next section.

3. Sensing signalling in time and space

A biological system will often contain interacting multireaction
pathways, which vary the concentration of a host of chemical
species. When representing a system in a model, choosing which
interactions to include and exclude is a difficult process that
strongly affects the model behaviour and predictions (Aldridge
et al., 2006). Models are often simplified for a lack of infor-
mation or for computational reasons, as reducing the number
of unconstrained parameters vastly reduces the computation
required for parameter scanning. A common simplification is to
reduce a multistep signalling pathway to single reaction, with
the assumption that this will not affect the model outcomes, but
recent work has shown that this often sacrifices the ability of the
model to reproduce temporal dynamics (Korsbo & Jönsson, 2020).
Using transcriptional reporter systems, the experimental outputs
are abstracted from the signalling by multiple steps, so the temporal
dynamics have been difficult to measure, making model validation
difficult.

But for many signalling networks, there are now direct GEFBs
for multiple steps, which can be tracked in real time in living cells,
allowing the network to be dissected in fine detail. This is exem-
plified in abiotic stress responses which often involve responses in
calcium, ABA, Sucrose nonfermenting-1-related protein kinase 2
activity and reactive oxygen species, which may show differing yet
overlapping dynamics to regulate processes such as gene expression
and stomatal closure. Each of these signalling steps now also has
a suite of direct biosensors (Huang et al., 2019; Jones et al., 2014;
Waadt et al., 2014; Zhang et al., 2020), allowing high spatiotemporal
quantification.

Recent pioneering co-expression of pairs of direct biosensors
has even allowed the temporal dynamics of many second messen-
gers or hormones to be characterised simultaneously (ABA and
Ca2+; pH and EGSH; pH and H2O2; Ca2+ and EGSH; Ca2+ and H2O2;
Ca2+, pH and Cl− (Keinath et al., 2015; Waadt et al., 2017; 2020).
This has confirmed many predictions and offered new insights.
Whereas auxin application caused the fast modulation Ca2+ and
H+ dynamics in roots, ABA application caused no such fast ion
dynamics. This response stands in contrast with stomata, where
ABA microinjection elicits a Ca2+ response in the majority of
stomata, enhancing closure (Huang et al., 2019; Waadt et al., 2017).

Such detailed datasets will no doubt be invaluable in constructing
realistic models of signal integration in the future.

In addition to temporal responses, spatial signalling responses
can also be measured with biosensors. Unlike transcriptional/
degron-based reporters, direct GEFBs that independently sense
their molecule or molecular event of interest allow the subcellular
dynamics of signalling systems to be assessed. This has revealed the
spatial importance of subcellular localisation of calcium accumu-
lation in root growth (Leitão et al., 2019) and the differing redox
status of different organelles (Exposito-Rodriguez et al., 2017;
Schwarzländer et al., 2008). Most biosensors so far have focused
on the nuclear or cytoplasmic space, but as experimentalists are
targeting biosensors to other cellular compartments, so we will
see a whole host of new, spatially distinct responses in the coming
years, allowing the modelling and understanding of interorganelle
signalling.

Unfortunately, many biosensors currently in use contain FPs
that might be unsuitable for highly oxidising or acidic compart-
ments present in some organelles or the apoplasm, although chang-
ing the FPs may help address this (Erard & Guiot, 2015). The
FP engineering community has constantly strived to produce a
diverse pallet of FPs that are now listed in FPbase, providing an
invaluable tool for biosensor engineering. FPbase is a repository,
which consolidates the fluorescence spectra, quantum yield, acid
sensitivity (i.e., pKa), key mutations and other important properties
for a vast number of FPs in a searchable format (Lambert, 2019).
When combined with increasingly affordable nucleic acid synthe-
sis technology, high throughput combinatorial cloning techniques
provide a powerful platform for rapid biosensor engineering. The
expanding diversity of GEFBs and their applications has necessi-
tated improved analysis methods to extract and interpret diverse
datasets.

4. Image analysis and data processing, overcoming a major
bottleneck to interpreting large datasets

In recent years, there has been a renaissance in development of
imaging modalities and analysis methods. For analysis, simple tools
like ImageJ have been expanded into flexible toolsets like Fiji (Fiji
Is Just ImageJ), with multitudes of user-written plug-ins (Schin-
delin et al., 2012), and the use of comprehensive analysis suites,
such as Morphographx/LithographX (de Reuille et al., 2015) or
IMARIS (https://imaris.oxinst.com/), is now commonplace, offer-
ing compelling nearly complete segmentations and reconstructions
of entire organs.

The first step in image analysis is often segmentation (Figure 2),
the process of deciding which parts of an image are of interest for
analysis and labelling them so data can be extracted (Long et al.,
2012). At the simplest level, this involves user-drawn regions of
interest (ROIs) in tools like ImageJ, whilst more complex analysis
may involve automated/semi-automated segmentation performed
computationally.

The importance of a good segmentation becomes apparent in
the subsequent quantification steps. For intensiometric sensors,
this involves quantifying one signal channel, whereas for ratiomet-
ric sensors, this may involve dividing the signal from one channel
by another (Mahlandt & Goedhart, 2021; Rizza et al., 2019). For
ratiometric sensors, quantifying fluorescence emission in areas
with poor/no signal can lead to artefactually large variation and a
low signal-to-noise ratio as can including pixels where the detector
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Fig. 2. Example image processing pipeline for the nuclear localised ratiometric Förster resonance energy transfer sensor nlsABACUS1-2μ.

Notes: Several image acquisition channels are used in FRET biosensor analysis. Here, the new FRETENATOR analysis pipeline for Fiji was used (Rowe et al., 2021). For

segmentation, the following steps are performed: first a difference of Gaussian filter is applied to the acceptor-excited acceptor-emission channel to remove background and

smooth noise, then Otsu’s method is used to threshold the filtered image based on signal intensity. A watershed algorithm is used to split touching objects in the threshold

image, and a connected-component analysis is used to label all the individual objects, producing a label map. The quantification steps involve removing saturated voxels from

the original images and then dividing the mean signal intensity of donor-excited acceptor-emission channel by the donor-exited donor-emission channel for each labelled ROI,

which can be represented on the segmented image using false coloration (e.g., the Turbo lookup table used here).

is saturated—such areas should be removed prior to interpretation
(Figure 2).

Focal drift, sample movement and growth also present prob-
lems for time course imaging and analysis. Often depth (z-plane)
movement causes brightness changes (an optical artefact), which is
a particular problem for intensiometric GEFBs. During analysis, if
ROIs fail to move in step with the moving object, then additional
artefacts may be introduced. Imaging samples in microfluidics
systems to limit sample movement can help eliminate some of these
issues, but often they are dealt with during the analysis stage. One
solution is to identify features that move and offset each timeframe
in an image sequence to eliminate movement (image registration
and translation). If object displacement is not uniform, such as
in a growing tissue, then tracking of segmented objects may help
address any artefacts from movement.

Biosensor images present further challenges for analysis, as they
often require multichannel imaging and sequential acquisition,
which must be taken at high speed when measuring fast dynamics.
Because of the complexity of the imaging setup, a compromise is
often made between acquisition speed, resolution and signal-to-
noise ratio (Rizza et al., 2019; Rowe et al., 2021). This compromise
means accurate fully automated segmentation and complete
tissue reconstruction is difficult, but the development of deep
learning segmentation tools, such as PlantSeg (Wolny et al.,
2020) and Stardist (Weigert et al., 2020), may help increase
segmentation accuracy and overcome some of these bottlenecks.
After segmentation steps, biosensor image analysis workflows
also require additional bespoke steps, such as background
subtraction and the calculation of emission ratios, to process
the data, so it can be quantified meaningfully (Mahlandt &
Goedhart, 2021; Rizza et al., 2017; Rowe et al., 2021; Waadt
et al., 2020).

Without automation, the image analysis process can become
laborious and one of the main bottlenecks in biosensor labs, taking
much longer than the imaging itself. This bottleneck can be over-
come with flexible software environments, such as Fiji or Icy, where
custom workflows can be made, tested and applied quickly in batch
(De Chaumont et al., 2012; Schindelin et al., 2012).

Combining high-resolution biosensor image sets with fully
labelled and segmented image analysis tools may soon be widely
achievable with use of deep learning tools. This would offer many
exciting possibilities for future work, for example, correlating the
size, position and growth rates of all cells within an organ with
hormone concentrations, or examining how cellular organisation
and connections affect hormone accumulation sites. These sorts
of approaches have already yielded impressive results with the
transcriptional and degron reporters. Models of root auxin flux
based on cell geometries and transporter levels extracted from
images have demonstrated the importance of plasmodesmatal
connections to reproduce measured DII-VENUS patterns (Mellor
et al., 2020). As the integration of hormone responses with precise
spatial information has allowed transport models to recapitulate
auxin response patterns, direct GEFBs will spur integrated models
of in planta hormone biochemical pathways to dissect complex
phenomena such as hormone distributions.

5. Breaking down biochemistry. . . and building it up

Biochemical pathways can be examined in models by representing
component reactions numerically. A challenge is that parameters
determining reaction rates are often difficult to directly measure.
Statistical approaches are usually employed to explore the param-
eter space and identify which parameters have the greatest influ-
ence on model behaviour (Aldridge et al., 2006; Vernon et al.,
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2018). Parameterisation is hampered by the difficulty of measuring
the concentrations of individual chemical species, leaving many
parameters unconstrained.

Biosensors allow the real-time quantification of metabolites, in
planta, which greatly improves the parametrisation process. By
using knockouts, applying reaction precursors and using inducible
genetics, the relative contributions of various steps in a pathway can
now be quantified. This approach was recently taken by Rizza et al.
(2021), to characterise how a gibberellin gradient is established in
the Arabidopsis root.

Previous multiscale modelling based on the expression of a
Gibberellin 20-oxidase (GA20ox) biosynthesis gene had predicted
that gibberellin levels would reach a maximum at the start of
the root elongation zone and would diminish via dilution as cells
elongated and progressed to the differentiation zone (Band et al.,
2012). This contrasted with the gibberellin distribution observed
with the gibberellin sensitive nlsGPS1 FRET biosensor (Rizza et al.,
2017), which showed low gibberellin levels in the meristem that
increased as the cells elongated. Therefore, Rizza et al. (2021)
performed iterative gibberellin measurements, perturbations and
mathematical modelling to determine that a gradual increase in
gibberellin biosynthesis across the elongation zone best explains
how the gibberellin distribution is generated.

Rather than the presumed rate limiting GA20ox enzyme step,
both early biosynthetic steps and the final Gibberellin 3-oxidase
(GA3ox) catalysed step were locally rate limiting in the elonga-
tion zone, the site of high gibberellin accumulation in Arabidopsis
roots (Rizza et al., 2021). In contrast, GA20ox along with GA3ox
biosynthetic steps were together rate limiting for gibberellin accu-
mulation in the most apical meristematic region. Exogenously
applied gibberellin reinforced the endogenous gradient, rather than
eliminating it, a behaviour that was best reproduced in silico by
assuming differential plasma membrane permeability to gibberellin
(Rizza et al., 2021). The model predicted that artificially increasing
permeability along the root would eliminate the gibberellin gradi-
ent when exogenous hormone is applied, which was tested in vivo
by briefly applying gibberellin at low exogenous pH where indeed
the gradient was greatly reduced.

This level of resolution when dissecting the functionally relevant
steps of a biochemical pathway across an organ was made more
accessible through the use of direct GEFBs and inspires further
questions. Although the nlsGPS1 biosensor illustrates a correlation
between gibberellin and cellular growth (Rizza et al., 2017), it is
now clear from gibberellin perturbation experiments measuring
gibberellin changes alongside growth that a simple dose-response
model is insufficient to explain the relationship between the hor-
mone and root cell behaviour (Rizza et al., 2021). This work demon-
strates the power of the fast spatiotemporal responses of biosensors,
in reliably quantifying metabolites and accurately parametrising
biological models to move research forward quantitatively.

6. Focus on the future

Plant biosensors are already starting to move plant biology in a
more quantitative direction. Complex metabolic processes are now
being dissected at the level of spatially separate yet interconnected
steps in vivo. A striking example is the recent characterisation of
the photosynthesis dependent changes in NADP(H) and NAD(H)
in chloroplasts, mitochondria, cytosol and peroxisomes using
the iNAP and SoNar sensors (Lim et al., 2020). Using elegant

combinations of biosensors, inhibitors and illumination treat-
ments, this work demonstrates the flow of reducing equivalents
between chloroplasts, peroxisomes and mitochondria through the
cytoplasm to support photorespiration. The compartmentalisation
of different biochemical processes into cells and organelles is an
essential part of eukaryotic life, but it has historically proved
challenging to study the interactions of these primary metabolic
pathways in situ.

Targeting biosensors to different tissues and compartments like
this may sometimes require some sensor re-engineering, but it is
an approach that is already yielding great new insights into sig-
nalling, revealing the spatial specificity of responses. The targeting
of R-GECO1.2 and G-GECO1.2 to the cytoplasm and nucleus
demonstrated nuclear calcium spikes in Arabidopsis (Kelner et al.,
2018; Leitão et al., 2019), and genetically disrupting these spikes
with mutations in a nuclear cation transporter causes altered auxin
homeostasis and root growth (Leitão et al., 2019).

Continued biosensor development may offer the tools to answer
many of the big questions within plant biology, as new biosensors
for difficult to measure metabolites, hormones, molecular events
and even biophysical conditions are developed. Innovative new
sensors, such as a recently developed crowding sensor for osmo-
larity (Cuevas-Velazquez et al., 2021), will allow the experimental
integration of stress responses, biomechanics and gene expression.

The ongoing revolution in image analysis offers many exciting
possibilities for future work with biosensors, through the cor-
relation of spatial and tissue organisational data with biosensor
outputs. High spatiotemporal resolution, nondestructive imaging
in conjunction with comprehensive image analysis allows access
to information that was unimaginable a few years ago. This
approach was recently used to demonstrate a temporal centrifugal
wave of auxin dynamics that precedes growth in the shoot
apical meristem, by using degron-based auxin reporters (Galvan-
Ampudia et al., 2020). Measuring hormone concentrations in
situ has also improved models demonstrating which biochemical
steps are essential to create and maintain hormone gradients
(Rizza et al., 2021). These methods are broadly applicable, and
the construction and parameterisation of a variety of biochemical
and morphodynamic models will be improved with better data.
This is perhaps the most exciting use of biosensor data—to close
the loop between experimentation and mathematical modelling.
The quantitative nature of biosensors offers many exciting future
possibilities in plant research, and, though not yet measurable, the
future seems bright.
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